ISOLATION AND CHARACTERIZATION OF PHOTOSYNTHETIC BACTERIA FROM AQUACULTURE WASTEWATER FOR HYDROGEN PRODUCTION

KARZAN MOHAMMED KHALID

UNIVERSITI TEKNOLOGI MALAYSIA
ISOLATION AND CHARACTERIZATION OF PHOTOSYNTHETIC BACTERIA
FROM AQUACULTURE WASTEWATER
FOR HYDROGEN PRODUCTION

KARZAN MOHAMMED KHALID

A dissertation submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JUNE 2014
Dedicated to my beloved parents, siblings and beloved Haifa
ACKNOWLEDGEMENT

I am grateful to Dr. Mohd Firdaus Bin Abdul Wahab, whose supervision was effective, he has guided, hinted and motivated me throughout the work. I wish to thank and appreciate him for his patience and all his efforts.

I would like to acknowledge and extend my heartfelt gratitude to Universiti Teknologi Malaysia (UTM) in general, and to the Faculty of Biosciences and Medical Engineering (FBME) in special, for giving me the chance to do this work under their management, and for providing the required items, devices and materials to accomplish such project.

I would like also to express my sincere gratitude to my lab mates, lab assistants and fellow graduate students for their encouragement, advice, and friendship.
ABSTRACT

Hydrogen is a clean energy substitute to fossil fuels, also environmentally friendly and does not lead to global warming. Photosynthetic bacteria produce hydrogen from organic compounds by an anaerobic light-dependent electron transfer process. Two hydrogen-producing photosynthetic bacteria have been isolated from aquaculture wastewater enriched with succinate (electron donor) under facultative condition. The isolated bacteria were identified as Gram negative and rod shaped bacteria. During the photohydrogen production process, hydrogen gas is produced at 30°C, initial pH of 7, and light intensity provided using white fluorescent lamp. The two isolated bacteria were then screened for hydrogen production using acetate and starch as substrate. Hydrogen production was measured using residual gas analyzer. These strains have the ability to utilize starch better than acetate as carbon sources for hydrogen production. The two strains, designated as AQ1 and AQ4, were identified to be Pseudomonas sp. via 16S rRNA characterization. The sequences have been deposited to GenBank with the accession number KJ854409 for Pseudomonas sp. AQ1 and KJ854410 for Pseudomonas sp. AQ4. In conclusion, the two isolates (AQ1 and AQ4) have been characterized as hydrogen producer in photohydrogen production process using starch and acetate as substrate. They have the potential to be used in simultaneous wastewater treatment and clean energy generation.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Background 1
1.2 Problem Statement 2
1.3 The Objectives of the Study 3
1.4 Scope of Study 3
1.5 Significance of Study 4

2 LITERATURE REVIEW
2.1 Hydrogen as Energy Source 5
2.2 Hydrogen Production Processes 6
 2.2.1 Biological Hydrogen Production 7
2.3 Photosynthetic Microorganisms 7
 2.3.1 Photosynthetic Bacteria (PSB) 9
2.4 Gamma Proteobacteria
2.5 Hydrogen Production by PSB
 2.5.1 Biohydrogen Production using Purple Non-Sulfur Bacteria
2.6 Industrial Application of PSB
2.7 Aquaculture Wastewater
2.8 Growth Condition for Hydrogen Production
 2.8.1 Light intensity
 2.8.2 Temperature and pH
 2.8.3 Use of Suitable Microorganisms in Hydrogen Production Processes
 2.8.4 Carbon Sources

3 METHODOLOGY
3.1 Experimental Design
3.2 Media Preparation
 3.2.1 Succinate Media
 3.2.2 Nutrient Agar (NA)
 3.2.3 Acetate Medium
 3.2.4 Starch medium
3.3 Isolation of Bacteria
3.4 Screening Pigment of PSB
3.5 Gram Staining
 3.5.1 Preparation of Smear
 3.5.2 Staining
3.6 Starch Utilization Test
3.7 Hydrogen production by PSB
 3.7.1 Bacterial Solution (Pre-Culture)
 3.7.2 Bacterial Growth and Hydrogen Generation
 3.7.3 Gas Collection and RGA Technique
3.8 Identification of PSB using 16S rRNA
 3.8.1 Genomic DNA Extraction (DNA
3.8.2 Colony PCR
3.8.3 Agarose Gel Electrophoresis
3.8.4 Polymerase Chain Reaction
3.8.5 Purification of PCR Product
3.8.6 DNA Sequencing and Analysis

3.9 Work Flow of Experiment

4 RESULTS AND DISCUSSION

4.1 Isolation of Bacteria
4.2 Characterization of Isolated Single Colonies
 4.2.1 Identification of Pigment
 4.2.2 Gram Staining
 4.2.3 Starch Utilization Test
4.3 Photofermentation Process (Photohydrogen Production)
4.4 16S rRNA Analysis
 4.4.1 Genomic DNA Extraction
 4.4.2 Polymerase Chain Reaction (PCR)
 4.4.3 NCBI BLAST
 4.4.4 Phylogenetic Analysis

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion
5.2 Future Work

REFERENCES

Appendices
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different bacterial groups contain different types of bacteriochlorophyll</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of succinate media</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Composition of acetate medium</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Composition of starch medium</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Colony and cellular characterization of AQ1 and AQ4 bacteria</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Flow of the experimental work performed in this research</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Bacterial growth in succinate medium (pH 7), after 2-3 weeks incubation at 30°C in the presence of light.</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>UV-vis spectrum for AQ1.</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>UV-vis spectrum for AQ4.</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Starch utilization test.</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Production of H₂ by AQ1 and AQ4 in starch medium. Line indicates the point when the valve is open, allowing gas flow into the RGA for measurement</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>Production of H₂ by AQ1 and AQ4 in acetate medium. Line indicates the point when the valve is open, allowing gas to flow into the RGA for measurement.</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>PCR products of AQ1 and AQ4.</td>
<td>35</td>
</tr>
<tr>
<td>4.8</td>
<td>Phylogenetic tree for AQ1 strain. Neighbour-joining method was used to construct the tree.</td>
<td>36</td>
</tr>
<tr>
<td>4.8</td>
<td>Phylogenetic tree for AQ4 strain. Neighbour-joining method was used to construct the tree.</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mixed culture contains different single colonies on NA</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>AQ1 single colonies</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>AQ2 single colonies</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>AQ3 single colonies</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>AQ4 single colonies</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>AQ5 single colonies</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>Pigment of isolated PSB (AQ1 and AQ4)</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>Gas collection from starch medium (Tedlar bags connected to serum bottles)</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>Gas collection from acetate medium (Tedlar bags connected to serum bottles)</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>Extracted genomic DNA of AQ4</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>16S rRNA partial sequence of AQ1, (1091 bp)</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>16S rRNA partial sequence of AQ4, (1016 bp)</td>
<td>52</td>
</tr>
<tr>
<td>13</td>
<td>BLAST result for AQ1 strain</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>BLAST result for AQ4 strain.</td>
<td>53</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Hydrogen is a cleaner fuel that can potentially substitute fossil fuels (Barbosa et al., 2001; and Koku et al., 2003). Hydrogen is known as an energy carrier that does not cause pollution, environmentally friendly and does not lead to global warming (Melis, 2006). Furthermore, hydrogen can be used for electricity generation (Yu; and Takahashi, 2007). The sun energy can be used by photosynthetic bacteria (PSB) for producing hydrogen. At the same time, a small amount of organic acids will be consumed (Melis, 2005; Barbosa et al., 2001).

There are several parameters such as light intensity, substrate concentration, and initial pH affecting hydrogen production (Koku et al., 2003). Photo hydrogen production is a well-developed technology, thus PSB uses recycled organic materials and does not need fossil fuels as input (Kondo et al., 2002; Kondo et al., 2006). Now the technology is rapidly developing to improve hydrogen production and efficiency of conversion (Kondo et al., 2002).
There are varieties of biological ways to produce hydrogen from either water, organic acids or from biomass (Melis, 2006). Many prokaryotes with different groups have the ability to produce hydrogen. This is especially true for bacteria that belong to photosynthetic bacteria family. They are characterized by the ability to produce hydrogen from organic substrates with light dependency (Sunita, and Mitra, 1993). PSB has two different pathways of energy metabolism and the ability to live in both dark-anaerobic and light-anaerobic conditions (Lu et al., 2011).

Both PSB and anaerobic bacteria have the ability to provide a photohydrogen production system by using residual carbohydrates as substrates (Barbosa et al., 2001). Hyvolution is a hybrid system of dark and photofermentation bacteria, which lead to higher yield of hydrogen. In this integrated project, biomass is used by dark fermentation (thermophilic bacteria) for hydrogen production, then the products of dark fermentation is utilized for photofermentation (by photosynthetic purple non-sulfur bacteria) (Boran et al., 2010; Gebicki et al., 2010; and Wu et al., 2010). Ordinarily obligate and facultative anaerobic bacteria such as Clostridium, Escherichia and Enterobacter have the ability to produce high rate of hydrogen from glucose, but the produced hydrogen will be limited due to the production of organic materials. These bacteria can also be co-cultured with photosynthetic bacteria to gain a higher yield of hydrogen from glucose (Asada et al., 2006; and Asada, 2008).

1.2 Problem Statement

The production and utilization of fossil fuels causing are negative impacts on the environment. Combustion of fossil fuels leads to the emission of greenhouse gases into the atmosphere. In response, hydrogen has emerged as an attractive substitute to the conventional fuels, as the combustion product is only water. Various sources for feasible hydrogen production are being researched, and production from biological sources is of high potential. Hydrogen production by
using photosynthetic bacteria is being actively studied. They are known as the most powerful hydrogen producers, as the use of the photobiological hydrogen evolution could provide a very simple and efficient system of solar energy conversion. So, PSB with efficient hydrogen production need to be identified, from various sources.

1.3 The Objectives of the Study

1. To isolate and characterize photosynthetic bacteria (PSB) from aquaculture wastewater.

2. To screen the isolated PSB for hydrogen production.

3. To identify the photosynthetic hydrogen producer by using 16S rRNA characterization.

1.4 Scope of Study

In this study PSB were isolated from aquaculture wastewater. Isolation was performed in several steps, such as dilution, shake, and plate cultivation. Furthermore, the colonies and cells of isolated PSB were characterized and the pigment was screened. PSB were then screened for the ability to produce hydrogen. Identification of hydrogen producer was done using 16S rRNA technique.
1.5 **Significance of Study**

This study contributed to the knowledge on the production of hydrogen from biological sources, especially via photosynthetic method. Hydrogen is a clean energy source and can be used as feedstock for some industries. Therefore, demand on hydrogen production has increased considerably in recent years. This PSB isolated in this study has the potential to be applied in photosynthetic bioreactors, such as for waste treatment, with usable energy generation.
REFERENCES

Temperatures by the Expression of a Thermophilic Clostridial Hydrogenase.
Applied Microbiology and Biotechnology, 95(4), 969-977.

