EXPRESSION AND BIOCHEMICAL CHARACTERIZATION OF MALTOGENIC AMYLASE FROM *Bacillus lehensis* G1

SAMSON PACHELLES

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

MAY 2013
ACKNOWLEDGEMENT

First and foremost, I would like to extend my sincere appreciation to my supervisor, Prof. Dr. Rosli Md. Illias for his stern yet valuable advicse as well as his guidance throughout the duration of this research. I would also like to thank and acknowledge the assistance of the laboratory staff of the Department of Bioprocess Engineering, UTM and my laboratory colleagues.

I would like to express my gratitude to Malaysia Genome Institute (MGI) for the financial aid since the research was part of a project under Genomics and Molecular Biology Initiatives Programmes (07-05-16-MGI-GMB12).

Last but not least, I would like to convey my absolute appreciations to my parents and families for their continual support, love and patience.
ABSTRACT

This study was carried out for the expression and characterization of maltogenic amylase (MAG1) from Bacillus lehensis G1. Amplification of 1741 base pair gene fragments encoding MAG1 and expression in Escherichia coli have been successful. The expression of MAG1 was optimized at 30°C and 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for a period of 12 hour post-induction time. Purification of the crude enzyme was done using the ACTAprime System which uses the concept of affinity chromatography. The optimum temperature and pH of the purified MAG1 were 40 °C and pH 7.0 respectively. The enzyme did not show potent thermostability and was stable at pH ranging from 7.0 to 9.0. The purified MAG1 has a preference towards cyclodextrin (CD) specifically β-CD. Starches were least favored by MAG1 followed by pullulan. Only the metal ion Mn²⁺ increased the activity of MAG1 while K²⁺, Li²⁺ and Mg²⁺ slightly affect its activity. The metal ion Ca²⁺ significantly reduced MAG1 activity while Fe²⁺, Co²⁺, Zn²⁺, Cu²⁺, Pb²⁺ and Ni²⁺ drastically reduced the activity of MAG1. In terms of additives, only 2-mercaptoethanol (2-ME) managed to enhance the activity of MAG1 while ethylenediaminetetraacetic acid (EDTA) and Tween20 did not affect its activity. Drastic reduction of MAG1 activity was caused by phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), methanol and ethanol. The hydrolysis pattern of MAG1 was studied using CDs and maltooligosaccharides. The hydrolysis of CDs resulted in the formation of maltose but no glucose was detected. MAG1 was also able to linearize the CDs. MAG1 did not react with glucose, maltose and maltotriose but did react with maltotetraose, maltopentaose, maltohexaose and maltoheptaose to produce mainly maltose and maltotriose. The K_m and V_{max} of MAG1 towards β-CD were 6.358 mg/mL and 91.63 µmol/min respectively.
ABSTRAK

Penyelidikan ini telah dijalankan untuk ekspresi dan mencirikan enzim maltogenic amylase (MAG1) yang diperolehi daripada Bacillus lehensis G1. Amplifikasi sebanyak 1741 pasang bes fragmen yang mengkodkan MAG1 dan ekspresi dalam Escherichia coli telah berjaya. Ekspresi MAG1 adalah optimum pada suhu 30°C dengan induksi 0.5 mM isopropil β-D-1-tiolgalaktopiranosid (IPTG) selama 12 jam. Penulenan enzim telah dijalankan menggunakan sistem ACTAprim yang menggunakan konsep kromatografi afiniti. Suhu dan pH optimum bagi enzim yang telah ditulenkan adalah pada 40 °C dan pH 7.0. Enzim ini tidak menunjukkan kestabilan yang positif pada suhu tinggi dan stabil pada pH dari 7.0 ke 9.0. MAG1 yang telah ditulenkan lebih cenderung kepada siklodekstrin (CD) terutamanya β-CD. Kanji kurang digemari oleh MAG1 diikuti oleh pullulan. Aktiviti MAG1 telah dipertingkatkan oleh Mn^{2+} manakala K^{2+}, Li^{2+} dan Mg^{2+} tidak terlalu memberi kesan kepada aktiviti MAG1. Aktiviti MAG1 telah direncat oleh Ca^{2+} dan direncat dengan mendadak oleh Fe^{2+}, Co^{2+}, Zn^{2+}, Cu^{2+}, Pb^{2+} and Ni^{2+}. Selain daripada itu, 2-merkaptopetanol (2-ME) juga meningkatkan aktiviti MAG1 tetapi aktivitinya tidak dipengaruhi oleh asid atelindiamintetraasetik (EDTA) dan Tween20. Perencatan yang mendadak pada aktiviti MAG1 adalah disebabkan oleh fenilmetilsulfonil florida (PMSF), natrium dodecil sulfat (SDS), metanol dan etanol. Hasil hidrolisis oleh MAG1 dikaji dengan menggunakan CD dan maltooligosakarida. Hidrolisis CD menghasilkan maltosa sebagai produk utamanya tetapi tiada penghasilan glukosa dapat dikesan. MAG1 juga mampu menukar CD kepada bentuk linearnya. MAG1 tidak bertindak balas dengan glukosa, maltosa dan maltotriosa tetapi bertindak balas dengan maltotetraosa, maltopentosa, maltokeksosa dan maltobreptosa untuk menghasilkan maltosa dan maltotriosa. Nilai K_m dan V_max bagi MAG1 terhadap β-CD adalah 6.358 mg/mL dan 91.63 μmol/min.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS/ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives of Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Scopes of Research</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1 Starch</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.2 Starch Degrading Enzyme</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.3 Amylases</td>
<td>8</td>
</tr>
</tbody>
</table>
METHODOLOGY

3.1 Bacterial Strains

3.2 Chemicals

3.3 Preparation of Bacterial Glycerol Stock

3.4 Medium and Agar Preparation
- **3.4.1** Horikoshi Broth and Agar
- **3.4.2** Luria-Bertani Broth and Agar

3.5 General DNA Technique
- **3.5.1** Agarose Gel Preparation
- **3.5.2** Genomic DNA Extraction
- **3.5.3** Quantification of DNA using Spectrophotometer

3.6 Polymerase Chain Reaction (PCR) for the Gene of Maltogenic Amylase
- **3.6.1** Primer Design
- **3.6.2** PCR Mixture and Protocol
- **3.6.3** Purification of PCR Product

3.7 Plasmid Extraction

3.8 Digestion of DNA and Plasmid

3.9 Ligation of DNA to Plasmid

3.10 Preparation of Competent Cell using TSS Method
3.11 Transformation into *E. coli* Hosts 35
3.12 Screening for Positive Transformant 36
3.13 Expression of Recombinant Maltogenic Amylase 36
3.14 Cell Lysis using Sonicator 36
3.15 Purification of Recombinant Maltogenic Amylase 37
 3.15.1 System Wash 37
 3.15.2 Connecting Column 38
 3.15.3 Selecting the Program for Purification 38
 3.15.4 Collecting Samples 38
3.16 Analysis of the Purification Result using SDS-PAGE 39
3.17 Western Blot 39
3.18 Protein Determination 40
3.19 Assay for Maltogenic Amylase 41
3.20 Biochemical Characterization of Recombinant Maltogenic Amylase 41
 3.20.1 Optimum Temperature and pH 41
 3.20.2 Thermal and pH Stability 41
 3.20.3 Substrate Specificity 42
 3.20.4 Effect of Metal Ions and Additives 42
 3.20.5 Hydrolysis Pattern of the Recombinant Maltogenic Amylase 43
 3.20.6 Analysis of Hydrolysis Pattern using TLC 43
 3.20.7 Determination of Kinetic Parameters 43

4 RESULTS AND DISCUSSION 45

4.1 Cloning of Recombinant Maltogenic Amylase 45
 4.1.1 Amplification of Maltogenic Amylase Gene 45
 4.1.2 Cloning of Maltogenic Amylase Gene 46
4.2 Bioinformatic Analysis of Maltogenic Amylase Gene 47
 4.2.1 Full Sequence Analysis of Maltogenic
Amylase Gene

4.2.2 Hydrophobicity of the Recombinant Maltogenic Amylase

4.3 Expression of Maltogenic Amylase

4.3.1 Expression at Different Temperature and Different Concentration of IPTG

4.3.2 Expression in Different Expression Hosts

4.4 Western Blot

4.5 Purification of the Crude Recombinant Maltogenic Amylase

4.6 Biochemical Characterization

4.6.1 Effect of Temperature and Temperature Stability

4.6.2 Effect of pH and pH Stability

4.6.3 Substrate Specificity

4.6.4 Effect of Metal Ion

4.6.5 Effect of Additives

4.6.6 Hydrolysis Pattern

4.6.6.1 Hydrolysis of Cyclodextrin (CD)

4.6.6.2 Hydrolysis of Maltooligosaccharides

4.7 Kinetic Parameter of Recombinant Maltogenic Amylase

5 CONCLUSION

5.1 Conclusions

5.2 Recommendations

REFERENCES

Appendices A - E
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Differences of amylose and amylopectin</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The members in the α-amylase family</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Recently discovered maltogenic amylase from different sources with its basic biochemical characteristic</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Example of donor, acceptor and products that have been studied for the transglycosylation reaction of maltogenic amylase</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>PCR primers for the amplification of maltogenic amylase from B. lehensis G1</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>PRC components used to obtain the gene of maltogenic amylase</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Nucleotides distribution table of MAG1</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Amino acids distribution table of MAG1</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Identity comparison of MAG1 with other maltogenic amylase from different sources</td>
<td>55</td>
</tr>
</tbody>
</table>
4.4 Hydrophobicity scores at the conserved regions of MAG1 58
4.5 Activity of MAG1 expressed in *E. coli* BL21 at different temperature and IPTG concentration 62
4.6 Activity of MAG1 expressed in different host 65
4.7 Purification table of recombinant maltogenic amylase expressed at the optimized conditions 69
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General structure of starch</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic representation of the action pattern of amyloolytic enzymes on starch (amylopectin) polymers</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Conserved sequence regions in the α-amylase family</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>The first three dimensional structure of the α-amylase</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Structure of cyclodextrin</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram on substrate preference of dimeric maltogenic amylase</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Ribbon diagram for a monomer of maltogenic amylase from Thermus sp.</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>The ribbon diagram representation of dimeric maltogenic amylase from Thermus sp.</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Differences of amino acids in conserve regions for TpMA and ThMA</td>
<td>20</td>
</tr>
</tbody>
</table>
2.10 Proposed models of coupled hydrolysis and transglycosylation by maltogenic amylase from *Bacillus stearothermophilus* ET1

2.11 Schematic drawings of products from reaction of acarbose with maltogenic amylase from *Thermus* sp.

3.1 Overview of methodology

4.1 Gel electrophoresis of genomic DNA of *B. lehensis* G1 extraction

4.2 Gel electrophoresis of amplified PCR product of the maltogenic amylase gene

4.3 Gel electrophoresis of double-digestion (Bam HI and Xho I) of the cloning vector pET21a

4.4 Nucleotide and deduced amino acid sequence of MAG1

4.5 Multiple alignment MAG1 with other amylolytic enzymes

4.6 Phylogenetic analysis of MAG1 based on amino acid sequences

4.7 Hydrophobicity analysis of MAG1

4.8 SDS-PAGE electrophoresis of MAG1 expressed in *E. coli* BL21 at 37 °C with 1 mM IPTG

4.9 SDS-PAGE of MAG1 expressed at 30°C with different concentration of IPTG

4.10 SDS-PAGE of MAG1 expressed at 25°C with different
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>SDS-PAGE of MAG1 expressed at 20°C with different concentration of IPTG</td>
</tr>
<tr>
<td>4.12</td>
<td>SDS-PAGE of MAG1 expressed in Origami 2 at 30°C with different concentration of IPTG</td>
</tr>
<tr>
<td>4.13</td>
<td>SDS-PAGE of MAG1 expressed in Origami B at 30°C with different concentration of IPTG</td>
</tr>
<tr>
<td>4.14</td>
<td>Western blot of MAG1 expressed at the 30°C and 0.5 mM IPTG</td>
</tr>
<tr>
<td>4.15</td>
<td>SDS-PAGE of the purified MAG1</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of temperature on the activity of MAG1</td>
</tr>
<tr>
<td>4.17</td>
<td>Temperature stability of MAG1</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect of pH on the activity of MAG1</td>
</tr>
<tr>
<td>4.19</td>
<td>pH stability of MAG1</td>
</tr>
<tr>
<td>4.20</td>
<td>Relative activity of MAG1 on different substrate</td>
</tr>
<tr>
<td>4.21</td>
<td>Effect of metal ions on the activity of MAG1</td>
</tr>
<tr>
<td>4.22</td>
<td>Effect of additives on the activity of MAG1</td>
</tr>
<tr>
<td>4.23</td>
<td>TLC analysis of MAG1 hydrolytic activity on CD</td>
</tr>
<tr>
<td>4.24</td>
<td>TLC analysis of MAG1 hydrolytic activity on</td>
</tr>
</tbody>
</table>
Maltooligosaccharides 81

4.25 Partial multiple alignment of MAG1 with other amylolytic enzymes showing the conserve region IV 81

4.26 Lineweaver-Burk plot for MAG1 using β-CD as a substrate 82
LIST OF SYMBOLS/ABBREVIATION

Asn - Asparagine
Asp - Aspartic acid
BCIP - 5-Bromo-4-Chloro-3-Indolyl Phosphate
Blast - Basic Local Alignment Search Tool
Bp - base pair
DNA - Deoxyribonucleic acid
EC - Enzyme Commission
EDTA - ethylene diamine tetraacetic acid
eg. - example
et al. - and friends
EtOH - Ethanol
g/L - gram per litter
Glu - Glutamate
His - Histidine
HPAEC - High Performance Anion Exchange Chromatography
HPLC - High Performance Liquid Chromatography
IPTG - IsoPropyl β-D-1-ThioGalactopyranoside
kb - kilo base
KCl - potassium chloride
K1 - potassium iodide
LMW - Low Molecular Weight
MeOH - Methanol
mg/mL - milligram per milliliter
mM - millimolar
NaCl - sodium chloride
NaOH - sodium hydroxide
NBT - Nitro Blue Tetrazolium chloride
nm - nano meter
PAGE - polyacrylamide gel electrophoresis
PMSF - phenylmethanesulfonyl fluoride
rpm - revolutions per minute
SDS - sodium dedocyl sulphate
Ser - serine
TBE - Tris/Borate/EDTA
TBS - Tris Buffered Saline
TBSTT - Tris Buffered Saline Tween-20 Triton
TE - Tris/EDTA
TLC - Thin Layer Chromatography
TSS - Transformation and Storage Solution
U/mL - unit per milliliter
UV - ultraviolet
UV-Vis - ultraviolet visible
v/v - volume per volume
w/v - weight per volume
α - alpha
β - beta
γ - gamma
µL - micro litter
% - percentage
°C - degree Celsius
Ca²⁺ - calcium ion
Co²⁺ - cobalt ion
Cu²⁺ - copper ion
Fe²⁺ - iron ion
K⁺ - potassium ion
Li²⁺ - lithium ion
Mg²⁺ - magnesium ion
<table>
<thead>
<tr>
<th>Chemical Symbol</th>
<th>Charge</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn$^{2+}$</td>
<td>-</td>
<td>manganese ion</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>-</td>
<td>nickel ion</td>
</tr>
<tr>
<td>Pb$^{2+}$</td>
<td>-</td>
<td>lead ion</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>-</td>
<td>zinc ion</td>
</tr>
<tr>
<td>H$_2$SO$_4$</td>
<td>-</td>
<td>sulfuric acid</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>-</td>
<td>monopotassium phosphate</td>
</tr>
<tr>
<td>MgSO$_4$</td>
<td>-</td>
<td>magnesium sulfate</td>
</tr>
<tr>
<td>T_m</td>
<td>-</td>
<td>melting temperature</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Medium and Buffer</td>
<td>92</td>
</tr>
<tr>
<td>B</td>
<td>Standard Curve for Maltogenic Amylase Assay</td>
<td>102</td>
</tr>
<tr>
<td>C</td>
<td>Standard Curve for Bradford Assay</td>
<td>103</td>
</tr>
<tr>
<td>D</td>
<td>pET-21a(+) VECTOR (PROMEGA)</td>
<td>104</td>
</tr>
<tr>
<td>E</td>
<td>Publication</td>
<td>105</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Alpha-amylase (EC 3.2.1.1.) is one of the enzymes that have been investigated most thoroughly and used most widely in the starch hydrolytic industry. These amylase are endo-acting amylases which means the enzyme hydrolyze α-1,4-glycosidic linkage of internal starch polymer randomly. This in turn resulted in oligosaccharides with varying lengths and α-dextrins that retains its α-1,6-glycosidic linkages. There are various amylolytic enzymes such as pullulanase (EC 3.2.1.41; Kuriki et al., 1988), cyclodextrin glucanotransferase (EC 2.4.1.19; Sakai et al., 1987), cyclodextrinase (EC 3.2.1.54; Kitahata et al., 1983), and maltogenic amylase (EC 3.2.1.133; MAase; Kim et al., 1992) in which these enzymes exhibits novel enzymatic properties that clearly differentiate it from those of α-amylase, being capable of hydrolyzing poly- and/or maltooligosaccharides such as pullulan and cyclodextrins (CDs) as well as its extensive transglycosylation activity.

Maltogenic amylases which belong to the glycoside hydrolase family 13 (GH13) are very unique where these enzymes have multi-substrate specificity towards starch, pullulan, and CDs, which is modulated by dimerization of the
enzyme. Other than its typical-α-amylase hydrolytic activity, maltogenic amylase is also able to perform a transglycosylation activity via formation of various glycosidic linkages such as α-1,3- and α-1,6-linkages to produce branched oligosaccharides from substrate such as liquefied starch (Park et al., 2000). This enzyme is named maltogenic amylase because in general it will hydrolyze CD into mainly maltose and glucose.

The enzyme activity was found to be cell-bounded which means that the enzyme is intracellular (Kolcuoğlu et al., 2010). It was proven by the predicted amino acid sequence with no sign of signal sequence necessary for secretion of the enzyme outside the cell. In order to exploit its benefits, maltogenic amylase has long been discovered and isolated such as from B. licheniformis (Kim et al., 1992), B. stearothermophilus (Cha et al., 1998), and a Thermus species (Kim et al., 1999).

From previous researches on maltogenic amylase, it has been proven that maltogenic amylase is able to produce branched side chains when reacted with amylopectin cluster (Kim et al., 2006). Moreover, this enzyme hydrolyzes acarbose, a potent α-amylase inhibitor (Park et al., 1998). The combined activities of maltogenic amylase which are hydrolysis and transglycosylation have been utilized in the production of branched oligosaccharides and various modified sugars (Kim et al., 1994; Lee et al., 1995). Maltogenic amylase is also a highly effective anti-staling agent used for bread making in industrial bakeries.

Different source of enzymes exhibits their own unique characteristic even though they have some similarities in terms of function, substrate they act upon or their structure. Finding the enzymes of highly useful characteristic is very important as it can contribute in variety of industries. This is where maltogenic amylase from Bacillus lehensis G1 becomes an interest. Maltogenic amylase has very useful industrial applications and exploring another source of this enzyme can give us more option to consider.
Amount of this enzyme that can be obtained from the wild microorganism is normally limited and their characteristics are unknown. Therefore, their applicability to meet with the conditions of a reaction criteria such as high temperature is still unclear. We intend to clone and over-expressed the maltogenic amylase in expression system such as Escherichia coli (E. coli) and characterize the recombinant enzyme. This will contribute in research to improve the characteristic of the enzyme such as thermostability by protein engineering. It is an important characteristic for industrial application where a thermostable enzyme is preferred. Other than that, an efficient way to produce this enzyme is crucial in order to obtain a low cost production.

1.2 Objectives of Research

The objectives of this research are to clone and express maltogenic amylase from Bacillus lehensis G1 (MAG1) in E. coli and to characterize the purified recombinant maltogenic amylase.

1.3 Scopes of Research

1.3.1 Amplification of maltogenic amylase gene using polymerase chain reaction (PCR) method
1.3.2 Cloning and expression of maltogenic amylase gene in E. coli expression system
1.3.3 Purification and characterization of recombinant maltogenic amylase
REFERENCES

