EVALUATION OF ABS HOLLOW & SOLID PATTERN FOR THE PRODUCTION OF LONG STEM HEMI

SUBRAMANIAM BABY PRIYADHARSHINI

This thesis is submitted in fulfillment of the requirement for the award of degree of Master of Engineering (Advanced Manufacturing Technology)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
ACKNOWLEDGEMENT

I Thank GOD the Almighty with whose blessings I have completed the whole of my final year project and this thesis. I would like to express my sincere appreciations to my Husband for his encouragements, advices and support during my studies. I was in contact with many people, academicians and practitioners. They have contributed towards my understanding and thoughts.

In particular, I wish to express my sincere appreciation to my supervisor, Dr. Mohd Hasbullah Bin Hj Idris for his encouragement, guidance, advices and motivation. Without his continued support and interest, this thesis would not have been the same as presented here.

I also want to express my appreciations to technicians and lab assistants especially thank Metal Cast Lab technicians Mr. Wan and Phd Student Mr. Arafat for their ideas, guidance, cooperation and willingness to guide and help me to complete my thesis, experiments using all the available facilities. I also thank Mr. Sukari Mamat of Production Department, for his help and contribution.

Last but not least, I would like to thank all my parents, family members and friends for their assistants and encouragement in completing this thesis.
Orthopedic implants can be defined as medical devices used to replace or provide fixation of bone or to replace articulating surfaces of a joint. Many trauma cases require almost immediate/short lead time surgery. Thus rapid respond from the manufacture is very crucial. The manufacture of surgical implant often requires the use of machining process. Current trend shows that preform either from casting or forging is preferred to reduce machining cost and time. It is expected that by employing rapid manufacture using rapid prototyping and investment casting process could expedite the manufacturer to surgery time. This objective of this project was to evaluate the effect of dewaxing time on collapsibility characteristic of solid and hollow constructed rapid prototyped Long Stem Hemi (LSH) ABS pattern. Wax pattern casting is used as reference for this ABS pattern process.FDM2000 machine was used to build the ABS patterns. Acrylonitrile Butadiene Styrene (ABS) P400 was used for pattern material in this study. Only shell investment casting mould is involved in this study. Output responses investigated were collapsibility, expansion defects. ABS Hollow and Solid mould are prepared and they are subjected to dewaxing time. The ABS Hollow and Solid shell are compared based on the dewaxing process results, ceramic shell defects, FESEM analysis etc. The best pattern material is chosen based on the results and compared with the reference process.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION OF ORIGINALITY</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xv</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER -1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 3
1.3 Project Objective 3
1.4 Project Scope 3

CHAPTER -2 LITERATURE REVIEW

2.1 Introduction 4
2.2 Stainless Steel 4
2.2.1 Microstructure

5

2.2.2 Physical and Tensile Properties

6

2.3 Investment Casting

7

2.3.1 Overview of Investment casting process

9

2.3.1.1 Stages of producing shell mould

10

2.3.2 Defects in Investment casting process

11

2.3.2.1 Prime coat buckle

12

2.3.2.2 Shell cracking

12

2.3.2.3 Mis-run

13

2.3.2.4 Rough surface

14

2.3.2.5 Buckling

15

2.3.2.6 Scab

16

2.3.3 Pattern Material

17

2.3.3.1 Waxes

17

2.3.3.2 Additives

18

2.3.3.3 Plastic

19

2.4 Acrylonitrile-Butadiene-Styrene (ABS) Plastics

20

2.5 Rapid Prototyping

21

2.5.1 Cad model creation

22

2.5.2 Conversion to stl format

22

2.5.3 Slice the STL file

22

2.5.4 Layer by layer construction

23

2.5.5 Clean and finish

23

2.6 Fused Deposition Modeling

24
CHAPTER - 3 METHODOLOGY

3.1 Introduction 34

3.2 Wax mould preparation 34

3.3 Preparing Investment Casting moulds for wax pattern 35

3.3.1 Gating System construction 36

3.3.2 Shell Build Up 36

3.3.3 Slurry Preparation 37

3.3.4 Ceramic shell building process 38

3.3.5 Dewaxing 41

3.3.6 Mould Preheating 41

3.3.7 Melting and Pouring 42

3.3.8 Knockout 42
3.4 Methodology for ABS

3.4.1 Preparing Investment casting mould for ABS pattern

3.4.2 Shell Buildup

3.4.3 Dewaxing

CHAPTER - 4 RESULTS & DISCUSSIONS

4.1 Casting Results of Wax

4.2 Results of ABS

4.2.1 FESEM Analysis

4.2.2 Surface Morphology Images

4.2.3 Percentage of ABS remaining in the shell after Dewaxing

4.2.4 Causes for cracks in the moulds

4.2.5 Ceramic Shell Defects

CHAPTER - 5 CONCLUSIONS

5.1 Suggestions
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Investment Casting Process</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Rapid Prototyping Cycle</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>The Fused Deposition Modeler 2000 systems</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Extrusion head of FDM</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>IC with RP patterns</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Silicon Rubber mould for wax pattern</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Wax Sample after removal from the mould</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Gating system for wax pattern</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Slurry Preparation</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Measuring Viscosity</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Dipping Process</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>WAX Patterns after shell Building</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>Parts after dewaxing and firing</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>Specimens used in the experimental work</td>
<td>43</td>
</tr>
<tr>
<td>3.10</td>
<td>Methodology Flow Chart</td>
<td>44</td>
</tr>
<tr>
<td>3.11</td>
<td>CAD model of Long Stem Hemi</td>
<td>45</td>
</tr>
<tr>
<td>3.12</td>
<td>CAD model of Long Stem Hemi before the slicing operation</td>
<td>46</td>
</tr>
<tr>
<td>3.13</td>
<td>Finished Long Stem Hemi part in the FDM 2000 after the slicing operation</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.14</td>
<td>Gating system for ABS pattern</td>
<td>48</td>
</tr>
<tr>
<td>3.15</td>
<td>ABS Pattern after Shell Building</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>1<sup>st</sup> Sample poured at 1560°C</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>1<sup>st</sup> Sample poured at 1610°C</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>2<sup>nd</sup> Sample poured at 1610°C</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>3<sup>rd</sup> Sample poured at 1610°C</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>4<sup>th</sup> Sample poured at 1610°C</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Hollow ABS mould after dewaxing</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>Solid ABS mould after dewaxing</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Hollow ABS mould with spots marked for FESEM</td>
<td>57</td>
</tr>
<tr>
<td>4.9</td>
<td>Solid ABS mould with spots marked for FESEM</td>
<td>57</td>
</tr>
<tr>
<td>4.10</td>
<td>Surface morphology of hollow shell (Beginning)</td>
<td>58</td>
</tr>
<tr>
<td>4.11</td>
<td>Surface morphology of solid shell (Beginning)</td>
<td>58</td>
</tr>
<tr>
<td>4.12</td>
<td>Surface morphology of hollow shell (centre)</td>
<td>59</td>
</tr>
<tr>
<td>4.13</td>
<td>Surface morphology of solid shell (centre)</td>
<td>59</td>
</tr>
<tr>
<td>4.14</td>
<td>Surface morphology of hollow shell (end)</td>
<td>60</td>
</tr>
<tr>
<td>4.15</td>
<td>Surface morphology of solid shell (end)</td>
<td>60</td>
</tr>
<tr>
<td>4.16</td>
<td>Percentage of ABS after dewaxing (Solid)</td>
<td>62</td>
</tr>
<tr>
<td>4.17</td>
<td>Percentage of ABS after dewaxing (Hollow)</td>
<td>63</td>
</tr>
<tr>
<td>4.18</td>
<td>Hydrogen Fluoride(HF) structure</td>
<td>64</td>
</tr>
<tr>
<td>4.19</td>
<td>EDX graph 1 for solid ABS shell</td>
<td>65</td>
</tr>
<tr>
<td>4.20</td>
<td>Solid ABS shell after Dewaxing</td>
<td>66</td>
</tr>
<tr>
<td>4.21</td>
<td>Position of mould in the furnace</td>
<td>67</td>
</tr>
<tr>
<td>4.22</td>
<td>EDX graph 2 for solid ABS shell</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Composition limits for implant quality stainless steel</td>
<td>6</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Tensile properties of implant quality stainless steel</td>
<td>7</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Specifications of Shell Building for wax pattern</td>
<td>40</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>FDM2000 machining parameters obtained after slicing</td>
<td>47</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Specifications of Shell Building for ABS pattern</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Solid & Hollow ABS dewaxing setting conditions</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

2D - Two dimensional
3D - Three dimensional
A - Ampere
ABS - Acrylonitrile Butadiene Styrene
C - Celsius
CAD - Computer Aided Design
CS - Ceramic shell
F - Fahrenheit
FDM - Fused Deposition Modeling
In - Inch
kg - Kilogram
QS - Quick Slice
RP - Rapid Prototyping
mm - Mili meter
Cu cm - Cubic centimeter
gms - Grams
M - Meter
i.e. - In Example
CHAPTER 1

INTRODUCTION

1.1 Background

Orthopedic implants can be defined as medical devices used to replace or provide fixation of bone or to replace articulating surfaces of a joint. In simpler words, orthopedic implants are used to replace damaged or troubled joints. The implant surgeries are performed only by highly specialized and trained surgeons. The surgical procedures for each implant involve removal of the damaged joint and an artificial prosthesis replacement.

Orthopedic implants are mainly made from stainless steel and titanium alloys for strength and lined with plastic to act as artificial cartilage. Few are cemented into place and others are pressed to fit so that your bone can grow into the implant for strength.

Stainless steel is a very strong alloy, and is most often used in implants that are intended to help repair fractures, such as bone plates, bone screws, pins, and rods. Stainless steel is made mostly of iron, with other metals such as chromium or molybdenum added to make it more resistant to corrosion. There are many different types of stainless steel.
The stainless steels used in orthopedic implants are designed to resist the normal chemicals found in the human body[1].

Investment casting (IC) is a key technique among a range of modern metal casting techniques that is capable of providing an economical means of mass producing shaped metal parts containing complex features (e.g. thin walls, undercut contours and inaccessible spaces) which can be difficult or impossible to create using other fabrication methods [2]. Despite the wide range of applications in many industries, the standard (conventional) IC process practiced in modern foundries has its drawbacks. High tooling costs and lengthy lead times are associated with the fabrication of metal moulds required for producing the sacrificial wax patterns used in IC. The high tooling costs involved in conventional IC result in cost justification problems when small numbers of castings are required[2, 3].

Rapid prototyping (RP) techniques are fast becoming standard tools in the product design and manufacturing industry. With the capability of rapidly fabricating 3-D physical objects, RP has become an indispensable tool employed for shortening new product design and development time cycles [3]. RP techniques are limited neither by the geometry nor by the complexity of the parts to be fabricated. In addition, RP techniques involve no tooling or fixtures; result in resulting in simpler set-up, lower overhead cost and shorter production lead times compared to other fabrication methods. With RP, parts that were previously impossible or extremely costly and time-consuming to fabricate can be built with ease [3].

Fused deposition modeling (FDM) is one of the RP processes that forms three-dimensional objects from CAD generated solid or surface models. FDM builds part of any geometry by sequential deposition of material on a layer by layer basis. The process uses heated thermoplastic filaments which are extruded from the tip of nozzle in a prescribed manner in a semi molten state and solidify at chamber temperature[4, 5].
1.2 Problem Statement

Many trauma cases require almost immediate/short lead time surgery. Thus rapid respond from the manufacture is very crucial. The manufacture of surgical implant often requires the use of machining process. It can either be machined from metal block or preform produced from investment casting or forging processes. Current trend shows that preform either from casting or forging is preferred to reduce machining cost and time. It is expected that by employing rapid manufacture using rapid prototyping and investment casting process could expedite the manufacturer to surgery time.

1.3 Objective

The objective is defined below:

- To evaluate the effect of dewaxing time on collapsibility characteristic of solid and hollow constructed rapid prototyped Long Stem Hemi (LSH) ABS pattern.

1.4 Scopes

The scopes of works for this project are as follows:

- FDM2000 machine was used to build the ABS patterns.
- Acrylonitrile Butadiene Styrene (ABS) P400 will be used for pattern material in this study.
- Only shell investment casting mould is involved in this study.
- Output responses investigated were collapsibility, expansion defects and surface roughness of cast products.
REFERENCE

2. Beeley PR, Smart RF (1995); Investment Casting. The Institute of Materials.
4. Anupam Srivastav (2011); An Overview of Metallic Biomaterials for Bone Support and Replacement.
5. Twarog, Daniel L (1990); Causes and cures for shell-related defects, American foundry society, Modern Casting Vol. 80 Nbr.
13. Twarog, Daniel L (1990); Causes and cures for shell-related defects, American foundry society, Modern Casting Vol. 80 Nbr.
17. http://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm
23. Ratnadurai Dhakshyani, Yusoff Nukman, Abu Osman Noor Azuan (2012); FDM models and FEA in dysplastic hip.
25. L. M. Galantucci, F. Lavecchia, G. Percoco (2009); Experimental study aiming to enhance the surface finish of fused deposition modeled parts.
26. Jose M. Arenas, Cristina Alia, Fernando Blaya, Alfredo Sanz (2011); Multi-criteria selection of structural adhesives to bond ABS parts obtained by rapid prototyping.
27. J.W. Choi, Francisco Medina, Chiyen Kim, David Espalina, David Rodriguez, Brent Stuckerc, Ryan Wickera (2011); Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility.

28. H. Najafi, J. Rassizadehghani, S. Norouzi (2011); Mechanical properties of as-cast micro alloyed steels produced via investment casting.

29. R.F. Smart (1989); High Strength and Integrity Investment castings, British investment casting trade association.

32. Dr. Robert C. Voigt (2002); Fillability of thin-wall steel castings.