EFFECTIVENESS OF SAFETY PROGRAMS IN MALAYSIAN CONSTRUCTION INDUSTRY

JAIMEY ATTAU

A project report is submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JUNE 2014
Specially Dedicated To

Beloved Mother
ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, academicians, and practitioners. They have contributed towards my understanding and thought. I would like to express my sincere appreciation to my thesis supervisor, Associate Professor Aziruddin Ressang for his guidance and comment throughout the whole process of writing this report. Without his continued support and interest, this report would not have been the same as presented here.

Extended appreciation is also due to all my devoted lecturers, without whom I would not have had the knowledge to proceed of writing this report. I wish to thank to my colleagues for giving assistance at various occasion. Their views and tips are useful indeed.

Most of all, I wish to express my deep sense of gratitude to my family, especially to my wife and my kids for their patience and encouragement. Last but not least, thank you to all who made this report possible.

Thank You and God Bless
Construction accident rate in Malaysia had increased tremendously. This research was to investigate proactive indicator in construction industry and to propose improvement of implementation of the safety programs. Comprehensive literature review has been carried out to gather the information on the essential safety programs and the proactive safety performance indicator in construction industry. This was followed by a structure questionnaire, distributed to the selected project team player, as a main tool to gain data to explore the level of effectiveness and implementation of safety programs and the proactive safety performance indicator in Malaysian construction industry. The data collected has been analysed by using Relative Index technique. Twenty one (21) essential safety programs and thirty nine (39) sub element proactive safety performance indicators were identified. From the research, the site safety performance is very much influenced by the implemented safety programs such as implementation of safety inspection and safety induction.

ABSTRACT
ABSTRAK

Kadar kemalangan di dalam sector pembinaan di Malaysia telah meningkat dengan ketara. Kajian ini bertujuan untuk mengkaji penanda aras keselamatan proaktif dan mencadangkan kaedah untuk memperbaiki perlaksanaan program-program keselamatan di tapak pembinaan. Kajian yang menyeluruh telah dijalankan untuk mengumpul maklumat mengenai program-program keselamatan yang penting dan penanda aras prestasi keselamatan yang proaktif dalam industri pembinaan. Ini diikuti dengan borang soal selidik yang telah diedarkan kepada ahli projek yang dipilih, sebagai sumber utama untuk mendapatkan data bagi mengenalpasti tahap keberkesanan dan pelaksanaan program-program keselamatan dan penanda aras prestasi keselamatan yang proaktif dalam industri pembinaan Malaysia. Data yang dikumpul telah dianalisis dengan menggunakan teknik Indeks Relatif. Dua puluh satu (21) program-program keselamatan yang penting dan tiga puluh sembilan (39) sub unsur penanda aras prestasi keselamatan proaktif telah dikenal pasti. Dari kajian yang dijalankan, prestasi keselamatan tapak pembinaan sangat dipengaruhi oleh program-program keselamatan yang telah dilaksanakan seperti perlaksanaan program pemeriksaan ke tapak pembinaan dan induktion keselamatan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Aims and Objective of the Study 7
1.4 Scope and Limitation 8
1.5 Significance of the Study 9
1.6 Methodology 9
SAFETY PROGRAM

2.1 Introduction 12
2.2 Definition of Safety Program 13
2.3 Definition of Safety Program Effectiveness 13
2.4 Safety Programs Objective 14
2.5 Safety Programs Elements 14
 2.5.1 Safety Policies 17
 2.5.2 Safety Committees 17
 2.2.3 Safety Award 18
 2.5.4 Staffing for safety 18
 2.5.5 Safety Inductions 19
 2.5.6 Safety Training 19
 2.5.7 Safety Meeting 20
 2.5.8 Safety Task Briefing 20
 2.5.9 Employee Involvement 21
 2.5.10 Preproject and Pretask Planning 21
 2.5.11 Job Hazard Analysis 22
 2.5.12 Emergency Preparedness and Response 22
 2.5.13 Selection of Employees 23
 2.5.14 Subcontractor Management 23
 2.5.15 Personal Protection Programmes 23
 2.5.16 Safety Inspections 24
 2.5.17 Safety Auditing 24
 2.5.18 Safety Records Management 25
 2.5.19 Accident/Incident Investigations 25
2.6 Factors Affecting Safety Program Implementation 26
 2.6.1 Worker Involvement 26
 2.6.2 Safety Prevention and Control System 27
 2.6.3 Safety Arrangement 28
 2.6.4 Management Commitment 29
2.7 Summary 30
3 SAFETY PERFORMANCE

3.1 Introduction

3.2 Occupational Safety and Health Management System (OSHMS)

3.3 OSH Management System in Malaysia

3.4 Elements of the OHS Management System

3.5 Construction industry performance in Safety.

3.6 Measuring Safety Performance in Construction

3.7 Definitions and Categorizations of Safety Performance Indicators

3.8 Leading Indicator

3.9 Proactive Safety Performance Indicator in Construction Project

3.10 Factors Affecting Safety Performance

3.11 Summary

4 RESEARCH METHODOLOGY

4.1 Introduction

4.2 Literature Review

4.3 Interview with Expert Panel

4.4 Questionnaires Survey

4.5 Analysis of Data

4.6 Summary
5 DATA ANALYSIS AND RESULTS

5.1 Introduction 57

5.2 Interview Sessions 57

5.2.1 Profile of Expert Panel 58
5.2.1.1 Interviewee 1 58
5.2.1.2 Interviewee 2 59
5.2.1.3 Interviewee 3 59
5.2.1.4 Interviewee 4 60
5.2.1.5 Interviewee 5 60

5.2.2 Overall Findings from Interview Sessions 61

5.3 Findings from Survey Questionnaires 63

5.3.1 Respondents Response Rate 63
5.3.2 Responders Experience in Construction Industry 64
5.3.3 Respondents’ Designation 65

5.4 Level of Implementation and Effectiveness of Safety Programs 65

5.4.1 Level of Implementation of Safety Program 66
5.4.1.1 Accountability and Performance Measurement 69
5.4.1.2 Training and Communication 69
5.4.1.3 Management 70
5.4.1.4 Planning 70

5.4.2 Level of Effectiveness of Safety Programs 71
5.4.1.1 Training and Communication 74
5.4.1.2 Accountability and Performance Measurement 74
5.4.1.3 Planning 75
5.4.1.4 Management 75

5.5 Proactive Safety Performance Indicator 76

5.5.1 Safety Inspections 79
5.5.2 Hazard Analysis 80
5.5.3 Housekeeping Program 80
5.5.4 Safety Task Briefing 80
5.5.5 Safety Audit 81
5.5.6 Pre-Task planning 81
5.5.7 Emergency Response System 82
5.5.8 Safety Meeting 82
5.5.9 Near Miss Reporting 82
5.5.10 Safety Induction 83
5.5.11 Safety Training 83
5.6 Ranking of Individual Safety Programs 84
5.7 Ranking of Sub-Elements Proactive Safety Performance Indicator 85
5.8 Summary 86

6 DISCUSSION OF RESULT

6.1 Introduction 87
6.2 Level of Implementation and Effectiveness of Safety Programs. 87
 6.2.1 Level of Implementation of Safety Programs 88
 6.2.1.1 Accountability and Performance Measurement 88
 6.2.1.1 Training and Communication 88
 6.2.1.3 Management 89
 6.2.1.4 Planning 89
 6.2.2 Level of Effectiveness of Safety Programs 90
 6.2.2.1 Training and Communication 90
 6.2.2.2 Accountability and Performance Measurement 90
 6.2.2.3 Planning 91
 6.2.2.4 Management 91
6.2.3 Individual Safety Programs Elements
 6.2.3.1 Individual Implemented Safety Programs Elements
 6.2.3.2 Individual Effectiveness Safety Programs Elements

6.3 Proactive Safety Performance Indicator
 6.3.1 Safety Inspections
 6.3.2 Hazard Analysis
 6.3.3 Housekeeping Programs
 6.3.4 Safety Task Briefing
 6.3.5 Safety Audit
 6.3.6 Pre-Task Planning
 6.3.7 Emergency Response System
 6.3.8 Safety Meeting
 6.3.9 Near Miss Reporting
 6.3.10 Safety Induction
 6.3.11 Safety Training

6.4 Individual Sub--Elements Proactive Safety Performance Indicator

6.5 Improvement of Implementation of Safety Programs

6.6 Summary

6 CONCLUSIONS

7.1 Introduction

7.2 Achievements of the aim and objectives of study
 7.2.1 Objective 1
 7.2.2 Objective 2
 7.2.3 Objective 3

7.3 Recommendation for Future Study
REFERENCES

APPENDICES

A Summary Table for Safety Program Element by previous researchers 109
B Table for Proactive Safety Performance Indicator Elements by previous researchers 110
C Interview Questionnaire Form 111
D Survey Questionnaire Form 114
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of the overall study aim, objectives and adopted methodologies</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Worker Involvement</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Safety Prevention and Control System</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Safety Arrangement</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Management Commitment</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Proactive Metrics of Safety Performance</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Main and Sub Element of Proactive Safety Performance Indicator</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Factors Affecting Construction Safety Performance</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Likert Scale for Frequency Level of Implementation of Safety Program</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Likert Scale for Effectiveness Level of Safety Program</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Likert Scale for Agreement Toward Each Statement</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Reliability Range</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Content analysis interview session with expert panels</td>
<td>62</td>
</tr>
<tr>
<td>5.2</td>
<td>Reliability Statistic for Implementation of Safety Program Data</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Results Analysis Implementation Level of</td>
<td>67</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.4</td>
<td>Ranking of Safety Programs Implementation</td>
<td>68</td>
</tr>
<tr>
<td>5.5</td>
<td>Reliability Statistic for Effectiveness of Safety Program Data</td>
<td>71</td>
</tr>
<tr>
<td>5.6</td>
<td>Results Analysis Effectiveness Level of Safety Programs</td>
<td>72</td>
</tr>
<tr>
<td>5.7</td>
<td>Ranking of Safety Programs Effectiveness</td>
<td>73</td>
</tr>
<tr>
<td>5.8</td>
<td>Reliability Statistics for Proactive Safety Performance Indicator Data</td>
<td>76</td>
</tr>
<tr>
<td>5.9</td>
<td>Results Analysis of Proactive Safety Performance Indicator</td>
<td>76</td>
</tr>
<tr>
<td>5.10</td>
<td>Ranking of Proactive Safety Performance Indicator</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Number of Industrial Reported Year 2007-2012</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Industrial Accidents Rate Per 1000 Employees</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>No of Death by Sector Year 2007-2012</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic of Research Methodology</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>System model illustrating the different types of indicators</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>Respondents response rate by type of project</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>Respondents experience in construction industry</td>
<td>64</td>
</tr>
<tr>
<td>5.3</td>
<td>Respondents Designation</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>Ranking of Implemented Safety Programs</td>
<td>84</td>
</tr>
<tr>
<td>5.5</td>
<td>Ranking of Effectiveness of Safety Programs</td>
<td>85</td>
</tr>
<tr>
<td>5.6</td>
<td>Ranking of Proactive Sub-Elements</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Continuous Improvement Implementation of Safety Program</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Summary Table for Safety Program Element by previous researchers</td>
<td>109</td>
</tr>
<tr>
<td>B</td>
<td>Table for Proactive Safety Performance Indicator Elements by previous researchers</td>
<td>110</td>
</tr>
<tr>
<td>C</td>
<td>Interview Questionnaire Form</td>
<td>111</td>
</tr>
<tr>
<td>D</td>
<td>Survey Questionnaire Form</td>
<td>114</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

The construction industry in undeniably plays a fundamental role in the development of Malaysian economic. This industry establishes buildings and infrastructure works required for social economic development which contribute to the overall economic growth. Department of Statistics, Malaysia Economic Report 2012/2013 reported that in year 2012, the construction sector expanded strongly by 18.9% in the first half of the year and expected to sustain growth in the year of 2013.

The construction sector is set for solid growth triggered by the Economic Transformation Program (ETP) and various project under the Tenth Malaysia Plan (2011-2015). High profile ETP projects include the Klang Valley Mass Rapid Transit system, Light Rail Transit extensions, Petronas RAPID complex, Kuala Lumpur River of Life, Bandar Malaysia, Iskandar development region and Sarawak Corridor of Renewable Energy (SCORE).
The major projects increase lead to the more involvement of labours and professional in their respective fields. Malaysia construction industry is still highly depending on human workforce especially foreign labour instead of advance construction method. The majority of the construction workers in Klang Valley are from Bangladesh, Indonesia, Thailand, Philippines and Myanmar. The behaviour of these workers is influenced by the culture of their home country, which mainly agriculture based, causing difficulty for the construction industry to maintain high safety standards.

The impact of sudden arrival of workforce into the construction sites has somewhat had an adverse impact on the well-being of workers as evidenced by poor safety records at construction sites. Accident rate in Malaysia had increased tremendously and it grew hand-in-hand with the number of the projects. According to Department of Occupational Safety and Health (DOSH, 2012), the number of death in construction sector show an increase of 51 cases in 2011 as compared to 67 cases in 2012 which is the highest for the occupational accident by category of death.

In order to reduce the unacceptable statistics of accidents and injuries in Malaysia construction industry, the government had come out with the safety measures through the implementation of the Occupational, Safety and Health Act 1994, with the aim to prevent the occupational injuries. The adaptation of ISO 16000 and 8000, shows the effect of the authorities to enhance the safety program. In addition, launching of Master Plan for Occupational Safety and Health in Construction Industry 2005-2010, with the objectives to reduce injury rates, work related ill-health and consequent days lost from work in the industry, wherein the implementation of safety programmes was promoted. Yet, the accident occurrence rate in the construction industry still remains at intolerable levels.

Findley et al.(2004) states that the development and implementation, of an effective safety programme can reduce site accidents. An effective safety program can substantially reduce accidents because it can help the management to build up
safer means of operations and create safe working environments for the workers (Rowlinson, 2003). However, it is indeterminate as to which policies are the most effective programs in achieving improved safety performance. The question of how to successfully put written safety programs into actual actions has gained considerable attention in the contemporary workplace.

In response to the scenario, the study was conducted with construction projects in Klang Vallet and aimed to study the construction safety programs elements in order to enhance safety performance. The results of the study will provide the management with practical guidelines for implementing safety programs more effectively as well as to increase the effectiveness of the current system.

1.2 Problem Statement

Statistics around the globe had shown an immense proportion of the occupational facilities in the construction industry. Being one of the major contributors to the total employment, the construction industry has long since been considered as a hazardous occupation due to the high incidence of occupational accidents, and most importantly, fatal injuries.

The rapid growth of the construction industries and increased accidents has brought about increased threat to occupational safety and health, and as such there have been a number of injuries and fatal in recent years. The number of fatalities encounteres in the construction industry is alarming. The number of industrial accidents reported to the Social Security Organization (SOCSO) has declined by 9.5 percent from 2007 to 2012. SOCSO had received 38657 reports on industrial accidents in 2007 and in 2012, the number had reduced to 34974 cases as shown in figure 1.1.
The industrial accidents for every 1,000 workers have declined from 7.09 in 2007 to 5.39 in 2012 as shown in figure 1.2. However, if this rate is compare to the developed nation such as Sweden, Japan, South Korea and European countries, there is still big task ahead to get the right figure. According to Social Security Oragnisation (SOCSO,2013), the current fatality rate in the developed countries like Japan, France and the USA is below three (3) per 1000 workers and Malaysia which is striving to achieve developed nation status by 2020 should strive to achieve the target reducing fatalities to at least three (3) per 1000 workers.

Figure 1.1: Number of Industrial Reported Year 2007-2012
(Source: SOCSO, 2013)
The number of construction accidents nonetheless has decrease by 29 percent cases in 2007 to 367 cases in 2012. However, statistics show an increase in the number of accidents of 51 cases in 2011 as compared to 67 cases in 2012. Even though there was a decrease in the number of accidents, from 2007 until 2011, construction industry has always on top in the occupational accident by category of death as shown in figure 1.3. The 67 death cases from construction industry for the year 2012 showing how hazardous the construction site was.

Figure 1.3 which is extracted from SOCSO Annual Report shows the number of cases of accidents and fatalities respectively from 2007-2012. It is to be noted that SOCSO’s figures only cover those workers subscribing to SOCSO. The actual figures are much higher if those not subscribing to SOCSO are taken into account. It is generally believed that many cases of accidents and fatalities of foreign workers in the industry are reported to the authorities and hence in the SOCSO’s figures are the accident statistics of Malaysian workers only.
In Malaysia, there are three basic legislation Acts that govern the Occupational Health and Safety of works in the construction industry, namely:

i. The Occupational Safety and Health Act 1994 (Act 514) (OSHA)
ii. The Factories & Machineries Act 1967 (Act 139) (FAMA)
iii. The Construction Industry Development Act 1994 (Act 520) (CIDB)

The primary aim of this legislation Acts is to promote safety and health awareness and to promote safety and health culture among all Malaysian workforces.
The government had launched the Master Plan for Occupational Safety and Health in Construction Industry 2005-2010 and Construction Industry Master Plan 2006-2015 (CIMP) initiated by the Construction Industry Development Board (CIDB) Malaysia with the main objective to reduce the rates of workplace injuries and associated fatalities. In addition, the government, through DOSH has launched a series of program in managing health and safety issues in construction site, as a guideline for construction industry player to manage safety and health issue at construction site.

Despite regulation, legislation and programmes in Occupational Safety and Health, high rates of injury and fatality persist in Malaysian construction industry. Even if the guideline does exist, to what extent does the guideline by implementation on site, how far do the workers is following it?

The construction industry has to some extent become phlegmatic sombre. The stigma of the construction industry as Dirty. Difficult and Dangerous (3D) has to be eliminated as this will jeopardise the industry image.

Therefore, a comprehensive review of effectiveness of Safety Programs in the Malaysian Construction Industry is essential towards improvement of safety performance.

1.3 Aim and Objective of the Study

The aim of this study is to study construction safety programs elements in order to enhance safety performance. To achieve this, several objectives are summarized as follows:
i. To evaluate the level of implementation and effectiveness of safety programs in construction industry.

ii. To investigate the proactive safety performance indicator in construction industry.

iii. To propose improvement of implementation of the safety programs.

1.4 Scope and Limitation

This study was conducted to seek outlined objectives based on responses from construction companies which are currently working on several projects in Kuala Lumpur and Selangor. As such, this study is limited and only focused in Klang Valley.

The selected construction companies in Klang Valley, namely of Grade 7 classifications in managing their safety management in their construction project. The list of Grade 7 contractors are obtained from the resources of Construction Development Board of Malaysia (CIDB).

The targeted respondents are classified into two groups, namely project managers and safety representatives such as safety manager, safety officers, and safety supervisor.
1.5 Significance of the Study

The working population is a valuable asset to our nation therefore we cannot afford to have many accidents in the construction industry which will jeopardize our valued human resources. A lot of people will be affected directly or indirectly once the accident takes place. The families of the victims will suffer the loss of their loved ones and source of income. The employer will suffer the loss of an experienced worker and be forced to absorb the incidental cost due to the interrupted project activities, increased insurance premiums and medical expenditure.

Therefore, completion of this study perhaps will provide the management with practical guidelines for implementing safety programmes more effectively and to increase the effectiveness of the current system by identifying safety programmes that are to be effective in reducing accidents.

1.6 Methodology

The methodology is a framework in describing the way a study is carried out. The summary of the overall study aim, objectives and adoptes methodologies to achieve the objectives in this study is as shown in Table 1.1.
Table 1.1: Summary of the overall study aim, objectives and adopted methodologies

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TASKS</th>
<th>METHODOLOGY</th>
</tr>
</thead>
</table>
| i. To evaluate the level of implementation and effectiveness of safety programs in the construction industry | • Review history of construction safety programs
• Study the level of implementation and effectiveness of safety programs in Malaysian construction industry | • Literature search
• Interview with expert panel
• Questionnaire survey |
| ii. To investigate the proactive safety performance indicator in construction industry | • Review of proactive safety performance indicator in construction industry | • Literature search
• Interview with expert panel
• Questionnaire survey |
| iii. To propose improvement of implementation of the safety programs | • Developed a new template of improvement of implementation of safety programs | • Literature search
• Interview with expert panel |
| | • Result analysis and dissemination | |

This study will be carried out in three phases to execute the difference tasks as shown in Figure 1.4:
Figure 1.4: Schematic of Research Methodology
REFERENCES

CIDB “Master Plan for Occupational Safety and Health in Construction Industry 2005-2010”

CIDB “Construction Industry Master Plan 2006-2015 (CIMP)”

Rowlinson, S., 2003. Hong Kong Construction: Safety Management and Law, second ed. Sweet and Maxwell Asia, Hong Kong

http://www.perkeso.gov.my/statistik.html
