INDUCED ENZYME ACTIVITIES BY ACCLIMATISED BAC-ZS MIXED CULTURE DURING THE TREATMENT OF ACID ORANGE 7

NADHIRAH AMINAH BT AZIZAN

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JULY 2014
To my beloved parents and family members:

Azizan Yahya
Rohanah Baharom
Ahmad Faiz Azizan
Roziyati Abdullah
Nadiah Aminah Azizan
Ahmad Zharif Azizan
Norhayati Baharom
ACKNOWLEDGEMENT

I would like to express my deepest appreciation to my supervisor, Assoc. Prof. Dr Zaharah Ibrahim for the valuable comments, remarks, guidance and advices whilst giving me the leeway to work on my own way in accomplishing this project. Without her supervision and constant help, the accomplishment of this dissertation would not have been possible.

My sincerest thanks also to the laboratory staffs and fellow friends especially Environmental Biotechnology Laboratory 1 members (Kak Nida, Hanif, Fahmi, Wong, Ivy, Lam, Lim, Neoh, Kak Fareh, Kak Nad, Ahmad Idi) and my other colleagues (Suparman Mohd Said, Jiha, Zara, Lin, Kak Dalila, Soraya) who are always keen to lend a helping hand throughout my difficulties in completing this project. I am so grateful to know all of you and really indebted for the wonderful memories that we shared throughout the past years.

My special thanks are extended to my beloved parents (Azizan B.Yahya and Rohanah Bt Baharom), family and Mr S for their infinite support, concern and patience throughout my difficulties in completing my dissertation. I warmly appreciate their endless encouragement and understanding.

Last but not least, I would like to thank to those who are involved directly or indirectly during the accomplishment of this project. Thank you very much.
ABSTRACT

Azo dyes are the most common group of synthetic colourants released into the environment. Improper discharge of effluents containing azo dyes and their metabolites into the water bodies are detrimental as it generates highly coloured wastewater, and releases compounds that can be toxic, carcinogenic or mutagenic to living organisms. The acclimatised BAC-ZS mixed culture was able to decolourise azo dye, Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic condition. The whole genome sequencing showed two possible enzymes are associated with decolourisation and degradation of AO7 which are azoreductase and NADH peroxidase. Both azoreductase and NADH peroxidase were produced intracellularly during treatment of AO7 using the sequential facultative anaerobic-aerobic condition. The maximum activity of azoreductase was obtained during the facultative anaerobic condition while the maximum activity of NADH peroxidase was obtained during the aerobic condition. During the facultative anaerobic condition (2 hours of static condition), azoreductase activity was about 2 fold (0.013U/mg) higher than aerobic conditions which only produced specific activity of 0.006 U/mg. These indicated that azoreductase was induced during the facultative anaerobic condition while NADH peroxidase was mainly induced during the aerobic condition. Its highest activity was obtained during the exponential phase under aerobic condition (48 hours agitation) with specific activity of 4.63 U/mg.
ABSTRAK

Pewarna azo adalah kumpulan pewarna sintetik yang sering dibebaskan ke alam sekitar. Pembuangan kumbahan yang mengandungi pewarna azo dan metabolitnya secara tidak teratur ke dalam kawasan pengairan adalah memudaratkan kerana ia menghasilkan sisa air berwarna serta melepaskan sebatian yang bersifat toksik, karsinogenik atau mutagen terhadap organisma hidup. Kultur campuran teradaptasi BAC-ZS berkebolehan untuk menyahwarna pewarna azo melalui proses berturutan anaerob fakultatif-aerob. Penyajikan keseluruhan genom menunjukkan dua enzim yang mungkin terlibat dalam proses penyahwarnaan dan degradasi pewarna azo, Acid Orange 7 (AO7), iaitu enzim azoreductase dan NADH peroxidase. Kedua-dua enzim azoreductase dan NADH peroxidase menghasilkan enzim secara intrasel dalam keadaan anaerob fakultatif dan aerob. Aktiviti maksimum bagi azoreductase telah diperolehi ketika dalam keadaan fakultatif anaerob manakala aktiviti maksimum bagi NADH peroxidase diperolehi dalam keadaan aerob. Azoreductase menunjukkan aktiviti enzim 2 kali lebih tinggi (0.013U/mg) ketika dalam keadaan anaerob fakultatif (keadaan statik selama 2 jam) berbanding keadaan aerob yang hanya menghasilkan aktiviti spesifik sebanyak 0.006 U/mg. Penghasilan azoreductase telah dirangsang dalam keadaan anaerob fakultatif manakala NADH peroxidase penghasilannya dirangsang dalam keadaan aerob. Aktiviti tertinggi bagi NADH peroxidase telah diperolehi pada fasa eksponen dalam keadaan aerob (penggoncangan selama 48 jam) dengan spesifik aktiviti sebanyak 4.63 U/mg.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDIX</td>
<td>xvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Research Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Statement of problems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.4 Scope of Study</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.5 Significance of Study</td>
<td>6</td>
</tr>
</tbody>
</table>
LITERATURE REVIEW

2.1 General Introduction of Azo Dyes

2.2 Biological Treatment Process of Wastewater Containing Azo Dyes Using Mixed Microbial Culture

2.3 Acid Orange 7

2.4 Sequential facultative anaerobic-aerobic treatment of azo dyes

2.5 Whole Genome Sequence Analyses

2.6 Azoreductase

2.7 NADH Peroxidase

MATERIALS AND METHOD

3.1 Sources of Microorganisms

3.2 Preparation of Growth Medium
 - 3.2.1 Nutrient Agar
 - 3.2.2 Nutrient Broth
 - 3.2.3 Acid Orange 7 Stock Solution
 - 3.2.4 Glucose Stock Solution
 - 3.2.5 Yeast Extract Stock Solution

3.3 Preparation of Inoculum

3.4 The Sequential Facultative Anaerobic-Aerobic of AO7 Treatment Process

3.5 The Treatment Profile of AO7 under Sequential Facultative Anaerobic-Aerobic Condition
 - 3.5.1 Determination of cell concentration
 - 3.5.2 Decolourisation of AO7
 - 3.5.3 Determination of COD Removal
 - 3.5.3.1 Preparation of COD Reagent

3.6 Determination of Azoreductase Activity
 - 3.6.1 Preparation of Azoreductase Assay
 - 3.6.1.1 Phosphate Buffer
 - 3.6.1.2 AO7 Stock Solution
 - 3.6.1.3 NADH Solution
 - 3.6.2 Azoreductase Assay
3.6.3 Localisation of Azoreductase 38

3.7 Determination of NADH peroxidase Activity 39

3.7.1 Preparation of NADH peroxidase Assay 39

3.7.1.1 Tris Acetate Buffer 39

3.7.1.2 NADH Solution 39

3.7.1.3 Hydrogen Peroxide 39

3.7.2 NADH peroxidase Assay 40

3.7.3 Localisation of NADH peroxidase 40

3.8 Determination of Protein Concentration 41

3.8.1 Preparation of Lowry Assay 41

3.8.1.1 Lowry Assay Solutions 41

3.8.1.2 Lowry Assay 42

3.9 Determination of Enzymes Activities During Sequential Facultative Anaerobic-Aerobic Treatment Process 43

4 RESULTS AND DISCUSSION

4.1 Treatment Profile of AO7 under Sequential Facultative Anaerobic-Aerobic Condition 44

4.2 Localisation of Azoreductase 48

4.3 Localisation of NADH peroxidase 50

4.4 Determination of Azoreductase Activity During Facultative Anaerobic and Aerobic Condition 52

4.5 Determination of NADH peroxidase Activity During Facultative Anaerobic and Aerobic Condition 54

5 CONCLUSIONS

Conclusion 57

Future Work 58

REFERENCES 59

Appendices A-C 69-71
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Biodegradation of azo dyes by mixed microbial cultures</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The decolourisation and/or degradation of various azo dyes by mixed bacterial cultures during sequential anaerobic-aerobic treatment process</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>The azoreductase gene encoding bacteria that have been cloned and expressed.</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>The decolourisation of various azo dyes by pure culture involving azoreductase</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Bacteria strain capable of producing NADH peroxidase</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparation of COD Reagent</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of Lowry Assay Solutions</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>The mixture of Lowry Assay</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of AO7 with the present of azo bonds (N≡N) and sulfonic group (SO₂)</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The reduction of AO7 as the azo bond is cleaved by azoreductase which lead to the production of aromatic amines (sulfanilic acid and 1-amino-2-naphthol)</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>General overview of the fate of azo dyes and aromatic amines during anaerobic-aerobic treatment</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>The decolourisation of AO7 and growth profile of acclimatised BAC-ZS mixed culture during facultative anaerobic and aerobic conditions</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>The COD removal and growth profile of acclimatised BAC-ZS mixed culture during facultative anaerobic and aerobic conditions</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Specific activity of azoreductase from different fractions assayed under facultative anaerobic and aerobic condition respectively.</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Specific activity of NADH peroxidase from different fractions assayed under facultative anaerobic and aerobic condition respectively.</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Specific activity of azoreductase during facultative anaerobic and aerobic conditions</td>
<td>52</td>
</tr>
</tbody>
</table>
4.6 Specific activity of NADH peroxidase during facultative anaerobic and aerobic conditions
LIST OF SYMBOLS

% - Percentage
°C - Degree Celsius
g - Gram
kg - Kilo gram
L - Liter
M - Molarity
mg - Miligram
min - Minute
mL - Milliliter
mm - Millimeter
nm - Nanometer
ppm - Part per million
rpm - Rotation per minute
U - µmol per minute
w/v - Weight/volume
µL - Micro Liter
µmol - Micromol
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO7</td>
<td>Acid Orange 7</td>
</tr>
<tr>
<td>BAC-ZS</td>
<td>Brevibacillus panacihumi, Lysinibacillus fusiformis and Enterococcus faecilis.</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CFE</td>
<td>Cell free extract</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CS</td>
<td>Culture Supernatant</td>
</tr>
<tr>
<td>df</td>
<td>Dilution factor</td>
</tr>
<tr>
<td>FADH</td>
<td>Flavin adenine dinucleotide (reduced)</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide-adenine-dinucleotide (reduced)</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Standard calibration curve of Acid Orange 7 measured spectrophotometrically at a wavelength of 480nm</td>
<td>68</td>
</tr>
<tr>
<td>B</td>
<td>Standard calibration curve of NADH Solution measured spectrophotometrically at a wavelength of 365nm</td>
<td>69</td>
</tr>
<tr>
<td>C</td>
<td>Standard calibration curve of Bovine Serum Albumin (BSA solution) measured spectrophotometrically at a wavelength of 750nm</td>
<td>70</td>
</tr>
<tr>
<td>D</td>
<td>Preparation of 0.1M Phosphate Buffer</td>
<td>71</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Textile industry is one of the main sources of severe pollution problems worldwide due to the high concentration of dyes in the wastewaters. There are different textile dyes being produced and commercially available in the whole world. According to Zaharia et al. (2012), about 10,000 different textile dyes are produced annual production of approximately 7.105 metric tonnes. The highest production of textile dyes and improper discharged of the effluent lead to serious water pollution. Approximately, 2-20% of the textile dyes are directly discharged as aqueous effluents into the water bodies (Zaharia et al., 2012). The discharge of dye-containing effluents into the water bodies is detrimental because it produces wastewater which is highly coloured and contains products of incomplete breakdown of azo dyes that can be toxic, carcinogenic or mutagenic to living organisms. Examples of carcinogens are benzidine, naphthalene and other aromatic compounds which may remain in the environment for a long period of time if the wastewater or effluents are not treated properly (Zaharia et al., 2009).

In general, azo dyes are widely used in various industries such as textile, printing application, cosmetics and food. About 3000 different azo dyes are used to
satisfy the consumers’ demands for colors appeal in food, textile and printing industries (Coughlin et al., 2002). Besides, azo dyes also have interesting characteristics such as low cost, heat stable and do not fade when exposed to light or oxygen and definitely have color varieties which are favorable to be applied to the industries.

Textile industries produce wastewater that is coloured and affects the aesthetic value of water bodies with high content of toxic chemicals. Reactive azo dyes are known to be stable (in terms of wide range of pH, heat stable and insensitive to light and oxygen) and xenobiotic which make them recalcitrant. Thus, they cannot be fully degraded by conventional wastewater treatment processes that involve light, chemicals or activated sludge (Chung et al., 1992; Chacko et al., 2010).

Various azo dyes, mainly aromatic compounds, show both acute and chronic toxicity. This is because azo dyes and their breakdown products (toxic amines) can be adsorbed via the gastrointestinal tract, skin, lungs, and damage of DNA that can lead to the genesis of malignant tumors (Zaharia et al., 2009). In addition, it may also give negative impact to the aquatic life. For example, high concentrations of textile dyes in water bodies will prevent the penetration of sunlight, thereby upsetting biological activity in aquatic life and also the photosynthesis process of aquatic plants or algae (Wang et al., 2011; Zaharia et al., 2009). In order to overcome the problem, several treatment methods had been applied such as physico-chemical methods and biological treatment methods to treat dye wastewater to meet the discharge level according to the Environmental Quality Act (Zhao et al., 2010).

Both physical and chemical treatment methods give negative impacts and not practical to be applied as they commonly result in the accumulation of hazardous sludge, secondary pollution due to the formation of hazardous byproducts, high chemical consumption and high maintenance costs. The presences of sludge or secondary wastes in the physical treatment poses difficulties in disposal, high cost
sludge management and limit the reusability of these methods. The chemical treatment process also requires high consumption of reagent, high power consumption for certain chemicals which lead to high maintenance cost (Anbalagan, 2012).

Alternatively, biological treatment method is more reliable as it is more environmentally friendly and cost effective. It may involves variety of bacteria which is able to decolorise dye-containing wastewater and also capable of completely mineralise many reactive dyes under specific optimum conditions (Van der Zee and Villaverde, 2005; Lim et al., 2013). This approach consists of sequential facultative anaerobic-aerobic phase along its treatment process.

During the anaerobic process, the azo bonds undergo reductive cleavage of azo bonds and contribute to the decolourisation of the dye. However, it produces aromatic amines that are carcinogenic which will be further oxidized into less harmful products during the aerobic phase treatment (Erkurt et al., 2010). Hence, the combination of the two phases helps in the treatment of azo dye by decolourization and removal of toxic metabolites. (Anbalagan, 2012).

Acid Orange 7 (AO7) is one of azo dyes present in textile wastewater and is difficult to treat because of the presence of sulfonic acid groups in its chemical structure. Extensive studies had been carried out to achieve effective degradation processes of AO7 (Liu et al., 2013; Bay et al., 2014). Because of this, several predictions of AO7 degradation pathway had been proposed in order to understand, investigate and analyse the intermediates or by products formed during the treatment process.
1.2 Statement of Problems

There are a lot of treatment processes that had been proposed in order to increase the effectiveness such as physical, chemical and biological treatment process. One of the physical methods is based on coagulation-flocculation of dyes but this method is restricted to certain types of dyes. Chemical treatment process involves the use of oxidizing agent such as ozone, hydrogen peroxide and permanganate. However, it is less practical for treating dyes that are insoluble in water, has low COD removal capacity as well as the high cost of the oxidizing agents (Saratale et al., 2011). One of the most widely used treatment processes is the biological treatment process as it owns several advantages over others such as cost-effectiveness and environmental friendly.

The mechanisms of microbial degradation are by enzymatic degradation. This involves both reductases and oxidases in order to achieve the standard of water quality in decolourization and detoxification of dye-contaminated effluent before being released into the environment (Solis et al., 2012). However, not all of the enzymes can be induced or activated during the degradation of azo dyes. A complete genome sequence analysis is capable of detecting the functional gene via that gives an overview to the possible expression of the gene within the cellular compartments and the behavior of the whole organisms. The results of the whole genome sequencing can be used to detect the presence of genes encoding for enzymes in a genome (Claudel-Renard et al., 2003). The genes, however, may not be expressed under certain experimental conditions. Based on the whole genome sequencing, enzymes that are related to decolourisation and degradation of azo dyes have been detected which are NADH peroxidase and azo reductase. The presence of the enzymes for decolorization and degradation of azo dyes were tested experimentally.
1.3 Objectives

The primary aim of this study was to detect the presence of several enzymes based on the full genome sequencing of each microbe in a mix bacterial culture (Bay et al., 2014). There are two (2) enzymes which are nadh dependent azoreductase and NADH peroxidase that might involve in decolourisation and degradation of AO7 by the mix culture in a sequential anaerobic/aerobic treatment process. Thus, the main objectives were:

a) To apply the acclimatised mixed bacterial culture for the decolourisation and degradation of AO7 under sequential facultative anaerobic-aerobic condition by looking into decolourisation of AO7, growth profile of the mixed culture and COD removal of the culture.

b) To determine the localization of azoreductase and NADH peroxidase produced by the mix culture

c) To determine enzyme activities of azoreductase and NADH peroxidase during treatment of AO7

d) Scope of study

In this research study, bacterial consortium or also known as MicroClear would be used for treating colored wastewater taken from a local textile industry. However, instead of using the real textile wastewater, mono azo dye, Acid Orange 7 (AO7) was used as the model dye to study the biodegradation process. The experiments were initiated by decolorisation of AO7 by the mix culture in the sequential facultative anaerobic-aerobic conditions based on its optimum conditions (Bay et al., 2014). The two (2) enzymes, azoreductase and NADH peroxidase that are mainly related to
decolourisation and degradation respectively, were assayed during the two different phases of the treatment process.

1.4 Significance of study

Detection and quantification of azoreductase and NADH peroxidase that involve in decolorization and degradation of AO7 are important to provide strong evidence in determining the degradation pathway of AO7 based on the full genome sequencing of the bacterial mixed culture. Modifications or alterations for better performance of the potential microbes can be done if a clear degradation pathway is obtained. Successful quantification of the enzyme production during two different conditions will give important results and thus, can be applied to improve the effectiveness of azo dyes degradation particularly AO7 in the future.
REFERENCES

Anbalagan A. (2012). Combination of biological and photochemical treatment for degradation of azo dyes. Degree project in applied biotechnology, Master of Science. Biology Education Centre, Uppsala University, and Department of biotechnology, Lund University, Sweden.

