THE POTENTIAL USE OF ORGANIC ACIDS IN BEEF PRESERVATION INDUSTRY

GORAN SEDEEQ HAMA FARAJ

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Biotechnology

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

MAY 2014
All praise to ALLAH the ALMIGHTY for His bless and guidance that had helped me in completing this project…

And also to my beloved family especially my father and my mother,

SEDEEQ HAMA FARAJ and KHADIJA HAMA ALI
ACKNOWLEDGEMENT

All praise to Allah the Almighty for His blessings and guidance, for showing me the way and giving me the strength in completing this final semestre project successfully.

The greatest appreciation contributed to my supervisor, Dr. Fahrul Zaman Huyop, the person who never stops giving precious knowledge, guidance, and encouragement. I would like to express my deepest gratitude for his helps and infinite patience throughout this project.

My sincere appreciation also dedicated to all my colleagues. Lastly and definitely not to be missed, thank to my mother, father and the whole family. Thank you all.
ABSTRACT

Acetic acid and lactic acid can inhibit growth of Gram negative bacteria particularly a pathogenic species. In food industries acetic acid and lactic acid were used as preservative. Current study is to immerse beef carcasses in acetic acid and lactic acid with *E. coli* strains BL21 (DE3), DH5α and an unknown strain. Beef carcass pieces were immersed in the *E. coli* suspension which contained (10^7 CFU/ml) for 30 seconds and left for 2 hours to allow *E. coli* to settle down on the surface of beef carcass. The beef carcass pieces were thereafter immersed in 1.0, 2.0 and 3.0% solutions of acetic acid and 1.5, 2.5 and 3.5% solutions of lactic acid for 30 seconds, then tap water was used to wash the samples. A clean specimen 5 x 5 cm was put on the surface of each sample. The count of *E. coli* on beef surface immersed in 1.0, 2.0 and 3.0% of acetic acid reduced by 0.87, 1.33 and 1.73 log CFU/ cm^2, respectively also reduced by 1.1, 1.9 and 2.47 log CFU/cm^2 for 1.5, 2.5 and 3.5% of lactic acid, respectively. The results showed that concentration of acetic acid and lactic acid had a significant effect to reduce *E. coli* count. The results also proved that lactic acid had greater effect on non-pathogenic *E. coli* rather than acetic acid.

Key words: Acetic acid, Lactic acid, Acid resistance bacteria, *E. coli*.
ABSTRAK

Asid asetik dan asid laktik boleh menghalang pertumbuhan bakteria Gram negatif terutamanya spesies patogenik. Dalam industri makanan asid asetik dan asid laktik telah digunakan sebagai pengawet. Kajian semasa adalah untuk merendam kepingan daging asid asetik dan asid laktik dengan E. coli strain BL21 (DE3), DH5α dan stain yang tidak diketahui. Keping an daging lembu telah direndam dalam penggantungan E. coli yang mengandungi (107 CFU / ml) selama 30 saat dan diiriakan selama 2 jam untuk membolehkan E. coli menetap di permukaan daging. Kepingan daging lembu itu seterusnya direndam dalam 1.0, 2.0 dan 3.0% larutan asid asetik dan 1.5, 2.5 dan 3.5% larutan asid laktik selama 30 saat, kemudian air bersih digunakan untuk mencuci sampel. Spesimen bersih berukuran 5 x 5 cm diletakkan di permukaan setiap sampel. Kiran E. coli pada permukaan daging lembu yang direndam dalam 1.0, 2.0 dan 3.0% asid asetik masing-masing dikurangkan sebanyak 0.87, 1.33 and 1.73 log CFU/ cm², begitu juga dengan daging yang direndam dalam asid laktik masing-masing dikurangkan sebanyak 1.1, 1.9 dan 2.47 log CFU/cm² bagi 1.5, 2.5 dan 3.5% asid laktik. Hasil kajian menunjukkan bahawa kepekatan asid asetik dan asid laktik mempunyai kesan yang signifikan untuk mengurangkan kiran E. coli. Keputusan juga membuktikan asid laktik mempunyai kesan yang lebih besar terhadap bukan patogen E. coli dan bukan asid asetik.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUPER VISOR DECLARATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>AUTHOR DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Review 1
1.2 Problem Statement 3
1.3 Research Objectives 3
1.4 Research Significance 4

2 LITERATUR REVIEW 5

2.1 Introduction 5
2.2 Organic Acids as Antimicrobials 6
 2.2.1 Acetic Acid 7
 2.2.2 Lactic Acid 9
2.3 Escherichia coli
2.4 Acid Resistance in Pathogenic Escherichia coli
2.5 The Role of Acidic pH to Kill Escherichia coli
2.6 Mechanisms of Acid Tolerance in Escherichia coli
2.7 The Resistance Systems in Escherichia coli
2.8 Meat Contaminating with E. coli

3 MATERIALS AND METHODS

3.1 Introduction
3.2 Materials
 3.2.1 Escherichia. coli Strains
 3.2.2 Source of Biological and Chemical Substances
 3.2.3 Preparation of Triple Sugar Iron Agar (TSI) Media
 3.2.4 Preparation Plates of E. coli Strains
 3.2.5 Preparation of Tryptic Soy Broth (TSB)
 3.2.6 Preparation of E. coli Strains Suspension
 3.2.7 Preparation os Phosphate Buffer Saline (PBS)
 3.2.8 Preparation of MacConkey Agar
 3.2.9 Preparation of Maximum Diluent Recovery (MRD)
 3.2.10 Obtaining of Beef Carcass
 3.2.11 Preparation of 1 Litter of E. coli Strains Suspension
 3.2.12 Preparation of Different concentrations of Acetic Acid
 3.2.13 Preparation of Different concentrations of Lactic Acid
 3.2.14 Contaminating of Beef Carcass with E. coli strains
3.3 Methodology
 3.3.1 General Flow of Methodology
 3.3.2 Immersing Steps
 3.3.3 Surface Cleaning
 3.3.4 Measuring the Reduction of E. coli Population

4 RESULTS AND DISCUSSION
4.1 Results
4.1.1 Measuring diameters of zone of clearance with different doncentration of acetic acid and lactic acid using disc diffusion method

4.2.1 Determination of Minimum Inhibitory Concentration of Acetic Acid and Lactic Acid For E.coli Strains BL21 (DE3), DH5α and Unknown Strain

4.3.1 Treating of Contaminated Beef with Acetic Acid
4.1.2 Washing Treated Samples with Tap Water
4.1.3 Enumeration of E. coli in Treated samples by Acetic Acid
4.1.4 Treating of Contaminated Beef Carcass with Lactic Acid
4.4.2 Enumeration of E. coli in Treated samples by Acetic Acid

4.2 Discussion
4.2.1 Zone of Clearance Experement
4.2.2 OD Measurement Experement
4.2.3 Comparing of the Impact of Acetic Acid and Lacti Acid on Reduction of E. coli in Beef

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion
5.2 Recommendation
REFERENCES
APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The contents of triple sugar iron agar (TSI) media</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>The contents of tryptic soy broth agar (TSB) media</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>The contents of phosphate buffer saline (PBS)</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>The contents of MacConkey agar</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>The preparation of different concentration of acetic acid</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>The preparation of different concentration of lactic acid</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Diameter of zone of clearance formed by different concentration of acetic acid after 24 hours of incubation. Values represent mean ± S.E. values of 2 replicates per treatment/concentration</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Diameter of zone of clearance formed by different concentration of lactic acid after 24 hours of incubation. Values represent mean ± S.E. values of 2 replicates per treatment/concentration</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>The OD₆₀₀ of the nutrient broth contained E. coli strains BL21 (DE3),DH5α and unknown strain, the nutrient broth was without acid, these data were used as control for concentration of acetic acid treatments. Values represent mean ± S.E. values of 2 replicates per treatment/concentration</td>
<td>39</td>
</tr>
</tbody>
</table>
4.4 The OD$_{600}$ of the nutrient broth contained *E. coli* strains BL21 (DE3), DH5α and unknown strain, the nutrient broth was without acid, these data were used as control for concentration of lactic acid treatments. Values represent mean ± S.E. values of 2 replicates per treatment/concentration

4.5 The reduction of OD for the nutrient broth that contained *E. coli* strains and different concentration of acetic acid after 8 hours of incubation. Values represent mean ± S.E. values of 2 replicates per treatment/concentration

4.6 The reduction of OD for the nutrient broth that contained *E. coli* strains and different concentration of lactic acid after 8 hours of incubation. Values represent mean ± S.E. values of 2 replicates per treatment/concentration

4.7 The average survival of *E. coli* strains BL21 (DE3), DH5α and unknown strain after treating by different concentration of acetic acid

4.8 The logarithmical and percentage reduction of *E. coli* strains BL21 (DE3), DH5α and an unknown strain after treating by different concentration of acetic acid

4.9 The average survival of *E. coli* strains BL21 (DE3), DH5α and unknown strain number after treating by lactic acid solution

4.10 The logarithmical and percentage reduction of *E. coli* strains BL21 (DE3), DH5α and an unknown strain number after treating by acetic acid solution
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Compositional formula of acetic acid</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Compositional formula of lactic acid</td>
<td>10</td>
</tr>
<tr>
<td>3.3.1</td>
<td>General flow of methodolpgy</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Zone of inhibition formed by 1% - 5% of acetic acid and lactic acid.</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>The growth of E. coli strains BL21 (DE3) DH5α and unknown strain in nutrient broth without acid after 8 hours of incubation, which were as control samples for treated E. coli by lactic acid.</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>The growth of E. coli strains BL21 (DE3), DH5α and unknown strain in nutrient broth without of acid after 8 hours of incubation, which were as control samples for treated E. coli by lactic acid.</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>The growth of E. coli BL21(DE3) strain in the nutrient broth contained different concentration of acetic acid and lactic acid after 8 hours of incubation.</td>
<td>43</td>
</tr>
</tbody>
</table>
4.5 The growth of *E. coli* strain DH5α in the nutrient broth contained different concentration of acetic acid and lactic acid after 8 hours of incubation.

4.6 The growth of *E. coli* unknown strain in the nutrient broth contained different concentration of acetic acid and lactic acid after 8 hours of incubation.

4.7 The reduction of total colony forming unit of *E. coli* strains BL21 (DE3), DH5α and unknown strain on cow carcasses dipped in different concentrations of acetic acid for 30 seconds.

4.8 The reduction of total colony forming unit (CFU) of *E. coli* strains BL21 (DE3), DH5α and unknown strain on cow carcasses dipped in different concentrations of lactic acid for 30 seconds.
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>SYMBOLS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Acetic Acid</td>
</tr>
<tr>
<td>AR</td>
<td>Acid Response</td>
</tr>
<tr>
<td>ATR</td>
<td>Acid Tolerance Response</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>cm2</td>
<td>Centimeter Square</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent Protein</td>
</tr>
<tr>
<td>GFPUV</td>
<td>Green fluorescent Protein Ultra Violet</td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally Recognized as Safe</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LA</td>
<td>Lactic Acid</td>
</tr>
<tr>
<td>L-Lactic acid</td>
<td>Levorotatory Form Obtained by</td>
</tr>
<tr>
<td></td>
<td>Biological Fermentation of Source</td>
</tr>
<tr>
<td>Log</td>
<td>Logarithm</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significance of Difference</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibiter Concentration</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimole</td>
</tr>
<tr>
<td>MRD</td>
<td>Maximum Recovery Diluent</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Centigrade</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>pH</td>
<td>Power of Hydrogen</td>
</tr>
<tr>
<td>pH_i</td>
<td>Interior Cell Power Hydrogen</td>
</tr>
<tr>
<td>pKa</td>
<td>Acid Dissociation Constant</td>
</tr>
<tr>
<td>PMF</td>
<td>Proton Motive Force</td>
</tr>
<tr>
<td>rpm</td>
<td>Round Per Minute</td>
</tr>
<tr>
<td>S.E</td>
<td>Standard Error</td>
</tr>
<tr>
<td>spp</td>
<td>Species</td>
</tr>
<tr>
<td>SS</td>
<td>Sigma Factors</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic Soy Broth</td>
</tr>
<tr>
<td>TSI</td>
<td>Triple Sugar Iron Agar</td>
</tr>
<tr>
<td>VFA</td>
<td>Volatile Fatty Acid</td>
</tr>
<tr>
<td>pH</td>
<td>Difference Between Two pH Value</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix A The structure of *E. coli* shows the main parts of this Organism

Appendix B Contaminated beef carcass with *E. coli* strains inside the boxes with different concentrations of acetic acid.

Appendix C Shows the swab dipped (MRD) after contaminated with *E. coli* strains and treating by different concentration of AA

Appendix D Shows the enumeration of *E. coli* after incubation for 24 h at 37°C.

Appendix E Shows the contaminated beef carcass with *E. coli* inside the different concentrations of lactic acid and control sample.

Appendix F Shows the sterilized swabs placed on contaminated beef carcasses.

Appendix G Shows the swab dipped in (MRD) after treating by different concentrations of lactic acid.

Appendix H Shows the reduction of *E. coli* strains treated with lactic acid after 24 hour of incubation at 37°C.

Appendix I Determination of Minimum Inhibitory Concentration of Acetic Acid against *E.coli* strains BL21 (DE3), DH5α and unknown strain
Appendix J Determination of Minimum Inhibitory Concentration of Lactic Acid against E.coli strains BL21 (DE3), DH5α and unknown strain

Appendix K Shows the reduction of OD for the nutrient broth that contained E. coli strains and different concentration of acetic acid

Appendix L Shows the effect of different concentration of lactic acid on the survival of E. coli strains BL21 (DE3), DH5α and unknown strain.

Appendix M Shows the survival of E. coli strains BL21 (DE3), DH5α and an unknown strain after treating by acetic acid solution.

Appendix N Show the survival of E. coli strains BL21 (DE3), DH5α and an unknown strain number after treating by lactic acid solution.

Appendix O Least Significant Difference of Concentrations of Acetic Acid to Control E. coli Strains BL21 (DE3), DH5α and An unknown strain

Appendix P Least Significant Difference of Concentrations of Lactic Acid to Control E. coli Strains BL21 (DE3), DH5α and an unknown starin
CHAPTER 1

INTRODUCTION

1.1 Overview

Nowadays food safety is a serious issue must be considered because of the wide diversity of food types. The most common ways to preserve food is the use of safe acid percentage to inhibit and kill microbes. The food fermentation is the oldest method which has been used to preserve the food since the beginning appearance of civilization. The numerous of Gram negative bacteria have presented the progression for acid resistance, as well when the acid stress was used alone the specific proteins were synthesized that keep the safety of the \(E. \ coli \) cells from much load of acidity, moreover the acid stress alone is not enough to protect and provide food safety, because the other factors such as acid type, ionic strength and pH also have significant roles to protect the food from contamination by \(E. \ coli \). (Lu, Breidt and Perez-Diaz 2011).

Treating food with organic acids such as acetic acid and lactic acid does not decrease the pH and damage the environmental of the organism only, but in addition to this, the organic acids use the poisonous components as an extra pressure to inhibit even to kill the organisms. Low pH takes part the greatest effect to confuse the environment of microbes and with the other factors such as temperature and osmosis make the multiple obstacles to disrupt and inhibit the microbial survival (Epctuo, Souza and Nascimento, 2011)There are different types of acidulant which must be considered during their using in food acidification due to their toxicity effects to the
food (Presser, Ratkowsky and Ross, 1997). On the other hand the effect of low pH of acids leads to decrease the stability of microbes and adds the further stress with other environmental stresses.

In this study three non-pathogenic *E. coli* strains BL21 (DE3), DH5α and an unknown strain were used to investigate their acid tolerance to acidified beef carcass which can be used as a model to explain the acid resistance in non-pathogenic strains of *E. coli*. The acidity condition to preserve the food against microbes must be in the specific range without the toxicity for human. In the United States and Europe the large concentration of pickles approximately 3.6% wt/vol were investigated to preserve the food but the taste of the food was changed to acid taste (Ozeki, Kurazono and Saito, 2003). For this reason acidified food must be arranged according to the taste, smell and even the color of the food, while in the recent years flavor direction has gradually shift to moderate acidulent (Lu et al., 2011).

The effect of organic acids as the antimicrobial agents comes from the low pH and specificity interaction of the organic acids. Low pH acidic condition of organic acids are able to change the composition of the necessary macromolecules such as phospholipid and protein on the cell surface and consequently these macromolecules lose their ability to bind the required molecules that the cell needs (Beales, 2004).

One of the most important step must be performed for food safety against Gram negative bacteria is inactivation the acid tolerance response system in these organisms. Enterohemorrhagic *E. coli* are one of the Gram negative bacteria that have effective acid tolerance response against acidic condition; this ability in *E. coli* is required to be inactivated (Elder et al., 2000). Currently, scientists have been identified the acid tolerance response in *E. coli* while they tested the medium of *E. coli* with mildly acidic condition (R. Buchanan, Edelson and Sapers, 1999).
1.2 Problem Statement

E. coli is one of the microbes which easily grow on the food. Preservation food against contamination with this organism requires acidification of the food with organic acid. However the organic acids, containing acetic, citric, and lactic acids, in a broth medium can encourage the survival of *E. coli* O157:H7, compared to its survival in non-acidified control medium held at the same temperature (Conner, Kotrola and Mikel, 1997). Thus, the study of using organic acid in a medium containing *E. coli* may become a helpful step to further explain the response of *E. coli* to organic acids containing acetic acid and lactic acid.

1.3 Research Objectives

1. To validate antimicrobial activity of acetic acid and lactic acid against *E.coli*.

2. To determine the minimum inhibitory concentration (MIC) of acetic acid and lactic acid against *E.coli*.

3. To compare the effect of different concentration of acetic acid and lactic acid on *E. coli* in beef.
1.4 Research Significance

The significant from this research where the effect of different concentrations of acetic acid and lactic acid as a control means of *E. coli* survival can be established. In addition it is possible to predict and discover the novel effective concentration of acetic acid and lactic acid to kill non-pathogenic strains of *E. coli*.
REFERENCES

Diez-Gonzalez, Francisco, & Russell, James B. (1997). Effects of carbonyl ylide in chlorophenylhydrazone (CCEP) and acetate on...
Escherichia coli O157: H7 and K-12: uncoupling versus anion accumulation. FEMS microbiology letters, 151(1), 71-76.

Lin, Jyhshiun, Yeh, Kuang-Sheng, Liu, Hsueh-Tao, & Lin, Jiunn-Horng. (2009). Staphylococcus aureus isolated from pork and chicken carcasses in Taiwan:
prevalence and antimicrobial susceptibility. *Journal of Food Protection*, 72(3), 608-611.

