CHARACTERIZATION OF LITHIUM-MAGNESIUM-TELLURITE DOPED WITH ERBIUM AND NEODYMIUM GLASS

SYARIDATUL AKMAR BINTI ROSLAN

UNIVERSITI TEKNOLOGI MALAYSIA
CHARACTERIZATION OF LITHIUM-MAGNESIUM-TELLURITE DOPED WITH ERBIUM AND NEODYMIUM GLASS

SYARIDATUL AKMAR BINTI ROSLAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Physics)

Faculty of Science
Universiti Teknologi Malaysia

MARCH 2013
This thesis is specially dedicated to:

To my beloved daddy (Roslan Bin Paiman)
My mother (Jamiah Binti Supar),
my siblings,
and all my friends.
ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah SWT, the Almighty, for giving me the courage, strength, and patience to complete this master study. I would like to express my sincerest appreciation to my project supervisors Prof. Dr. Md. Rahim Sahar and Dr. Ramli for advices, guidance and encouragement throughout completing this project. Kindly thanks to the tolerance, commitment and understanding.

I would like to thank all lecturers who have shared their knowledge and effort with me throughout my dissertation. Furthermore, this thesis would not have been possible without the very pleasant and creative working atmosphere at the Phosphor Material Laboratory, Faculty of Science, Universiti Teknologi Malaysia. My great appreciation to all members of the group and laboratory staffs for their help throughout this project.

In addition, my sincere application also extends to all my postgraduate friends and others who are providing assistance at various applications. Their views and suggestions are useful indeed. Grateful thanks to all my beloved family members for their support.

Last but not least, special thanks to the financial support from the Grant FRGS (Vot 78409) and Grant GUP (Vot 00J76), Ministry of Higher Education (MOHE).
ABSTRACT

Tellurite glass based on (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$, (where x = 0.4 to 2.0 mol %) has successfully been prepared by melt-quenching technique. The colour of glass is found to vary from light violet to dark violet as the Er$_2$O$_3$ content is increased. No definite peaks are found from the X-ray diffraction pattern, which shows that the glass is amorphous in nature. It also found that the densities and the molar volume of the glass increase as the Er$_2$O$_3$ content is increased. The glass transition temperature (T_g), crystallization temperature (T_c), melting temperature (T_m) and the temperature difference (T_c-T_g) are determined by means of Differential Thermal Analysis (DTA). It is found that the T_c, T_g and T_m are in the range of (419-430) °C, (300-345) °C and (885-890) °C respectively. Meanwhile, the vibrational study is conducted using the Infrared spectroscopy in the range of (4000-400) cm$^{-1}$. Two major absorption peaks are observed around (1600-3600) cm$^{-1}$, and (900-1200) cm$^{-1}$ which are due to the stretching mode vibration of OH peak and Te-OH peak respectively. The optical absorption edge is studied using UV-Vis spectroscopy. The result shows that the optical band gap (E_{opt}) and Urbach Energy (ΔE) are in the range of (3.038-3.130) eV and (0.334-0.321) eV respectively, depending on the Er$_2$O$_3$ concentration. The refractive index is evaluated using the Sellmeier’s equation and it is found that the value in the visible region is in the range of 1.724-1.781 depending on the Er$_2$O$_3$ content. The emission spectrum is recorded using the photoluminescence spectrometer excited at 582 nm at room temperature. The result shows that the emission spectrum of Er$^{3+}$ and Nd$^{3+}$ consist of five emission bands at ~457 nm, ~495 nm, ~556 nm, ~611 nm, and ~665 nm which can be assigned as a transition of $^4F_{7/2}\rightarrow^4F_{15/2}$, $^4S_{3/2}\rightarrow^4F_{15/2}$, $^4G_{11/2} \rightarrow^4I_{9/2}$, $^4G_{11/2} \rightarrow^4I_{15/2}$ and $^4G_{7/2} \rightarrow^4I_{13/2}$ respectively.
ABSTRAK

Kaca Tellurit berasaskan (78-x)TeO₂-10Li₂O-10MgO-2Nd₂O₃-xEr₂O₃, (dengan 0.4≤x≤2.0 mol %) telah berjaya disediakan menggunakan teknik pelindapan leburan. Warna kaca didapati berubah dari ungu terang kepada ungu gelap apabila kandungan Er₂O₃ bertambah. Corak pembelauan sinar-X tidak menunjukkan puncak yang pasti dan ini mengesahkan bahawa kaca tersebut adalah amorfus. Didapati juga bahawa ketumpatan dan isipadu molar kaca bertambah apabila kandungan Er₂O₃ bertambah. Suhu peralihan kaca (Tᵢ), suhu penghabluran (Tₑ), suhu leburan (Tₘ) dan perbezaan suhu (Tₑ-Tᵢ) telah ditentukan menggunakan Penganalisis Pembezaan Terma. Didapati bahawa Tₑ, Tᵢ dan Tₘ masing-masing berada dalam julat (419-430) °C, (300-345) °C and (885-890) °C. Sementara itu, kajian terhadap getaran telah dilakukan menggunakan spektroskopi inframerah dalam julat (4000-400) cm⁻¹. Dua puncak utama diperolehi disekitar (1600-3600) cm⁻¹, dan (900-1200) cm⁻¹ yang masing-masing merujuk kepada puncak mod getaran regangan OH dan Te-OH. Pinggir serapan optik dikaji menggunakan spektroskopi ultraviolet cahaya nampak. Didapati bahawa jurang tenaga, Eₑ dan tenaga Urbach, ΔE masing-masing adalah di sekitar (3.038-3.130) eV dan (0.334-0.321) eV, bergantung kepada kandungan Er₂O₃. Indek biasan telah ditentukan menggunakan persamaan Sellmeier dan didapati bahawa nilainya dalam julat cahaya nampak adalah 1.724-1.781, bergantung kepada kandungan Er₂O₃. Spektrum pancaran telah direkod menggunakan spektrometer fotoluminesen yang diuji pada 582 nm pada suhu bilik. Keputusan menunjukkan bahawa spektrum pancaran Er³⁺ dan Nd³⁺ terdiri daripada empat jalur pada ~457 nm, ~495 nm, ~556 nm, ~611 nm, dan ~665 nm dengan masing-masing mewakili transisi dari ⁴F₇/₂→⁴F₁₅/₂, ⁴S₃/₂→⁴F₁₅/₂, ⁴G₁₁/₂ → ⁴I₉/₂, ⁴G₁₁/₂ → ⁴I₁₅/₂ and ⁴G₇/₂ → ⁴I₁₃/₂.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General Introduction 1
1.2 Problem Statement 4
1.3 Research Objectives 5
1.4 Scope of Study 6
1.5 Glass System Chosen 7
1.6 Significant of the study 8
1.7 Summary of Thesis 8
LITERATURE REVIEW

2.1 Introduction 10
2.2 Tellurite Glass 10
2.3 Rare Earth Elements (Erbium and Neodymium) 16
2.4 X-Ray Diffraction 19
2.5 Density and Molar Volume 20
2.6 Refractive Index 21
2.7 Thermal Analysis 22
2.8 Infrared Spectroscopy 23
2.9 Optical Absorption Studies 25
2.10 Luminescence 29

METHODOLOGY

3.1 Introduction 32
3.2 Sample Preparation 33
3.3 X-Ray Diffraction (XRD) 34
3.4 Density Measurement 35
3.5 Refractive Index 36
3.6 Differential Thermal Analyzer (DTA) 37
3.7 Fourier Transform Infrared (FTIR) 38
3.8 UV-Vis Spectroscopy 38
3.9 Photoluminescence 39
4 RESULTS AND DISCUSSION

4.1 Introduction 41
4.2 Glass samples and composition 42
4.3 X-ray Diffraction 43
4.4 Density and Molar Volume 44
4.5 Thermal Properties Study 48
4.6 FTIR Vibrational Spectra 50
4.7 UV-Visible-NIR Spectra Analysis 52
 4.7.1 Absorption Spectra 52
 4.7.2 Absorption Coefficient (α) 54
 4.7.3 Optical Band Gap Energy 57
 4.7.4 Urbach Energy, ∆E 59
4.8 Refractive Index 62
4.9 Luminescence Spectra Analysis 65

5 CONCLUSION AND FURTHER STUDY

5.1 Introduction 67
5.2 Conclusions 67
5.3 Further Study 69

REFERENCES 72
APPENDICES 85
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Distance between components in structure of α-TeO₂</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Density range of selected glasses based on tellurite</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of the samples prepared (mol %)</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>The nominal composition of Er³⁺ doped Lithium-Magnesium-Neodymium-Tellurite glass system.</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Typical density and molar volume for glasses at different Er₂O₃/Nd₂O₃ content</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>The thermal parameters of Er³⁺ doped Lithium-Magnesium-Neodymium-Tellurite glass system.</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>IR absorption peaks of Er³⁺ doped Lithium-Magnesium-Neodymium-Tellurite glass system</td>
<td>51</td>
</tr>
</tbody>
</table>
4.5 Absorption bands energy, E_{expt} for glass systems. Energy levels of the Er$^{3+}$ and Nd$^{3+}$ indicate by black and red labels

4.6 The value of optical energy gap, E_g and Urbach energy, ΔE for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses

4.7 The various refractive index at various wavelength as calculated by Sellmeier method)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic unit tellurite structure (a) TeO₄ tpb, and (b) TeO₃ tp</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic picture of the TeO₂ unit in the structure of α-TeO₂</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanism of structural changes of tellurite glasses</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic energy diagram of Er³⁺/Nd³⁺ co-doped tellurite glass</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>XRD pattern obtained for Sr₀.₉₆₋ₓSi₂O₂N₂Eu₀.₀₄₋ₓMnₓ phosphors with various x</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>XRD pattern of (100 − 2x)TeO₂₋ₓAg₂O₋ₓWO₃ where (7.5 ≤ x ≤ 30 mol%)</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>UV optical properties of 80TeO₂₋₅TiO₂₋₅₋ₓAₙOₘ₋ₓNd₂O₃ and Er₂O₃, x = 0.01, 1, 3 and 5 mol% for Nb₂O₅ and x = 0.01, 0.1, 1, 3, 5 and 7 mol% for Nd₂O₃ and Er₂O₃</td>
<td>26</td>
</tr>
</tbody>
</table>
2.8 UV characterization of RE-TeO₂ (RE = La, Ce, Pr, Sm, Nd, and Yb) 28

2.9 The absorption spectrum and energy level of Er³⁺ doped TSBN 30

2.10 The absorption spectrum and energy level of Tm³⁺ doped TSBN 30

2.11 The absorption spectrum and schematic diagram of the energy levels of Er³⁺ and Nd³⁺ ion tellurite glass and energy transfer process 31

2.12 Excitation and recombination mechanisms in photoluminescence with a trapping level for electrons 34

4.1 The series of (78-x)TeO₂-10Li₂O-10MgO-2Nd₂O₃-xEr₂O₃ with 0.4 ≤ x ≤ 2.0 mol%. 42

4.2 XRD patterns of of (78-x)TeO₂-10Li₂O-10MgO-2Nd₂O₃-xEr₂O₃ glasses. 44

4.3 Density of (78-x)TeO₂-10Li₂O-10MgO-2Nd₂O₃-xEr₂O₃ glasses. 46

4.4 Molar volume of (78-x)TeO₂-10Li₂O-10MgO-2Nd₂O₃-xEr₂O₃ glasses. 47

4.5 The DTA curve of (78-x)TeO₂-10Li₂O-10MgO-2Nd₂O₃-xEr₂O₃ glasses. 49

4.6 Infrared absorption spectra of (78-x)TeO₂-10Li₂O-10MgO-2Nd₂O₃-xEr₂O₃ glasses. 50
4.7 A typical UV-Vis-NIR absorption spectra for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses.

4.8 Spectral UV-absorption band for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses in the region 375 nm to 415 nm.

4.9 Graph absorption coefficient against photon energy for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses.

4.10 Graph of quantity (ahω)$^{1/2}$ against photon energy (hω) for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses.

4.11 Graph of variation of Energy Gap, E_g versus Er$_2$O$_3$.

4.12 A plot of ln α against photon energy, hω for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses.

4.13 A plot of Urbach Energy, ΔE against Er$_2$O$_3$ content (mol %).

4.14 Refractive index as a function of wavelength for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses.

4.15 Refractive index as a function of wavelength for (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses.

4.16 A luminescence spectrum of (78-x)TeO$_2$-10Li$_2$O-10MgO-2Nd$_2$O$_3$-xEr$_2$O$_3$ glasses for S1.
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>As$_2$O$_5$</td>
<td>Arsecin pentoxide</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>Aluminium oxide</td>
</tr>
<tr>
<td>B$_2$O$_3$</td>
<td>Boron oxide</td>
</tr>
<tr>
<td>Bi$_2$O$_3$</td>
<td>Bismuth oxide</td>
</tr>
<tr>
<td>Ga$_2$O$_3$</td>
<td>Gallium(III) oxide</td>
</tr>
<tr>
<td>GeO$_2$</td>
<td>Germanium dioxide</td>
</tr>
<tr>
<td>TeO$_2$</td>
<td>Tellurium oxide</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>Li$_2$O</td>
<td>Lithium Dioxide</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium Oxide</td>
</tr>
<tr>
<td>MoO$_3$</td>
<td>Molybdenum trioxide</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>Phosphorus pentoxide</td>
</tr>
<tr>
<td>SeO$_2$</td>
<td>Selenium dioxide</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>V$_2$O$_5$</td>
<td>Vanadium pentoxide</td>
</tr>
<tr>
<td>WO$_2$</td>
<td>Tungsten oxide</td>
</tr>
<tr>
<td>WO$_3$</td>
<td>Tungsten trioxide</td>
</tr>
<tr>
<td>ZnF$_2$</td>
<td>Zinc fluoride</td>
</tr>
<tr>
<td>Li$^{3+}$</td>
<td>Lithium trivalent ion</td>
</tr>
<tr>
<td>BO$_8$</td>
<td>Bridging oxygen</td>
</tr>
<tr>
<td>ESA</td>
<td>Excited state absorption</td>
</tr>
<tr>
<td>NBO</td>
<td>Nob-bridging oxygen</td>
</tr>
<tr>
<td>SRO</td>
<td>Short range order</td>
</tr>
<tr>
<td>tbp</td>
<td>Trigonal bipyramid</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>tp</td>
<td>Trigonal pyramid</td>
</tr>
<tr>
<td>α-TeO₂</td>
<td>Paratellurite</td>
</tr>
<tr>
<td>RE</td>
<td>Rare earth</td>
</tr>
<tr>
<td>Er³⁺</td>
<td>Trivalent erbium ion</td>
</tr>
<tr>
<td>Nd³⁺</td>
<td>Trivalent neodymium ion</td>
</tr>
<tr>
<td>Yb³</td>
<td>Trivalent Ytterbium ion</td>
</tr>
<tr>
<td>4f</td>
<td>Orbital belong to lanthanide series</td>
</tr>
<tr>
<td>4fn</td>
<td>Shell configuration belong to lanthanide series</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermal Analyzer</td>
</tr>
<tr>
<td>EDFAs</td>
<td>Erbium doped fiber amplifiers</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transmission Infrared</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>NIR</td>
<td>Near infrared</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet Visible</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength division multiplexing</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffractometer</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>T_c</td>
<td>Crystallization temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass formation temperature</td>
</tr>
<tr>
<td>α(ω)</td>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>A_j</td>
<td>Sellmeier parameter</td>
</tr>
<tr>
<td>A_{1,2,3};B_{1,2,3}</td>
<td>Sellmeier coefficients</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light</td>
</tr>
<tr>
<td>d</td>
<td>Distance between each adjacent crystal planes</td>
</tr>
<tr>
<td>d_2</td>
<td>Thickness sample</td>
</tr>
<tr>
<td>D</td>
<td>Dispersion</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
</tr>
</tbody>
</table>
E_g - Optical energy gap
E_i - Energy lower band
E_f - Energy upper band
e - Electron charge
eV - Electron Volt
ΔE - Urbach energy
ε_o - Electric permittivity
f - Vibration frequency
ik - Imaginary part
k - Extinction coefficient
k - Force constant
μ - Reduce mass
m - Mass of atom
m - index transition
M - Molar mass
n - Refract index
n* - Complex refractive index
OH - Hydroxyl
ρ - Density
ρ_i - Toluene density
ρ_a - Air density
Q - Quality factor
q - Phonon
R - Reflactance
ν - Speed
ν_eq^s - Symmetric stretching vibration
ν_as^s - Asymmetric stretching vibration
V - Volume
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_m</td>
<td>Molar Volume</td>
</tr>
<tr>
<td>W_n</td>
<td>Weight of sample in air</td>
</tr>
<tr>
<td>W_l</td>
<td>Weight of sample in immersion fluid</td>
</tr>
<tr>
<td>M_i</td>
<td>Molar mass of substance mol</td>
</tr>
<tr>
<td>Z</td>
<td>Atomic number</td>
</tr>
<tr>
<td>χ_i</td>
<td>Percentage of substance mol</td>
</tr>
<tr>
<td>$h\omega$</td>
<td>Photon Energy</td>
</tr>
<tr>
<td>θ</td>
<td>Angle</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>λ_j</td>
<td>Resonance wavelengths of the transitions</td>
</tr>
<tr>
<td>ΔT</td>
<td>Glass stability</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Calculation of glass composition</td>
<td>85</td>
</tr>
<tr>
<td>B</td>
<td>Calculation of apparent density and the error function</td>
<td>87</td>
</tr>
<tr>
<td>C</td>
<td>The Least Square fitting procedure by using Datafit version 9.0.59</td>
<td>89</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Glasses are materials in the world that find a variety of applications in everyday human life. The characteristics of glasses are known to be sensitive to even very minor changes in the glass composition (Emad and Richard, 2012) which is important in developing new modern glasses. Ironically, although the physical properties and crystalline solids are now understood in essence, but this is not the case for glass. A glass has no long-range order, that is, when there is no regularity in the arrangement of its molecular constituents on a scale larger than a few times the times of these groups (Doremus, 1973). By new science and technology approach the application of basic scientific understanding to the improvement of glass manufacture and new applications of glass has vigorously occurred. The benefit will include the providing of the fundamental bases of new optical properties glasses with new applications. Recently, tellurite based glasses has been developed for various applications such as optical switches, laser second harmonic generation, third-order
nonlinear optical materials, up-conversion glasses and optical amplifiers (El-Mallawany, 2002).

Technically, there are a variety of techniques can be used in order to formed a glass samples. The most conventional way is by melt-quenching method. On the other hand due to the research in glass, many techniques of glass had been used. One of the most popular technique nowadays is sol-gel technique because it deals with low temperature preparation and homogenized composition compared to the conventional method. However, sol-gel method preparation is quite difficult, time consuming and the material was used are very expensive.

The stability of tellurium oxide is one of the characteristic that has attracted researcher especially for the formation of tellurite glasses (El-Mallawany, 2002). Tellurium oxide (TeO$_2$) is the most stable oxide of tellurium (Te) with a low melting point of 773 °C (El-Mallawany, 2000; Eranna, 2011). The basic structural units of tellurite glasses (TeO$_2$-based glasses) is a TeO$_4$ trigonal bipyramid (tbp) by which each oxygen atom shared by two units, bonded in the equatorial position to one tellurium atom and in the axial position to another (John et al., 2006; Zhian et al., 2010). As reported by Rosmawati et al. (2008), there is four coordination of Te in the tetragonal form, the nearest-neighbour being arranged at four of the vertices of the trigonal bipyramid which suggesting considerable covalent character of the Te-O bonds. In paratellurite all the vertices of TeO$_4$ groups are shared in a 3-dimensional configuration by which the oxygen bond angle is 140°, the coordination polyhedron there are two equatorial (Te-O$_{eq} = 1.90$ Å) and two axial (Te-O$_{ax} = 2.08$ Å) bonds (Lambson et al., 1984).

Tellurite glass has received attention as new oxide glasses in technologically and scientifically due their outstanding properties, such as in remarkable optical properties (high refractive index, high dielectric constant, a wide band infrared transmittance), thermal stability, chemical durability, high homogeneity, and low
melting temperature (El-Mallawany, 2002; Khattak et al., 2004; Raffaella et al., 2001). TeO₂ not only interesting in terms of practically use, but also showing interesting properties in the structure of glass and glass forming ability.

Extensive studies of rare-earth glasses started in the 1960s, when the unique characteristics of rare-earth ions in the amorphous matrices were discovered. The study of rare-earth doped glasses have received great attention for optical applications, such as lasers, display devices, fiber amplifier, optical communication, and sensors (Zhang et al., 2007, Neeraj Kumar Giri et al., 2007; Kaushal and Rai, 2007; Chen et al., 2008). Enhancing the linear and nonlinear optical effects in rare-earth doped tellurite glasses are amongst the most important subjects of present day materials science and technology. Meanwhile, tellurite glass co-doped with two or more rare earth ions inspire intense interest in functionalizing it for widespread applications (Vineet and Rai, 2004; Dai Shi Xun et al., 2003). This is because the rare earth ions have very high solubility which that is allows the material to be co-doped with several rare earths ions together (Hiroki et al., 2005, Wenbin and Chun, 2010). Rare earth is good candidates for active ions in laser materials because they show many absorption and fluorescence transitions in almost every region of the visible and the near infrared range (Deva and Madhukar, 2012; Hotan, 2007).

Recently, energy transfer between Er³⁺ and other rare earth ions have been discovered by many researchers. Erbium-doped tellurite glasses have optical and chemical properties appropriate for optical applications (Jaba et al., 2005; Marjanovic et al., 2003). Moreover, the low loss tellurite-based Er³⁺ doped fiber amplifiers (EDFAs) from 1528 to 1611 nm is beneficial in upgrading the design wavelength division multiplexing (WDM) network applications (Mori et al., 1998). The other lanthanide ions also attract a lot of consideration such as thulium, praseodymium, neodymium, or dysprosium, which can increase the wavelength domain of a transmission towards higher energy, up to 1.3 μm (Jacquier et al., 2005). Neodymium (Nd³⁺) has been known as one of the most efficient rare earth ions for solid-state lasers in a variety of hosts because of its intense emission at about
1.06 μm (Chen, 2008). Moreover, the absorption of Nd$^{3+}$ is useful in solar cell (Jacek et al., 2009) and good applicant for improving the pumping efficiency (Lakshminarayana et al., 2008). In addition, Nd$^{3+}$-doped tellurite single-mode fibre laser has been carried out recently (Wang et al., 1994).

In this work, tellurite has been used as a glass host due to their potential as a laser host matrix while erbium oxide as a dopant. Therefore, three modifiers ions namely Lithium Dioxide (Li$_2$O also known as Lithia), Magnesium Oxide (MgO), and Neodymium oxide (Nd$_2$O$_3$) will be added to the glass host as modifier by modifying the glass structure in certain reaction during melting process. Conventional melt quenching technique has been applied throughout the glass preparation. The work represents a part of continuing effort to characterize the influence of Er$^{3+}$ ions doped Li$_2$O-MgO-Nd$_2$O$_3$ with respect to density, molar volume, refractive index, IR spectroscopy, optical absorption in ultraviolet and visible range and photoluminescence respectively.

1.2 Problem Statement

Research on tellurite based glass system has been study by many researchers. Unfortunately, there is lacking the behavioural characteristics of these glass Er$^{3+}$/Nd$^{3+}$ co-doped with modifier (MgO, Li$_2$O) has not been fully investigated. Few studied had been done in this system but are limited to certain properties and doping with rare-earth ions is not study. Therefore, the present study is done in order to know the optical and structural behaviour of the Er$^{3+}$/Nd$^{3+}$ co-dopant glasses besides the effect of doping rare-earth ions on luminescence properties are presented in this thesis.
1.3 Research Objective

In order to provide more information on the glass properties, the objectives of this research are:

i. To prepare a new glass system of Erbium doping Lithia-magnesium-Neodymium-tellurite glass in order to identify optical properties in the glass network.

ii. To determine the physical properties of Er$_2$O$_3$ doping Li$_2$O-MgO-Nd$_2$O$_3$-TeO$_2$ in order to develop basic structure of glass network.

iii. To investigate the thermal behaviour of Er$_2$O$_3$ doping Li$_2$O-MgO-Nd$_2$O$_3$-TeO$_2$ glass to see the forming glass ability in the glass.

iv. To examine the structural change as the dopant Er$^{3+}$ concentration added in the network Li$_2$O-MgO-Nd$_2$O$_3$-TeO$_2$.

v. To study the variation of optical properties in function of the Er$^{3+}$ composition in Li$_2$O-MgO-Nd$_2$O$_3$-TeO$_2$ glass.

vi. To study the fluorescence emission for understanding the upconversion phenomena of Er$_2$O$_3$ doping Li$_2$O-MgO-Nd$_2$O$_3$-TeO$_2$ glass.
1.4 Scope of Study

In order to achieve the objectives, the study has been divided into several scopes which are:

a) Preparation of co-doped glass in the composition of \((78-x)\text{TeO}_2-10\text{Li}_2\text{O}-10\text{MgO}-2\text{Nd}_2\text{O}_3-x\text{Er}_2\text{O}_3\) with \(0.4 \leq x \leq 2.0\) mol%.

b) Determination of the amorphous phase of the obtained glass using X-ray diffraction (XRD).

c) Identification of the physical properties of \(\text{Er}_2\text{O}_3\) doping \(\text{Li}_2\text{O}-\text{MgO}-\text{Nd}_2\text{O}_3-\text{TeO}_2\) glasses in term of density and molar volume.

d) Determination the thermal stability of the \(\text{Er}_2\text{O}_3\) doping \(\text{Li}_2\text{O}-\text{MgO}-\text{Nd}_2\text{O}_3-\text{TeO}_2\) glass in term of melting temperature \(T_m\), crystallization temperature \(T_c\) and transition glass temperature \(T_g\) using Differential Thermal Analyzer (DTA).

e) Determination the structural properties of \(\text{Er}_2\text{O}_3\) doping \(\text{Li}_2\text{O}-\text{MgO}-\text{Nd}_2\text{O}_3-\text{TeO}_2\) glass band using Infrared Spectroscopy.

f) Determination the optical properties of \(\text{Er}_2\text{O}_3\) doping \(\text{Li}_2\text{O}-\text{MgO}-\text{Nd}_2\text{O}_3-\text{TeO}_2\) glass in term of refractive index, energy band gap, Urbach energy and refractive index using Ultraviolet-Visible Spectroscopy.

g) Determination of the luminescence spectra using Photoluminescence Spectroscopy.
1.5 Glass System Chosen

In order to achieve the aims of these studies, one series of glass samples has been prepared based on constant lithium oxide, magnesium oxide and neodymium oxide with a variation of erbium oxide. This series is based on composition $(78-x)\text{TeO}_2-10\text{Li}_2\text{O}-10\text{MgO}-2\text{Nd}_2\text{O}_3-x\text{Er}_2\text{O}_3$ with $0.4 \leq x \leq 2.0$ mol%. Five samples of glass have been prepared.

Tellurite glasses are chosen because owing high density, chemical durability and wide transparency which is a suitable host for rare earth (Dhiraj et al., 2012). It also has lowest phonon energy of ~590 cm$^{-1}$ among oxide glasses and the largest refractive index values, both of which are useful for high radiative transition rates of rare-earth ions. Then, tellurite glass has the ability to dissolve high concentration of lanthanide ions without clustering and thereby increasing the fluorescence lifetime and quantum efficiency, which are important spectroscopic requirements for a good luminescence material.

The choice of erbium oxide (Er_2O_3) as dopant because it is relatively stable in air and are not quickly oxidizing. Additional Li_2O into tellurite glass will increase the ionic conductivity (Muruganandum and Seshasayee, 1997). There have also been literature reports on Li^{3+} ions transport in tellurite glasses (Harish et al., 2004; Marcio and Shigueo, 2006; Jayasinghe et al., 1999; Rodrigues et al., 2000; Patrick et al., 2002; Lee et al., 2002). MgO has no notable influence upon the strength of the network, but having an effect on the optical properties of glass.
1.6 Significant of the study

Due to the limited of the study based on Er$_2$O$_3$ doping Li$_2$O-MgO-Nd$_2$O$_3$-TeO$_2$ glass, this present study has been done to understand further the optical features of the glass. By adding doping to the system, new materials can be developed as new luminescence materials. These materials can emit light in the visible range and have colourful glasses.

1.7 Summary of Thesis

This thesis contains of five chapters. Chapter 1 gives a brief overview of the introduction of the study in the band, which previous studies on related glass materials development undertaken by other researchers and the discussion about the problem statement, the objective, the scope of this research and the choice of system.

Chapter 2 comprises the literature review of this research. This chapter consists of the theoretical background of physical properties of tellurite based glasses and the properties of the lanthanide elements. This chapter also provides some theoretical review on the characterization method of x-ray diffraction, infrared spectroscopy, absorption, refractive index, transition mechanism and density.
Chapter 3 focuses on the experimental techniques and equipments used in the research. Details on the sample preparation, design of the experiment and the measurement techniques employed are outlined. This is followed by the characterization of the samples by using X-Ray Diffractometer (XRD), densitometer, Differential Thermal Analyzer (DTA), Infrared (IR) spectrometer, UV-visible spectrometer (UV-Vis) and Photoluminescence (PL).

Chapter 4 deals with the discussion on the experimental results. The result on density, molar volume, XRD pattern, thermal parameters, IR vibrational spectra, absorption spectra, refractive index, and luminescence properties will be discussed in this chapter. Chapter 5 concludes this thesis with a brief summary on the achievement of the objectives. This chapter also consists of some suggestions for further studies.
REFERENCES

Kabalci I., Özen G., Öveçoğlu M.L., and Sennaroğlu A., (2006). *Thermal study and linear optical properties of (1−x)TeO$_2$−(x)PbF$_2$ (x = 0.10, 0.15 and 0.25 mol) glasses*. Journal of Alloys and Compounds 419, 294-298

Lakshminarayana G., Vidya S. R., and Buddhudu S., (2008). NIR luminescence from Er$^{3+}$/Yb$^{3+}$, Tm$^{3+}$/Yb$^{3+}$, Er$^{3+}$/Tm$^{3+}$ and Nd$^{3+}$ ions-doped zincborotellurite glasses for optical amplification. Journal of Luminoscence 128: 690-695.

