EFFECT OF PHOTON IRRADIATION ON THE THERMOLUMINESCENCE RESPONSE OF OPTICAL FIBRES

NURUL AIN BINTI MOHAMAD SHARIF

UNIVERSITI TEKNOLOGI MALAYSIA
EFFECT OF PHOTON IRRADIATION ON THE THERMOLUMINESCENCE RESPONSE OF OPTICAL FIBRES

NURUL AIN BINTI MOHAMAD SHARIF

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Physics)

Faculty of Science
Universiti Teknologi Malaysia

DECEMBER 2013
Specially dedicated this work

To my dear parents
Hj. Mohamad Sharif bin Abdul Rahman
Hjh. Absah binti Long
Whose love, kindness, patience and prayer have brought me this far

To my siblings and lovely sister
Nurul Aeni binti Mohamad Sharif
For their endless laughs and tears

To my friends
For their love, understanding and support through my endeavour
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, Most Merciful. Praise be to Allah S.W.T, Peace and blessings of Allah be upon His Messenger, Muhammad S.A.W. and all his family and companions.

First and foremost, I would like to express my sincere appreciation to Dr. Suhairul Hashim, Dr. Suhaili Zakaria and Dr. Ahmad Taufek Abdul Rahman for their supervision, support, guidance and encouragement during my study toward the successful completion of this study.

Special thanks are also extended to the support of technical staff at the Physics Department Universiti Teknologi Malaysia, in particular, Mr. Saiful for their assistance and cooperation. I gratefully acknowledge support from Dr Ung Ngie Min from Clinical Oncology Unit of University Malaya Medical Centre (UMMC) and En. Lutfi from Department of Radiotherapy and Oncology, Pantai Hospital, Kuala Lumpur for giving an outstanding help and guidance in the early stage of this study. Besides, a lot of thanks also to Dr Ghafuor Amouzad from Department of Electrical Engineering, Faculty of Engineering Building, University of Malaya and Telekom Malaysia Research and Development (TM R&D) laboratories for their cooperation to supply the optical fibre.

I am sincerely grateful to the government of Malaysia for a funded Master scholarship. I am also indebted to the Academy of Sciences Malaysia, Ministry of Science, Technology and Innovation of Malaysia and Ministry of Higher Education of Malaysia for providing research grants for this research.

Last but not least, I would like to extend a special note of thanks to my colleagues for their motivation and friendship during my studies in Universiti Teknologi Malaysia. Only Allah S.W.T. can repay all your kindness.
ABSTRACT

Studies on silica glass (SiO\textsubscript{2}) optical fibre as thermoluminescent materials for medical radiation dosimetry have been conducted by several research groups. This study focuses on the thermoluminescence (TL) response, linearity, sensitivity, dose response, fading, reproducibility and minimum detectable dose of 12 optical fibres sample namely Ge (A) Batch 1, 2 and 3, Ge (B), Multi Photonic Crystal Fibre (MPCF, 220 µm), Multi Photonic Crystal Fibre (MPCF, 2 mm), photonic crystal fibres (PCF), Dummy Flat Fibre (DFF), Flat fiber, Photosensitive Flat Fibre (PFF), Erbium (Er) and Aluminium/ Thulium (Al + Tm) doped optical fibre. A comparison was performed with TLD-100 (chips) to obtain the best TL response among the samples. Irradiation were performed with 6 and 10 MV photons covering the dose range of 1 Gy to 4 Gy by using linear accelerator machine Elekta SynergyTM at Pantai Hospital, Kuala Lumpur and Varian Model 2100C linear accelerator at University Malaya Medical Centre (UMMC). The comparisons of TL response with different model linear accelerators involved in this research were also performed. The results show that the highest sensitivity was obtained by using TLD-100, followed by PFF, Flat, Ge (A) Batch 1, MPCF (2 mm), Ge (A) Batch 3, Ge (A) Batch 2, DFF, Al+Tm, Ge (B), Er, MPCF (220 µm) and PCF. The fading of 5 optical fibres Ge (A) Batch 1, PFF, Er, Flat Fibre and PCF were determined and the loss of the TL signal for these TL materials were 10%, 29%, 30%, 30% and 43%, respectively. The dopant concentrations of Ge (A) Batch 1, Ge (B) and Er were found to be in the range of 0.03-0.72 mol % while the Z\text{eff} was in the range of 11.9-17.1. These TL materials have great potential to be introduced as new radiation dosimeters.
ABSTRAK

Kajian mengenai serabut optik kaca silica (SiO$_2$) sebagai bahan luminesens terma bagi dosimeter sinaran perubatan telah dijalankan oleh beberapa kumpulan penyelidik. Kajian ini tertumpu kepada sambutan luminesens terma, kelinearan, kepekaan, sambutan dos, kepudaran, kebolehulangan dan dos minimum dikesan bagi 12 jenis sampel gentian optik SiO$_2$ iaitu Ge (A) kumpulan 1, 2 dan 3, Ge (B), ‘Multi Photonic Crystal Fibre’ (MPCF, 220 µm), ‘Multi Photonic Crystal Fibre’ (MPCF, 2 mm), ‘photonic crystal fibres’ (PCF), ‘Dummy Flat Fibre’ (DFF), ‘Flat fiber’, ‘Photosensitive Flat Fibre’ (PFF), ‘Erbium’ (Er) dan ‘Aluminium/ Thulium’ (Al + Tm). Perbandingan terhadap TLD-100 (cip) juga dilakukan untuk mengetahui sampel yang paling baik sambutan luminesens terma. Penyinaran telah dilakukan dengan foton 6 dan 10 MV pada julat dos 1-4 Gy dari sumber pemecut linear Elekta Synergy™ di Hospital Pantai, Kuala Lumpur dan pemecut linear Varian Model 2100C di Pusat Perubatan Universiti Malaya (PPUM). Perbandingan sambutan luminesens terma dengan menggunakan model pemecut linear yang berbeza juga telah dilakukan. Keputusan menunjukkan kepekaan luminesens terma yang paling tinggi diperoleh menggunakan TLD-100, diikuti oleh PFF, ‘flat fiber’, Ge (A) kumpulan 1, MPCF (2 mm), Ge (A) kumpulan 3, Ge (A) kumpulan 2, DFF, Al+Tm, Ge (B), Er, MPCF (220 µm) dan PCF. Kepudaran bagi 5 gentian optik iaitu Ge (A) Kumpulan 1, PFF, Er, Flat Fibre dan PCF telah ditentukan dan isyarat luminesens terma yang hilang masing-masing adalah 10%, 29%, 30%, 30% dan 43%. Kepekatan dopan ditemui adalah dalam julat 0.03-0.72 mol % manakala Z_{eff} dalam julat 11.9-17.1. Bahan luminesens terma ini mempunyai potensi yang baik untuk diperkenalkan sebagai dosimeter sinaran yang baharu.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Overview 1
1.2 Background of the problem 3
1.3 Statement of problem 4
1.4 Research objectives 5
1.5 Significant of Research 6
1.6 Scope of research 6

2 LITERATURE REVIEW 8
Concept of Radiation Dosimeter

1. Concept of Radiation Dosimeter

Thermoluminescence

1. Thermoluminescence

Mechanism of Thermoluminescence

1. Mechanism of Thermoluminescence

System of Thermoluminescence Dosimeter

2. System of Thermoluminescence Dosimeter

Thermoluminescence studies on optical fibres

3. Thermoluminescence studies on optical fibres

Optical fibre

4. Optical fibre

Fabrication of Optical Fibre

5. Fabrication of Optical Fibre

Scanning Electron Microscopy (SEM)

6. Scanning Electron Microscopy (SEM)

RESEARCH METHODOLOGY

3. Research Methodology

TL Materials

3.1 TL Materials

Sample Preparation

3.2 Sample Preparation

Annealing

3.3 Annealing

Encapsulation

3.4 Encapsulation

Exposure to Radiation

3.5 Exposure to Radiation

Instrumentation

3.6 Instrumentation

Experimental Procedures

3.7 Experimental Procedures

Dose Response

3.7.1 Dose Response

Energy Response

3.7.2 Energy Response

Determination of Fading

3.7.3 Determination of Fading

Reproducibility

3.7.4 Reproducibility

Minimum detectable dose

3.7.5 Minimum detectable dose

Scanning Electron Microscope (SEM)

3.8 Scanning Electron Microscope (SEM)

The Effective Atomic Number, \(Z_{\text{eff}} \)

3.8.1 The Effective Atomic Number, \(Z_{\text{eff}} \)

RESULT AND DISCUSSION

4. Result and Discussion

Introduction

4.1 Introduction

Elemental mappings

4.2 Elemental mappings

TL Glow Curve

4.3 TL Glow Curve

TL Response to photons

4.4 TL Response to photons

Dose Response

4.4.1 Dose Response

Comparison of Ge (A) with different batch

4.4.1.1 Comparison of Ge (A) with different batch

4.4.1.2 Comparison of Ge (A) with different batch
4.4.1.2 Comparison of Ge (A) and Ge (B) with TLD 100 (chips) 60
4.4.1.3 Comparison of MPCF (2mm) and MPCF (220µm) with TLD-100 (chips) 61
4.4.1.4 Comparison of Flat fibre types with TLD-100 (chips) 62
4.4.1.5 Comparison of the best Ge, MPCF and Flat fibre with TLD-100 (chips) 63
4.4.1.6 Comparison of the TL response by using different model of LINAC 64
4.4.2 Summary of TL Response to Photon Result 67
4.4.2.1 Summary of sensitivity compare with fibres 68
4.4.2.2 Summary of sensitivity compare with TLD-100 (chips) 69
4.4.3 Energy Response 70
4.5 Fading 78
4.5.1 Summary of the percentage loss of TL signal 84
4.6 Reproducibility 86
4.7 Minimum detectable dose 98
4.8 Dopant Concentration 101
4.9 Effective Atomic Numbers 103

5 CONCLUSION 106
5.1 Summary of findings 106
5.2 Recommendations and future research 108

REFERENCES 109
<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of the researches based on optical fibre</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>The manner of manufacture and fabrication of TL materials</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Set up during irradiation process</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of sensitivity of TL materials at 1 Gy</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of sensitivity of TL materials at 2 Gy</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of sensitivity of TL materials at 3 Gy</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of sensitivity of TL materials at 4 Gy</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of TL response for all TL materials</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of sensitivity of TL materials compare with Photosensitive Flat Fibre</td>
<td>68</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary of sensitivity of TL materials with TLD-100 (chips)</td>
<td>69</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary of sensitivity of TL materials with TLD-100 (chips)</td>
<td>77</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary of the percentage loss of TL signals at 1 Gy</td>
<td>85</td>
</tr>
<tr>
<td>4.10</td>
<td>Reproducibility data of TLD-100 (chips) for 6 MV photons Irradiation</td>
<td>93</td>
</tr>
<tr>
<td>4.11</td>
<td>Reproducibility data of Ge (A) Batch 1 doped optical fibre for 6 MV photons irradiation</td>
<td>94</td>
</tr>
<tr>
<td>4.12</td>
<td>Reproducibility data of Ge (A) Batch 2 doped optical fibre for 6 MV photons irradiation</td>
<td>94</td>
</tr>
<tr>
<td>4.13</td>
<td>Reproducibility data of Ge (A) Batch 3 doped optical fibre for 6 MV photons irradiation</td>
<td>94</td>
</tr>
<tr>
<td>4.14</td>
<td>Reproducibility data of Ge (B) for 6 MV photons Irradiation</td>
<td>95</td>
</tr>
<tr>
<td>4.15</td>
<td>Reproducibility data of MPCF (220µm) for 6 MV photons</td>
<td></td>
</tr>
</tbody>
</table>
irradiation 95

4.16 Reproducibility data of MPCF (2mm) for 6 MV photons irradiation 95

4.17 Reproducibility data of PCF for 6 MV photons irradiation 96

4.18 Reproducibility data of PFF for 6 MV photons irradiation 96

4.19 Reproducibility data of DFF for 6 MV photons irradiation 96

4.20 Reproducibility data of Flat fibre for 6 MV photons irradiation 97

4.21 Reproducibility data of Er for 6 MV photons irradiation 97

4.22 Reproducibility data of Al+Tm for 6 MV photons irradiation 97

4.23 A summary of minimum detectable dose for various TL materials 99

4.24 A comparison of minimum detectable dose of each TL materials with TLD-100 (chips) 99

4.25 A comparison of minimum detectable dose of each TL materials with Photosensitive F.F 100
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A simple model of energy absorption in a TL material</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Time-temperature profile and glow curve for LiF: Mg, Ti (TLD-100)</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Type of optical fibre (a) Single mode (b) step index (c) graded Index</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>The drawing apparatus schematically</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Scanning Electron Microscopy (SEM)</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>The instrument for preparing the samples</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>An analytical balance (Sartorius BSA224S-CW model from Gottingen, Germany)</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>A furnace (Harshaws) used to anneal TL materials</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Linear accelerator machine of Elekta Synergy™ at Department of Radiotherapy and Oncology, Pantai Hospital, Kuala Lumpur</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Varian Model 2100C linear accelerator at Clinical Oncology Unit of UMMC</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>A Harshaw 3500 TL reader Nuclear Laboratory, Universiti Teknologi Malaysia (UTM)</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>A combined SEM and EDXRF analysis facility based on GEMINI technology, Zeiss, Germany</td>
<td>32</td>
</tr>
<tr>
<td>3.8</td>
<td>(a) A sputtering machine is used for the gold coating procedure (b) The samples are ready for scanning</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>The spectrum of Ge (A) Batch 1 doped optical fibre</td>
<td>36</td>
</tr>
</tbody>
</table>
4.2 The spectrum of Ge (B) doped optical fibre
4.3 The spectrum of Er doped optical fibre
4.4 The glow curve for Ge (A) Batch 1, Ge (A) Batch 3 and Ge (A) Batch 2 following 6 MV photon irradiations
4.5 The glow curve for Flat fibre, Photosensitive flat fibre and Dummy Flat fibre following 6 MV photon irradiations
4.6 The glow curve for MPCF (2mm), PCF and MPCF (220µm) following 6 MV photon irradiations
4.7 The glow curve for Al+Tm, Er and Ge (B) following 6 MV photon irradiations
4.8 The glow curve for TLD-100 (chips) following 6 MV photon irradiations
4.9 The combination of TL glow curves according to their TL response (refer to legend)
4.10 TL response in (nC/mg) of TLD-100 (chips) for 6 MV photon irradiation versus dose in Gy
4.11 Linearity index, f (D) of TLD-100 (chips)
4.12 TL response in (nC/mg) of Ge (A) Batch 1 for 6 MV photon irradiation versus dose in Gy
4.13 Linearity index, f (D) of Ge (A) Batch 1
4.14 TL response in (nC/mg) of Ge (A) Batch 2 for 6 MV photon irradiation versus dose in Gy
4.15 Linearity index, f (D) of Ge (A) Batch 2
4.16 TL response in (nC/mg) of Ge (A) Batch 3 for 6 MV photon irradiation versus dose in Gy
4.17 Linearity index, f (D) of Ge (A) Batch 3
4.18 TL response in (nC/mg) of Ge (B) for 6 MV photon irradiation versus dose in Gy
4.19 Linearity index, f (D) of Ge (B)
4.20 TL response in (nC/mg) of FLAT fibre for 6 MV photon irradiation versus dose in Gy
4.21 Linearity index, f (D) of FLAT fibre
4.22 TL response in (nC/mg) of PFF for 6 MV photon irradiation versus dose in Gy
4.23 Linearity index, \(f(D) \) of PFF

4.24 TL response in (nC/mg) of DFF for 6 MV photon irradiation versus dose in Gy

4.25 Linearity index, \(f(D) \) of DFF

4.26 TL response in (nC/mg) of MPCF (2mm) for 6 MV photon irradiation versus dose in Gy

4.27 Linearity index, \(f(D) \) of MPCF (2mm)

4.28 TL response in (nC/mg) of MPCF (220\(\mu \)m) for 6 MV photon irradiation versus dose in Gy

4.29 Linearity index, \(f(D) \) of MPCF (220\(\mu \)m)

4.30 TL response in (nC/mg) of PCF for 6 MV photon irradiation versus dose in Gy

4.31 Linearity index, \(f(D) \) of PCF

4.32 TL response in (nC/mg) of Er for 6 MV photon irradiation versus dose in Gy

4.33 Linearity index, \(f(D) \) of Er

4.34 TL response in (nC/mg) of Al+Tm for 6 MV photon irradiation versus dose in Gy

4.35 Linearity index, \(f(D) \) of Al+Tm

4.36 TL response in (nC/mg) of Ge (A) for 6 MV photon irradiation versus dose in Gy

4.37 TL responses of Ge (A), Ge (B) doped optical fibres and TLD-100 for 6 MV photon irradiations

4.38 TL responses of MPCF (2mm) and MPCF (220\(\mu \)m) doped optical fibres for 6 MV photon irradiations

4.39 TL responses of photosensitive flat fibre, flat fibre and dummy flat fibre for 6 MV photon irradiations

4.40 TL responses of TLD-100 (chips), Ge (A), photosensitive flat fibre and MPCF (2mm) for 6 MV photon irradiations

4.41 TL responses of Ge (B) for 6 MV photon irradiations at Pantai Hospital and MMUC

4.42 TL responses of Er for 6 MV photon irradiations at Pantai Hospital and MMUC
4.43 TL responses of Ge (A) Batch 1 for 6 MV photon irradiations at Pantai Hospital and MMUC

4.44 TL responses of TLD-100 for 6 and 10 MV photon irradiation

4.45 TL responses of Ge (A) Batch 1 doped optical fibres for 6 and 10 MV photon irradiation

4.46 TL responses of Ge (A) Batch 2 doped optical fibres for 6 and 10 MV photon irradiation

4.47 TL responses of Ge (A) Batch 3 doped optical fibres for 6 and 10 MV photon irradiation

4.48 TL responses of Ge (B) doped optical fibres for 6 and 10 MV photon irradiation

4.49 TL responses of Flat fibre for 6 and 10 MV photon irradiation

4.50 TL responses of PFF for 6 and 10 MV photon irradiation

4.51 TL responses of DFF for 6 and 10 MV photon irradiation

4.52 TL responses of MPCF (2mm) for 6 and 10 MV photon irradiation

4.53 TL responses of MPCF (220μm) for 6 and 10 MV photon irradiation

4.54 TL responses of PCF doped optical fibres for 6 and 10 MV photon irradiation

4.55 TL responses of Er doped optical fibres for 6 and 10 MV photon irradiation

4.56 TL responses of Al+Tm doped optical fibre for 6 and 10 MV photon irradiation

4.57 Fading of Ge (A) Batch 1 doped optical fibre with 6 MV photon irradiation

4.58 Fading of Ge (A) Batch 1 doped optical fibre after normalized at 6 MV photon irradiation

4.59 Fading of Er doped optical fibre with 6 MV photon irradiation

4.60 Fading of Er doped optical fibre after normalized at 6 MV photon irradiation

4.61 Fading of Photonic crytals fibre with 6 MV photon irradiation

4.62 Fading of Photonic crytals fibre after normalized at 6 MV photon irradiation
4.63 Fading of Photosensitive Flat Fibre with 6 MV photon irradiation 82
4.64 Fading of Photosensitive Flat Fibre after normalized at 6 MV photon irradiation 82
4.65 Fading of Flat Fibre with 6 MV photon irradiation 83
4.66 Fading of Flat Fibre after normalized at 6 MV photon irradiation 83
4.67 Reproducibility of TLD-100 (chips) at 6 MV photons irradiation 87
4.68 Reproducibility of Ge (A) Batch 1 doped fibre at 6 MV photons irradiation 87
4.69 Reproducibility of Ge (A) Batch 2 doped fibre at 6 MV photons irradiation 88
4.70 Reproducibility of Ge (A) Batch 3 doped optical fibre at 6 MV photons irradiation 88
4.71 Reproducibility of Ge (B) at 6 MV photons irradiation 89
4.72 Reproducibility of MPCF (220µm) at 6 MV photons irradiation 89
4.73 Reproducibility of MPCF (2 mm) at 6 MV photons irradiation 90
4.74 Reproducibility of PCF at 6 MV photons irradiation 90
4.75 Reproducibility of PFF (220µm) at 6 MV photons irradiation 91
4.76 Reproducibility of DFF at 6 MV photons irradiation 91
4.77 Reproducibility of Flat fibre at 6 MV photons irradiation 92
4.78 Reproducibility of Er at 6 MV photons irradiation 92
4.79 Reproducibility of Al+Tm at 6 MV photons irradiation 93
4.80 The right hand panel is cross-sectional analysis of Ge (A) Batch 1 and while the left hand panel shows the surface analysis of Ge (A) Batch 1 by using SEM 101
4.81 The Dopant concentration of Er doped optical fibre 102
4.82 The Dopant concentration of Ge (A) Batch 1 doped optical fibre 102
4.83 The Dopant concentration of Ge (B) doped optical fibre 103
4.84 The Z_{eff} Er doped optical fibre 104
4.85 The Z_{eff} Ge (A) Batch 1 doped optical fibre 104
4.86 The Z_{eff} Ge (B) doped optical fibre 105
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{eff}</td>
<td>The effective atomic number</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>LiF</td>
<td>Lithium fluoride</td>
</tr>
<tr>
<td>E</td>
<td>Activation energy</td>
</tr>
<tr>
<td>p</td>
<td>Probability of escaping by the trap</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>s</td>
<td>Frequency factor</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann’s constant</td>
</tr>
<tr>
<td>σ</td>
<td>The standard deviation</td>
</tr>
<tr>
<td>N_2</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>F(D)</td>
<td>Linearity index</td>
</tr>
<tr>
<td>D</td>
<td>Absorbed dose</td>
</tr>
<tr>
<td>R^2</td>
<td>Regression coefficient</td>
</tr>
<tr>
<td>S_d</td>
<td>Relative sensitivity</td>
</tr>
<tr>
<td>F_{dm}</td>
<td>Sensitivity achieve from proposed dosimeter</td>
</tr>
<tr>
<td>$F_{d(TLD-100)}$</td>
<td>Sensitivity of standard dosimeter</td>
</tr>
<tr>
<td>B_{mean}</td>
<td>Mean TL background</td>
</tr>
<tr>
<td>F</td>
<td>TL system calibration factor</td>
</tr>
<tr>
<td>m</td>
<td>slope of graph</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLD</td>
<td>Thermoluminescence dosimeters</td>
</tr>
<tr>
<td>TL</td>
<td>Thermoluminescence</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>LINAC</td>
<td>Linear accelerator</td>
</tr>
<tr>
<td>IMRT</td>
<td>Intensity-modulated radiation therapy</td>
</tr>
<tr>
<td>TPS</td>
<td>Treatment planning system</td>
</tr>
<tr>
<td>MCVD</td>
<td>Modified Chemical Vapour Deposition</td>
</tr>
<tr>
<td>PCVD</td>
<td>Plasma-activated Chemical-Vapour Deposition</td>
</tr>
<tr>
<td>OVD</td>
<td>Outside-Vapour Deposition</td>
</tr>
<tr>
<td>VAD</td>
<td>Vapour-axial Deposition</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray Analysis</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy Dispersive X-ray Spectrometry</td>
</tr>
<tr>
<td>SSD</td>
<td>Source-Surface Distance</td>
</tr>
<tr>
<td>MU</td>
<td>Monitor Unit</td>
</tr>
<tr>
<td>TPR</td>
<td>Tissue Phantom Ratio</td>
</tr>
<tr>
<td>PDD</td>
<td>Percentage depth dose</td>
</tr>
<tr>
<td>FSD</td>
<td>Focal-spot Skin Distance</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Electron Microscopy</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Titles of Paper Presentation (International/Local)</td>
<td>115</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Radiotherapy is one of the modalities that use high energy X-rays, gamma rays or electrons to deliver ionizing radiation. It is a treatment that kills the malignant tumor in the patient body (Davies, 2008). A malignant tumor is an abnormal cell and potentially unlimited growth. A radiotherapy treatment can be divided into two parts which are external and internal beam therapy. For external beam therapy, the cancer cells are treated by machine outside the patient body and for internal therapy, radiation is put inside to the patient body, in or near to the cancer cell.

Due to ionizing radiation can cause harmful effects such as deterministic or stochastic effects, safety and radiation protection should be emphasized to maximize the radiation dose to cancer cells and at the same time to minimize damage and injury to healthy cells (Bartesaghi et al., 2007). Dosimeter is one of the important tools in radiotherapy treatment to detect the amount of absorbed radiation dose to the patient body.

Thermoluminescence (TL) is one of the individual dosimeter that is commonly used in radiation dosimetry and the detector that are most often used for in vivo dosimetry purposes (Wagiran et al., 2011). In vivo dosimetry is important because it
helps to reduce the risk of serious accidents and also to ensure that the treatment carried out as planned in addition to the requirement of the law. It is because it able to determine the accurate dose delivered to the patient body. TL detector must also be similar to the equivalent tissue to facilitate the application of radiation dosimeter, especially in clinical applications and radiation therapy. Dosimeter material should approach the atomic composition of biological tissue of human body, \(Z_{\text{eff}} = 7.42 \) for the measurement of absorbed dose X-rays and gamma irradiation (Furetta et al., 2001).

Phenomena of TL have long been used in radiotherapy. First application of these phenomena as dosimetry was introduced by Daniel et al in 1953 (Jung et. al, 2004). As an improvement and a better understanding of the nature of the material in order to develop new TL materials, many researches work have been carried out. Personal, environment and clinical dosimetry is examples of TLD application technique (Bos, 2001). Dosimeter material or phosphors that are usually used in the TLD dosimeter is calcium fluoride, calcium sulfate, lithium borate, lithium fluoride and potassium sulfate (Lancaster, 1969). The TLD material based on LiF phosphor is known as TLD-100. Lithium fluoride, LiF, doped with magnesium and titanium which denoted by LiF: Mg, Ti are used widely today (Yaacob et al., 2011).

Although TL dosimetry is a well-established technique and is widely used in radiation dosimetry especially for application in radiotherapy, there are some limitations of it such as poor spatial resolution and hygroscopic problem. Therefore, many research in silica glass (\(\text{SiO}_2 \)) optical fiber as TL materials are carried out to overcome these limitations. The use of \(\text{SiO}_2 \) in radiation dosimetry is very helpful because their transmission signal loss is low (Chen and Jaluria, 2009). Present or addition dopant in silica also can offer advantages in radiation dosimetry as it can increase the radiation sensitivity of the silica by providing a high number of traps. In addition, new defects and absorption bands can appear (Yaakob et al., 2011).
1.2 **Background of the Problem**

Ionizing radiation is energy in the form of waves or particles that will able to ionize the matter when passes through it. Ionizing radiation can be divided into two categories which are indirect radiation and direct radiation. X-ray, gamma ray and neutron are the examples of the indirect radiation which first produce charge particles before the charge particles ionized the matter. Meanwhile, alpha and beta particles are direct radiation which this particles will ionize the matter directly (Wondergem, 2010).

Exposure to the ionizing radiation can contribute to acute and chronic effect based on their absorbed dose level, which determines the severity of the effect; expose volume size, which indicates external whole or partial body exposure, or localize exposure and the nature of radiation (Nénot, 2009). Acute effect is the effect of ionizing radiation that occurs when large dose delivered at short period. Meanwhile, small amount of dose received over a long period of time is called chronic effect.

Recently, ionizing radiation is broadly used in medical field like in diagnosis, treatment and sterilization. Radiotherapy is one of the modalities in medical that use ionizing radiation to kill cancer cells. When using radiation to treat cancer cell, the healthy cells will also be injured. Therefore, the amount of absorbed dose in patients is important to avoid the side effects of radiation to the patient. As precaution step in order to avoid any affect that occur while exposure to ionizing radiation, one tool which is called dosimetry is to detect amount of absorbed dose in the patient body.

TL is one of the individual dosimeter that is widely used in radiation dosimetry. Previously, film badges were widely used as radiation detectors before the development of TLD dosimeter. TLD replaced the film badge in radiation dosimeter because of the weakness and deficiencies of the film badge system. Examples of film dosimeter weaknesses are that it cannot be exposed to light before being processed, cannot reflect the actual readings at low photon energy, does not give an immediate
reading and false image will be formed under pressure, heat and chemicals on the film (Wagiran, 1997).

Recently, a lot of researches on silica were developed due to its potential as individual dosimeters. It is because silica glass (SiO$_2$) optical fibre help to overcome the limitation existed on the TL dosimeter. The advantage of silica is that it is able to improve positional sensitivity, typically ~200µm. In addition, silica is impervious to water because it forms a glass in the fibre-preforming process. Therefore, it is suitable for usage in intercavitary and interstitial measurements (Hashim, 2009).

1.3 Problem Statement

The TLD phosphors that are widely used in medical field are LiF:Mg, Ti, LiF:Mg, Cu, P and Li$_2$B$_4$O$_7$:Mn. However, these well-established phosphors have some drawbacks including being hygroscopic and poor spatial resolution-up to a few mm (Hashim, 2006). With these restrictions in mind, novel TLD materials are currently identified based on doped SiO$_2$ optical fibres, which offer characteristics that provide good potential for broadening the applicability of TLD.

Many researches about silica have not clearly give the information on the most appropriate material that is suitable to be used as dosimeter. It is because not all material can be used as effective radiation detector. Many criteria must be concerned and analyzed in identify the suitable and appropriate material which is able to become a good phosphor in radiation detector especially in term of personal dosimeter. The type of fibre and radiation parameters will determine the TL performance of irradiated optical fibre.

The linearity, sensitivity, dose response, energy response, fading, reproducibility and minimum detectable dose of optical fibres must be determined to know the performance of TL response of each fibre. The TL results are compared with those of the commercially available TLD-100 (Yaacob et al., 2011).
The comparison of TL response between different type of flat fibre which is photosensitive flat fibre, flat fibre and dummy flat fibre must be determined. Moreover, the TL response of multi photonic crystals fibre (MPCF) that have different diameter at their core should also be carried out and compared with TLD-100 (chips). The comparison of the type of flat fibre and MPCF with TLD-100 (chips) are carried out to study their potential as new TL dosimetry in radiation therapy application.

In addition, the percentage of dopant added to the optical fibres must be determined because the exact amount of dopant added to these fibres is not specified by the manufacturers. The analyses of the dopant concentration percentage are to be determined by using Scanning Electron Microscopy (SEM). In this research, the dopant concentration for Ge (A), Ge (B) doped optical fibre and Erbium (Er) will be explored.

1.4 Research Objectives

The objectives of the research are as follows:

1) To study the dosimetric properties which are linearity and sensitivity with respect to dose response, energy response, TL glow curve, fading, reproducibility and minimum detectable dose of optical fibres and TLD-100 subjected to photon irradiation.

2) To compare the TL response between single mode optical fibre, multiphotonic crystal fibres (MPCF) with different diameter of their core and also type of flat fibre.

3) To determine the dopant concentration and effective atomic number, \(Z_{\text{eff}} \), of the Ge (A), Ge (B) and Erbium (Er) doped optical fibre using Scanning Electron Microscopy (SEM).
1.5 Significance of Research

i. Able to overcome the limitations that exist in the TLD-100 which are hygroscopic and poor spatial resolution.

ii. Apply optical doped fibre as TL material to improve individual dosimetry and can save the cost of this dosimetry because the optical fibre SiO$_2$ is more economical.

iii. Able to improve positional sensitivity, typically ~ 200µm and optical fibre can use in intercavitary and interstitial measurements since the fibres are impervious to water.

1.6 Scope of Study

In this research, the 12 types of optical fibres which are MPCF (220 µm), MPCF (2 mm), Ge (A) Batch 1, 2 and 3, Ge (B), photonic crystal fibres (PCF), Flat fiber, Dummy Flat Fibre (DFF), Photosensitive Flat Fibre (PFF), Erbium (Er) and Al + Tm were investigated to obtain their dosimetric properties which are effective atomic number, energy response, linearity and sensitivity with respect to dose response, TL glow curve, reproducibility and minimum detectable dose of each optical fiber. The difference between Ge (A) and Ge (B) is their dopant concentration. In this study, 3 batches of Ge (A) are study which the batch is referring to the time these fibres received from the supplier. Harshaw TLD 3500 is use to read TL response of the optical fibres which are already exposed with photon beam. The glow curves for each sample are obtained and the results are compared with TLD-100 (chips).

The determination of the fading effect of the samples has been performed by using 6 MV photon irradiation at dose 1 Gy. Readings of TL yield were obtained on 14 consecutive days following the time of irradiation. The reproducibility of the
samples characteristic also were examined. The fading characteristics of 5 TL materials which are Ge (A) Batch 1, Er, Photonic crytals fibre, Photosensitive Flat Fibre and Flat fibre are studied.

The irradiation on the core of the optical fibre has been conducted at dose levels ranging from 1–4 Gy by using a linear accelerator Elekta Synergy™ (LINAC) at Department of Radiotherapy and Oncology, Pantai Hospital, Kuala Lumpur and Varian Model 2100C linear accelerator at Clinical Oncology Unit, University Malaya Medical Centre (MMUC). All samples were irradiated in solid water phantom with 6 and 10 MV photon energy. The TL results obtained are compared with TLD-100.

This research has also been carried out to determine dopant concentration and effective atomic number, Z_{eff} for Ge (A) Batch 1, Ge (B) and Er doped optical fibre. Scanning electron microscope (SEM) is used in this research to obtain the effective atomic number by measuring the composition of the elements present.

The present chapter has provided an introduction to the problems associated with TL and significance of the optical fibre in this study. The physics behind the thermoluminescence and review of the existing literature regarding the subject is described in Chapter 2. The methods of preparing sample, irradiation process and analyzing the TL glow curves will be described theoretically in Chapter 3. In chapter 4, the range of thermoluminescence studies and the results obtained are presented and discussed in detail. Chapter 5 summarizes the findings of this investigation, and provides an outlook for future study in this area.
REFERENCES

APPENDIX

Titles of Paper Presentation (International/Local)

