COMPRESSIBILITY AND YOUNG’S MODULUS OF FILLED JOINT

ZAIHASRA BINTI ABU TALIB

Project report is submitted as a partial fulfillment of the requirement for the award of the degree of Master of Engineering (Civil Engineering – Geotechnical)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

MAC 2005
DEDICATION

To my beloved mum,

Puan Hajah Salmah binti Sardan

And

All my Family.....

Especially for,

Mohd Khaire bin Hj Mohd Nor
ACKNOWLEDGEMENT

Alhamdulilah, Praise to Almighty Allah for the blessing and permission of-Nya, I am able to complete my master project.

I wish to extent my greatest thank you and gratefulness to my supervisor, En. Mohd For bin Mohd Amin for his valuable guidance, advice and suggestions throughtout this project. His effort and concern, I am able to complete mt project. Thank you also for Ong Heng Yau for your help and advise.

My gratefulness is also for En. Zulkifly bin Abd. Wahid and all technicians of Geotechincs and Engineering Geology Department, for their valuable advice and assistance during the experimental works.

Finally, a lot of thank you to all staft of Faculty of Civil Engineering, University Teknologi Malaysia, Skudai, Johor and also for all my friends, student of postgraduate of Geotechnics and Highway Department for their support and cooperation throughtout my study.

Thank you very much.
ABSTRACT

A number of the engineering structures such as tunnels, powerhouse cavern and mining shaft are constructed in the rock mass. The stability of these structures are greatly influenced by the engineering behaviour of the rock mass. For intact rock, its low deformability behaviour indicates that it is a stronger material. However, the condition changes with the presences of joint as discontinuity features in the rocks. The presence of this joint influence the strength and deformability of rock to a great extend. The situations become worst when intensive weathering of jointed rock mass under tropical climate leads the formation of the filled joint. Being the weakest component of a filled joint, filling materials contributes significantly to joint deformability and thus reducing joint strength and stiffness. In construction work that involving excavation in rock masses, filled joint poses a number of design and constructional problem that may influence the stability and factor of safety to the structure. Due to the above problems, a series of laboratory testing of physical models, which comprised of filled and unfilled joint, was carried-out. Comparing the stress-strain curves and Young’s Modulus value has done analyses of the experimental result. The result suggested that the filled joint exhibits high deformation behaviour due to a lowest value of Young’s Modulus. This behaviour contributed by the deformation and compressibility of the infilling material and as well as the deformation of joint blocks.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITTLE</td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction 1
1.2 Project background 2
1.3 Significance of the Study 2
1.4 Objective 3
1.5 Methodology 3
1.4 Scope of Study 3

2 LITERATURE REVIEW

2.1 Introduction 4
2.2 Discontinuity 6
2.3 Properties of Discontinuities 7
2.4 Infilling 7
 2.4.1 Behaviour of Filled Joint 10
2.5 Rock Strength and deformability 13
2.6 Deformation Behaviour of Rock under Uniaxial Loading
2.7 Deformation of Jointed Rock

3 LABORATORY TESTING
3.1 Introduction
3.2 Sample Preparation
3.3 Testing of Modeled Samples
 3.3.1 Laboratory Equipment
 3.3.2 Test Procedure

4 RESULTS AND ANALYSIS
4.1 Result of compression Test of rock Sample
 4.1.1 Intact Rock
 4.1.2 Matched Joint
 4.1.3 Mismatched Joint
 4.1.4 Filled Joint
 4.1.5 Summary of the Result
4.2 Discussion of the Result

5 CONCLUSION AND RECOMMENDATION
5.1 Conclusions
5.2 Recommendations

REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Definition of Rock Mass and Intact Rock</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Generalized Relationship between Force and Displacement of Filled Joint (after Phien-Wej et. al., 1990 & 1991)</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Soil Peak Stress versus Filler Thickness for Clay Filled Joint under different Level of Consolidation (after Toledo et. al., 1995)</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Peak Stress of Clayey Sand Filled Joint versus Thickness under Different Level of Consolidation. (after Toledo et. al., 1995)</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Strain – Softening Curve (after Brady, 1985)</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>The nature of Discontinuities</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Development of Plastic Zone at Localized Areas of Contact.</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Influence of a Discontinuity on Rock Mass Deformability</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Normal Stress versus Deformation Relations of Intact and Fractured Cylindrical Specimen of Graniorite (after Goodman, 1974)</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Comparison of Total Deformation and Closure from the Loading Cycle of the Same Joint Tested in Fully Interlocked and Mismatched Position (after Bandis, 1983)</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Normal Stress versus Discontinuities Closure for Unweathered Discontinuities in range of Rock for Three Loading Cycles (after Bandis, et. al., 1985)</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>Normal Stress versus Discontinuities Closure for Weathered Discontinuities in range of Rock for Three Loading Cycles (after Bandis, et. al., 1985)</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Effect of Infill Thickness on Normal Displacement of Dry Bentonite Infilled Joints.</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Particle Size Distribution of Filling Material</td>
<td>27</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2</td>
<td>Model of Sample</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Compression Machine Model MaTest 500</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Data Logger Model TML 302</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Procedure for Laboratory Testing</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Stress Strain Curve for Intact Rock</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>Stress Strain Curve for Matched Joint</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Stress Strain Curve for Mismatched Joint</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Stress Strain Curve for Filled Joint (10mm Thick)</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Stress Strain Curve for Filled Joint (20mm Thick)</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Stress Strain Curve for All Type of Sample</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Illustration of Crushing Asperities Materials of Joint Structures.</td>
<td>45</td>
</tr>
<tr>
<td>4.8</td>
<td>Arrangement of Infilled Before and After Compression Stress.</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of Joints Fillers by Origin (after Chernyster & Dearman, 1981)</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of Result for Intact Rock</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of Result for Matched Joint</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of Result for Mismatched Joint</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Result for Filled Joint (10mm Thick)</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of Result for Filled Joint (20mm Thick)</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of Result for Value UCS, Strain at Failure and Young’s Modulus.</td>
<td>41</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Introduction

Rock is an excellent material upon which to bear a building foundation. A number of engineering structures such as tunnels, powerhouse cavern and mining are also constructed in rock mass. It is because rock is a very stable material exhibits practically no compression under load. The stability of these structures are greatly influenced by the engineering behaviour of the rock mass. The behaviour of the rock mass is controlled by many factors, such as, joint spacing, joint behaviour, joint orientation and the condition of the joint. The latter include joint roughness, joint wall weathering and infilling material. Therefore, understanding of the mechanical properties of jointed rock mass is important for analyzing, designing and stability performance of structure built in or on rock mass.

Normally, intact rock displays a higher strength is becoming. However, the condition may change by the existence of joints in rocks. It comes worst when joints are filled with infilling materials. The tropical climate facilitates an intensive in-situ weathering of the rock joint, which contribute to the formation of the infilling in the joint aperture. Infilling material normally comprises highly weathered material; therefore, it exhibits compressible and crushable characteristics that lead to high deformation behaviour. The high deformation of the filled joint caused problems to
the structures built in or on the rock mass. These problems are normally associated with block displacement and settlement. Due to a higher degree deformability of filled joint, a study has been carried out to verify the effect of infilling on the behaviour of joint.

1.2 Project Background

The presence of joint in the rock mass will increase its deformability. However, the deformability of the rock mass may increase further when the aperture of the prevailing joints is filled with weak infillings. These types of joints are termed as filled joints and commonly found in tropical countries where intensive and continuous weathering of rock mass is inevitable. The main effect of filled joint is that they weaken the rock mass in terms deformability under both normal and shear loading. Consequently, this critical discontinuity may impose a detrimental effect on the stability of a structure associated with excavation in rock mass.

1.3 Significance of the Study

Filled joint may be subjected to both normal and shear loading due to stress redistribution following any excavation in a rock mass. Study on the deformation behaviour of filled joint under normal loading is therefore form an essential part in understanding this critical geological discontinuity. This knowledge is important in designing a structure, such as slopes and openings, in rock mass that contain filled joints.
1.4 Objective

The main objectives of this study consists of the following:

a) To review the effect of infilling material on joint deformability
b) To study the behaviour of filled joint by under normal loading through series of laboratory tests on model filled joint
c) To verify the effect of infilling on compressibility and elastic modulus.

1.5 Methodology

Methodologies been used to achieve our objectives of study are:

a) Literature review
b) The laboratory testing

1.6 Scope of the Study

The study will focus on the following:

a) A physical model representing a filled joint forms by in-situ deposition of weathered materials in joint aperture.
b) Infill material that consists of granular, granite residual soils.
c) Deformation of filled joint due to uniaxial loading only.
d) Behaviour of filled joint in terms of compressibility and modulus of elasticity.
REFERENCES

Controlling the Shear Strength of Filled Rock Joints.” Geotechniques, Vol. 43, No. 1, pg 1 -19

