DEVELOPMENT AND CHARACTERIZED OF MICROCONTROLLER BASED XENON FLASHLAMP DRIVER CIRCUIT

ASMAWATI @ FATIN NAJIHAH ALIAS

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Physics)

Faculty of Science
Universiti Teknologi Malaysia

DECEMBER 2005
Dedication to my beloved father, mother, family, abang and friends…

Thanks for everything
ACKNOWLEDGEMENT

First of all, in humble way I wish to give all the Praise to Allah, the Almighty God for His mercy has given me the strength, keredhaanNya and time to complete this work. With His blessing may this work be beneficial for the whole of humanity

I would like to express my sincere gratitude and appreciation to my supervisors, Associate Professor Dr. Noriah Bidin and Dr Johari Adnan for their supervision, ideas, guidance and enjoyable discussion throughout this study. I am also grateful to Dr Yaacob Mat Daud and Associate Professor Dr Ahmad Radzi Mat Isa for their valuable advices, opinion and suggestions. I hope all this valuable time and experience will keep in continue.

I would like to acknowledge the help and kind assistance of the following persons; En. Nyan Abu Bakar for assisting in carrying out the experimental works; En. Ahmad Hadi Ali and En.Fairuz Jani for their co-operation and assistance.

Thanks also to all my friends and colleagues for their views, concerns and encouragement. Last, but not least, I am grateful to my beloved family for their prayers continuing support, patience, valuable advices and ideas throughout the duration of this study.

I would also like to take this opportunity to thank the Government of Malaysia through IRPA scholarship and Universiti Teknologi Malaysia for granting this project through vote, 74531. Without this financial support, this project would not be possible.
ABSTRACT

Optical pumping using flashlamp is the preferred technique in solid state laser. Xenon flashlamp is a device that emits large amount of spectral energy in short duration pulses. Xenon is generally chosen because it yields a higher radiation output (40% - 60%) for a given electrical energy than other noble gases. Triggering a flashlamp generally requires very high voltage pulse of a short duration. The objective of this project is to develop a programmable xenon flashlamp driver. Current set-up allows flashlamp to be triggered in a single mode. A fundamental study was carried out by varying the input energy from 4.48 J to 26.88 J across the flashlamp. The heart of the flashlamp driver is a PIC16F84A microcontroller that runs on a +5 V supply and clocked by a 4 MHz resonator. This microcontroller was connected to a personal computer, via serial port, acting as remote terminal. Initially, a TTL pulse output from PIC16F84A was sent out to drive a SCR. The SCR step-upped the TTL pulse to 332 ±5 volts pulse. Finally, a 1:2 transformer mixes the resulting 740 ±10 volt pulse with 2 ±0.01 kV DC voltage. The resulting voltage waveform is applied across a xenon flashlamp. Xenon gas ionizes for a brief period determined by the pulse width. This results in an electrical short circuit across the flashlamp’s electrodes. A large amount of current is drawn across the electrodes. This causes a rapid increase in the current flow through the flashlamp and initiates the desired arc lamp discharges. A Rogowski coil was used to detect the pulse current waveform. Xenon flashlamp output was detected using IPL10050 photodiode. An OPHIR BeamStar CCD Laser Beam Profiler was employed to record a plasma spectral gradient. The peak pulse current was obtained in the range of 776 A – 982 A. The bandwidth and the amplitude of the xenon flashlamp pulse were found in good agreement with the input energy. The beam profiles and dimensions of the plasma were dependent upon input energy.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICIES</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Overview 1
1.2 Flashlamp Driver Circuit 3
1.3 Comparison of Rare-Gas Flashlamp 5
1.4 Problem Statement 6
1.5 Research Objective 6
1.6 Research Scope 6
1.7 Thesis Outline 7

2 LITERATURE REVIEW

2.1 Introduction 9
2.2 Optical Pumping 9
2.3 Flashlamp 10
2.3.1 Electrodes and Nobles Gases 11
2.3.2 Spectrum of Xenon Flashlamp 12
2.3.3 Flashlamp Impedance 13
2.4 Power Supplies For Flashlamp 14
2.5 Charging Unit 15
2.6 Trigger Circuit 16
 2.6.1 External Triggering 16
 2.6.2 Series Injection Triggering 17
 2.6.3 Simmer Mode Triggering 18
 2.6.4 Pseudo Simmer Mode Triggering 20
 2.6.5 Overvoltage Triggering 21
2.7 The Mechanism of Breakdown 21
2.8 Summary 23

3 METHODOLOGY AND MATERIAL
3.1 Introduction 24
3.2 Xenon Flashlamp 24
3.3 Capacitor Bank 25
3.4 High Voltage Power Supply Calibration 27
3.5 PIC Programming 28
3.6 Flashlamp Driver 30
3.7 Current Measurement 31
3.8 Photodetector 33
3.9 Attenuator 33
3.10 Image Processing System 34
 3.10.1 Image Processing 35
3.11 Diagnose the Flashlamp Output 37
3.12 Summary 38
4 CALIBRATION OF HIGH VOLTAGE POWER SUPPLY

4.1 Introduction 39
4.2 High Voltage Power Supply 39
4.3 Power Supply Calibration 42
4.4 Summary 45

5 DEVELOPMENT OF PULSE GENERATOR

5.1 Introduction 46
5.2 Power supply for Microcontroller 46
5.3 Pulse Generator 48
5.3.1 PIC16F84A 49
5.3.2 MAXIM233 50
5.3.3 Pulse Generator Circuit 51
5.4 Summary 55

6 DEVELOPMENT OF FLASHLAMP DRIVER

6.1 Introduction 56
6.2 PSpice Simulation 57
6.3 Flashlamp Driver 58
6.4 Electrical Characteristic 64
6.4 Summary 68

7 DIAGNOSING THE FLASHLAMP OUTPUT

7.1 Introduction 69
7.2 Flashlamp Intensity Profile and Light Distribution 70
7.3 Flashlamp Waveform 76
7.4 Summary 82

8 CONCLUSIONS AND SUGGESTION
8.1 Conclusions 84
8.2 Problems And Suggestions 86

REFERENCES 88
APPENDICES A – B 93 - 95

PUBLICATIONS 100

LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Voltage profile for increasing current</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Voltage Profile for decreasing current</td>
<td>43</td>
</tr>
<tr>
<td>6.1</td>
<td>Peak current during discharged time due to the input energy</td>
<td>65</td>
</tr>
<tr>
<td>6.2</td>
<td>Peak power during discharged time upon the input energy</td>
<td>67</td>
</tr>
<tr>
<td>7.1</td>
<td>Flashlamp output spot perimeter and area at different input energy</td>
<td>75</td>
</tr>
<tr>
<td>7.2</td>
<td>Pulse duration of xenon flashlamp output at various input energies</td>
<td>79</td>
</tr>
<tr>
<td>7.3</td>
<td>Amplitude of xenon flashlamp output signal at various input energy</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flashlamp Types.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Linear Flashlamp,</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(b) Helical Flashlamp, side and end views,</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(c) U-Shaped Flashlamp</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Spectral emission from xenon flashlamp at low electrical loading</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Spectral emission from xenon flashlamp at high electrical loading</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic diagram of power supplies for flashlamp</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>External triggering circuit</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Series injection triggering</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Basic circuit for simmer mode operation</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Pseudo-simmer mode circuit</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Overvoltage triggering circuit</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>U-Shape xenon flashlamp</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Photograph of a capacitor</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic circuit of capacitor bank</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Photograph of Textronix P6015 high voltage probe compensating</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic diagram of calibration work</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>The process of programming a microcontroller</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>A Schematic diagram of Yappa programmer hardware</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>Block diagram of programmable flashlamp circuit</td>
<td>31</td>
</tr>
</tbody>
</table>
3.9 Current measurement 32
3.10 Rogowski coil as a current transformer 32
3.11 IPL10050 Photodetector circuit 33
3.12 Photograph of filters used in this research.
 (a) Melles Griot 03 FIV 038 filter 34
 (b) Newport FSQD200 filter 34
3.13 CCD profiler option window 35
3.14 Calibration screen option for Video Test 5.0 software 36
3.15 Block diagram of experiment arrangement 37
4.1 Front panel of high voltage power supply 40
4.2 High voltage power supply schematic diagram 41
4.3 Flowchart of calibration work 42
4.4 Graph of voltage (kV) versus current (μA), with capacitor 44
4.5 Straight line signal is obtained as a result of filtering by storage capacitor 45
5.1 Schematic diagram for +5 V power supply 47
5.2 Oscillogram of +5 V supply and +16 V input voltage for the LM7805 48
5.3 Pin Diagram of PIC16F84A 49
5.4 Internal block Diagram of PIC16F84A 49
5.5 Typical operating circuit for MAXIM233 50
5.6 Schematic diagram of pulse generator circuit 52
5.7 ttyS1 port setting 53
5.8 Programmable pulse generator menu (Linux Shell scripting) 54
5.9 1 μs pulsewidth (single pulse) 55
6.1 Schematic diagram of RLC simulation circuit 57
6.2 RLC simulation waveform 58
6.3 Block diagram of flashlamp driver circuit for a real time discharge Schematic circuit of flashlamp driver 59
6.4 Schematic circuit of flashlamp driver 60
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>A TTL pulse output from PIC16F84A and SCR gate turn–on signal</td>
</tr>
</tbody>
</table>
| 6.6 | Voltage Waveform.
(a) At primary winding of the series injection transformer (pointA)
(b) At secondary winding of the series injection transformer (point B)
(c) Waveform describes the action of turn-off the SCR |
| 6.7 | Voltage temporal profile across the 0.1 \(\Omega \). The charging voltage and energy were 2 kV and 13.44 J |
| 6.8 | Relative peak current of the flashlamp versus capacitor charging energy |
| 6.9 | A current waveform of flashlamp at input energy of 13.44 J |
| 6.10 | Relative peak power as a function of input energy |
| 7.1 | Block digram of Beamstar reducer |
| 7.2 | Arc intensity profile of the flashlamp
(a) Three-dimensional image shows the distribution of Gaussian beam profile
(b) Two-dimensional image represents in both horizontal vertical axes |
| 7.3 | Gaussian profile of xenon flashlamp output |
| 7.4 | Two-dimensional images of xenon flashlamp taken at different input energies |
| 7.5 | The flashlamp output spot area versus input energy taking at working distance of 80 cm |
| 7.6 | Pulse xenon flashlamp output curve with input energy of 4.48 J |
| 7.7 | Pulse xenon flashlamp output curve with input energy of 4.48 J after filtering by the FSQ-OD2.00 filter |
| 7.8 | Output Curve of the xenon flashlamp after filtering by |

xv
FSQ OD200 neutral density filter and 03 FIV 038 interference filter

<table>
<thead>
<tr>
<th>7.9</th>
<th>Pulse duration profile due to input energy across the flashlamp</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.10</td>
<td>Amplitude versus input energy during discharge</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLOGY

- v - Voltage
- i - Current
- V - Voltage
- K_0 - Flashlamp impedance
- l - Arc length
- p - Pressure
- D - Flashlamp bore diameter
- AC - Alternating current
- DC - Direct current
- C - Capacitance
- SCR - Silicon Controlled Rectifier
- C_T - Total capacitance
- PIC - Programmable Interface Controller
- PIV - Peak Inverse Current
- I - Current
- R - Resistor
- OD - Optical density
- T - Transmission
- H - Horizontal of the centroid of plasma
- V - Vertical of the centroid of plasma
- $i(h,v)$ - Intensity at location (h,v)
- I - Total intensity taken the total area
- Q - Amount of charge stored in capacitor
- P - Power
- E - Energy
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of home site used to install YAPPA programming</td>
<td>93</td>
</tr>
<tr>
<td>B</td>
<td>Technical specification of IPL10050 photodiode</td>
<td>94</td>
</tr>
<tr>
<td>C</td>
<td>Assembly language program for programmable flashlamp driver</td>
<td>95</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

There are many methods used in pumping process. Basically, for gas laser or semiconductor laser it used electrical injection as pumping method. Most solid state lasers are pumped with optical sources (Noriah, 2002). The goal in designing optical pumps for solid state laser is to match the output spectrum of the optical pump with that of laser pump bands. Optical pump sources can be divided into two broad categories. One category is black and greybody radiators, of which filament lamps are the best example. The other category is pump sources with line emission spectra, of which semiconductor lasers are the best example (Kuhn, 1998). Noble gas discharge lamps are compromised between blackbody radiators and line sources. They have significant blackbody component generated by recombination radiation from gas ions capturing electrons into bound states (free-bound) and from Bremstahlung radiation. Noble gas discharge lamps are typically designed so that the plasma completely fills the lamp.

Flashlamp excitation is an attractive method to initiate laser of lasing media (Winstanley, 1997). The first demonstration of laser action by Maiman was achieved in 1960 by using ruby laser, a crystalline solid system where flashlamp was used as
pumping source (Hecht, 1991). The flashlamp-pumped solid-state laser is now by far the most common pulsed laser system in the world with neodymium ions either in crystal or in glass as the preferred lasing medium (Shaw, 1997).

Pulsed flashlamps, particularly xenon filled flashlamps are used in variety of application. Besides used as pumping sources in laser application, there are many others application of flashlamp. These include light source for flash photography (Elloumi et al, 2004), copying, optical detection and optical ranging applications, in cosmetology, dermatology and other medical applications (Inochkin et al, 2004).

Ultraviolet light (UV) emitted by medium and high power flashlamp has been very useful tool for drinking-water treatment. Intense peak power associated with microsecond pulses of ultraviolet light generated by inert gas (xenon, krypton) flashlamps appears effective tool, against a broad range of pathogens, including Cryptosporidium and Giardia (Ganesh et al, 2003).

For the past few years, revolutionary new techniques in medical and aesthetic applications have been developed and they are taking the industry by storm. These techniques referred to as Intense Pulsed Light (IPL™), Variable Pulsed Light (VPL), Controlled Pulsed Light (CPL), or Intense Flash Light (IFL) are essentially the same. The systems harness the energy from a pulsed flashlamp and deliver it directly to the skin. Thousands of systems are currently operating in Japan and Europe, and the Federal Drug Administration (FDA) has cleared them for use in the USA. This technique is providing highly effective in several treatment area (Attwood and Mehlmann, 2004). These include hair removal, skin rejuvenation, medical skin treatment and acne treatment.
1.2 Flashlamp Driver Circuit

Studies of triggering flashlamp as pumping sources have been investigated by many previous researchers. Thus, various methods and patterns of xenon flashlamp drivers have been designed.

Several generations of discharge circuit exists for driving flashlamp. The original discharge circuits used an in-line trigger transformer or a trigger coil on the lamp to initiate conduction. A series capacitor-inductor discharge would then occur to deliver the energy into the lamp. This circuits whilst very simple. Furthermore, has relatively high jitter between trigger and laser pulse and also reduces lamp lifetime. However, it is still used today for limited low repetition rate applications.

In order to improve the driver, the second generation of discharge circuits use an active simmer supply, which triggers lamp into conduction and keeps the lamp in conduction with a few hundred milli-ampere current flows through it. A semiconductor-switching device, such as a thyristor, can then be used to control the discharge into the lamp. This enables repetitive pulsed operation of the lamp. Jitter and lifetime are much improved and the circuit works well for most application.

The latest and third generation for discharge technologies is the use of an opening and closing switch, such as an IGBT in combination with a large capacitor bank. The energy storage must be greater than that to be delivered into the lamp. This gives a highly flexible technology, where both the pulse energy and pulse length can be controlled independently. Repetition rates of many kilohertz are possible and many different applications can be tackled by the same circuit implementation (Greenwood and Miler, 1999)
Study of the designing single mesh circuit for driving xenon flashlamp was presented by Markiewicz and Emmet (1966). This single mesh circuit has been found accurate and useful. Pettifer et al (1975) reported a reliable 60 kV flashlamp triggering system. The triggering system has proved to be an efficient and reliable unit for simultaneously triggering a pair of heavy walled, water cooled quartz flashlamp. Recently, in 1998 a zero-current switching resonant converter as a power supply of a pulsed Nd:YAG laser was adopted to control the laser power density. This power supply was designed and fabricated suitable for the high frequency range and to reduce switching loss and noises (Kim et al, 1998). A new method of sequential charge and discharge circuit (SCADC) was proposed by Hong et al (1999). The power supply is composed of low frequency capacitors instead of very expensive high frequency capacitors. This method have been designed and fabricated based on a cheap and simple power supply.

Kim et al (2001) have proposed a new power supply for pulsed Nd:YAG laser adopting zero crossing control (ZCC) method which is simple and compact in design. In this power supply, SCR was turned on at zero point of input AC voltage by the method of zero crossing control (ZCC). In 2002, a new real time multi-discharge method (RTMD) was reported. This method uses real-time one-chip microcomputer that can turn on the flashlamp with a precision of up to 1µs and thus can create diverse pulse shapes and strength, in addition to longer pulse (Hong et al, 2002).

A flashlamp driver for medical laser system was reported by McCarthy et al (2003). This driver circuit was employed IGBT device for power switching and use microprocessor in order to control laser pulse width. In 2004, Inochikin et al reported a power supply or driver circuit for a pulsed flashlamp. A high-speed semiconductor switch was employed in order to turn on and off of the flashlamp by a suitable control. DC simmer current source was connected across flashlamp to maintain discharge in the flashlamp.
1.3 Comparison of Rare-Gas Flashlamp

Rare gas is also known as noble gas. This noble gas is in Group 8A in the periodic list table. They include neon, argon, krypton, xenon and radon (David, 1982). It was found that in the past few years there has been increased interest in rare gas flashlamp, particularly with respect to their application in solid-state laser pumping and in high intensity illumination for photographic work. Substantially programs by a number of people have been carried out to investigate the characteristics of flashlamp.

Oliver and Barnes (1969) presented data on the spectral emission characteristics of xenon, krypton, argon and neon in the region where the emission line spectra make up a substantial portion of energy. From the spectra data in terms of both output power and emitted quanta, it was show that xenon is the most efficient of all the rare gases, a fact which has been reported previously by Barnes (1964).

Study of rare gas pumping efficiencies for Neodymium laser was reported in 1969 by Oliver and Barnes. The investigation was presented on the comparative pumping efficiencies of xenon, argon and krypton flashlamp. The results obtained confirm that krypton can be more efficient than xenon for driving Neodymium laser when run at low current density. Nevertheless, at high drive levels, xenon is superior to all the rare gases.

Fountain et al (1970) presented a study of comparison of Kripton and Xenon flashlamp for Nd:YAG laser. As demostrated previously by Oliver and Barnes (1969), Kripton lamp was found generally superior to xenon for pumping Nd:YAG laser except at high current densities.
1.4 Problem Statement

A flashlamp driver is the most important part in a solid state laser system. It used as a pump source for laser material. This study is the initial stage to develop a flashlamp driver circuit for optical pumping. Hence, this driver can or will be used as references to develop a driver circuit that can be used as pump source in future.

1.5 Objective

The main objective of this study is to develop a xenon flashlamp driver using PIC16F84A microcontroller and characterize the xenon flashlamp output. The use of PIC16F84A microcontroller is as a control element.

1.6 Scope

In this study, a programmable flashlamp driver circuit was developed. Programmability is provided by a PIC16F84 microcontroller. The flashlamp driver used a series injection trigger mode as triggering circuit. The current setup allows the flashlamp to operate in single shot. A Rogowski coil was used to detect the pulse current waveform. Xenon flashlight output is then recorded using CCD laser beam profile and analyzed by using imaging software. A photodiode was employed to detect the output of the flash light.
1.7 Thesis Outline

This thesis is divided into eight chapters. In the first chapter, it reviews some of previous research on the development of flashlamp driver, and the application of the xenon flashlamp in various field of research.

Chapter 2 reviews the characteristics of the xenon flashlamp including the lamp design, optical and electrical characteristics of the lamp. Besides, the basic of the flashlamp driver, this chapter also discusses and the mode of triggering the mechanism of breakdown in gaseous.

Chapter 3 explains about the experimental methods and the techniques used in development flashlamp driver. This includes a series injection triggering technique and image processing software. A Rogowski coil is used to detect the current curve during the discharge. The calibration of a high voltage power supply that is employed in the system is described in Chapter 4.

The development of pulse generator using PIC16f84A microcontroller, which is interfaced to the personal computer using RS232 lines driver is dicussed in chapter 5. This generator acts like a control element for the flashlamp driver. The development of flashlamp driver circuit is covered in Chapter 6. Series injection triggering mode was employed to trigger a U-shape xenon flashlamp. The pulse current during the discharge time was measured. The relation of the pulse current and peak power during the discharge time due to the capacitance value or input energy is also discussed.

The characteristic of flashlamp output is enlightened in chapter 7. The bandwidth of the flashlamp pulse at FWHM was measured using the IPL10050 photodiode. Plasma spectral gradient induced by xenon flashlamp was recorded with the aid of CCD Laser Profiler.
Finally, the conclusions of the project are noted in Chapter 8. These provide with the summarization of the whole project and also problems arisen during the period of study. Finally, a few proposal are suggested for future study.
REFERENCES

