RECOVERING THE DAMAGED INDUSTRIALISED BUILDING SYSTEM
BEAM FLEXURAL STRENGTH FOR RE-USE

MAHDI SABBAR WHAIB

A project report submitted in partial fulfillment of the
Requirements for the award of the degree of
Master of Engineering (Civil-Structure)

Faculty of Civil Engineering
University Technology Malaysia (UTM)

JANUARY 2014
To my beloved parents (father, mother), Dr.brothers and sisters, family, my boys Mohamad, Ali, Jafar, Ahmad, Fatimah, Noor who have been my Inspirations in whole my life.
ACKNOWLEDGEMENT

First, I would like to Sincerest thanks to Associate Professor Dr. Abdul Kadir Marsono for their patience and support for guide me in this research and taught me the concept of structures and theories.

Besides, I would like to thank to laboratory staff for their helping, they provided suitable area and equipment for doing experimental part in the laboratory of Civil-Engineering Faculty.

Finally, this thesis is dedicated to my father and mother who have given me the opportunity of an education from the best institutions and support throughout my life and Dr.hadi, Dr.Sajed my brothers ‘and my sister and my family who have always stood by me.

In addition, I could not be successful Without God's kindness. I thank Him for my health and my success in all of steps during these years.
ABSTRACT

Industrialized Building System (IBS) is a construction method where components are manufactured in factory or on-situ in a controlled and monitored environment, transported and assembled with minimum workforce. This system is widely used in the worlds. Upgrading of reinforced concrete structures may be required for many different reasons. The concrete may have become structurally inadequate due to deterioration of materials, poor design, or construction, lack of maintenance, upgrading of design loads or accidental events such as earthquakes. Therefore in such conditions there are two possible solutions: replacement or retrofitting. Full structure replacement might have includes some disadvantages such as high costs for material, labor and in addition to more using time. This research details the experimental work of two case of reinforced concrete IBS beams (previously has been tested to failure) retrofitted by using external steel plate placed at the bottom soffit level of the beam, and the outer steel stirrup is covering the concrete to increase its stiffness and flexural strength have been tested under two point loading at three steps of loading. The objectives of this study were to investigate the behaviour of retrofitted beams experimentally, and be cord the mechanism of re-failure of retrofitted IBS beams in laboratory environment. The result shows that the beams recover its capacity by 60% of their original capacities.
ABSTRAK

Sistem Bangunan Berindustri (IBS) merupakan satu kaedah pembinaan dengan komponen diperbuat di kilang dalam persekitaran yang dikawal dan dipantau, diangkut dan dipasang dengan tenaga kerja yang minimum. Sistem ini telah digunakan secara meluas. Konkrit mungkin menjadi struktur yang leman kerana bahan, reka bentuk etenomi, kurangnya penyelenggaraan, peningkatan beban reka bentuk atau berlakunya perkara yang tidak dijangk, seperti gempa bumi. Pada keadaan igi terdapat dua penyelesaian yang mungkin dengan cara penggantian atau pemulihan. Penggantian struktur sepenuhng, akan meudser kos yang tinggi bagi bahan, buruh dan masa. Kajian ini adalah kerja eksperimen dua konkrit bertetulang rasuk IBS yang telah diuji secara kegagalances pseudipasang dengan menggunakan plat keluli diletakan di tampang bawah rasuk, dan keluli plat tipis vjian membalut konkrityang rosak untuk meningkatkan kekuatan lenturan telah diuji. di bawah dua titik pada tiga langkah pembebanan. Objektif kajian ini adalah untuk menyiasat kelakuan rasuk aiperkuat, dan pengeliaikan mekanisme kegagalan semula rasuk IBS rasuk dalam persekitaran makmal. Hasilnya menunjukkan bahawa rasuk boleh dipulihkan kapasitinya sebanyak 60 % daripada kapasiti asal.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background 1
1.2 Problem statement 3
1.3 Objective of the study 3
1.4 Case study 4
1.5 Scope of study 4
1.6 Significance of study 4
2 LITERATURE REVIEW

2.1 Introduction 5
2.2 Definition of Industrialized Building System (IBS) 5
2.3 Classification of IBS system. 7
2.4 Advantages of IBS system 11
2.5 Disadvantages of IBS system 13
2.6 Previous Research 14
2.7 Summary of literature review 25

3 METHODOLOGY

3.1 Introduction 26
3.2 Research Design 26
3.3 Procedure of the testing 28
 3.3.1 Case study on 28
 3.3.1.1 Assembling of IBS sub frame 30
 3.3.1.2 Mapping pre-existing cracking for 31
 The beam
 3.3.1.3 Experimental work 32
 3.3.1.4 Tools and equipment of retro 35
 3. 3.1.5 Loading 36
 3.3.1.6 Deflection and rotation measurements 37
3.3.2 Case Study Two 39
 3.3.2.1 Assembling of IBS frame 40
 3.3.2.2 Mapping pre-existing cracking for the beam 42
 3.3.2.3 Experimental work 45
 3.3.2.4 Loading 46
 3.3.2.5 Deflection and rotation measurements 47
RESULT AND ANALYSIS OF EXPERIMENTAL TEST

4.1 Introduction

4.2 Behaviour of IBS frame case study one

4.2.1 Load –Deflection Results

4.2.2 Mid span deflection

4.2.3 Deflection under 1/3 and 2/3 of the span

4.2.2 Load -Rotation Results

4.2.4 Crack pattern and Mode of Failure

4.2.5 Load - Crack Closing Results

4.3 Behavior of IBS Frame Case Study Two

4.3.1 Load –Deflection Results

4.3.2 Mid span deflection

4.3.3 Deflection under 1/3 and 2/3 of the span

4.3.4 Crack pattern and Mode of Failure

5 COMPARISON OF TEST RESULTS

5.1 Introduction

5.2 Mechanism of Failure

5.3 Load-deflection relationship of case study one

5.3.1 Design load

5.3.2 Recover flexural strength

5.3.3 Comparison Results of case study one
5.4 Load-deflection relationship of case study two 71
 5.4.1 Design load 73
 5.4.2 Recover flexural strength 74
 5.4.3 Comparison Results of case study two 76

6 CONCLUSION AND RECOMMENDATION 79

6.1 Conclusion 79

REFERENCES 80

APPENDIX A 83-90

APPENDIX B 91-95

APPENDIX C 96-112
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Building system classification according to Relative weight of Component</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Section properties of IBS beam and column (Mustafa 2012)</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Section properties of IBS beam and column</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Load – Deflection data of IBS retrofit beam Case study one</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Load – Deflection data of IBS retrofit beam Case study two</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison test Results of case study one</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison test Results of case study two</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison Results of Case study one and Case study two</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Type of building system in Malaysia (Thanoon et al, 2003)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>External bars at soffit of beam prior to Welding and anchoring</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Seismic Retrofit for Beams</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Model for the design of anchorage</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Roll of CFRP plate</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>The arrangement of the CFRP laminates</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Details of Test Beams</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Shows the flow chart of procedures in carrying Out this study</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Transfer the damaged Beam foe refer</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation IBS beam for setting</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Prepare the column for setting</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Cruciform steel connector of IBS column</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>Bolts that supported by one nut in each side.</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Assembling the beam and columns</td>
<td>31</td>
</tr>
<tr>
<td>3.8</td>
<td>Crack pattern of the beam of pervious testing</td>
<td>31</td>
</tr>
<tr>
<td>3.9</td>
<td>Un-repaired flexural cracks from previous testing</td>
<td>32</td>
</tr>
</tbody>
</table>
3.10 Steel plate size (100x10x3200) mm at 33
The soffit level of the beam

3.11 Strap link assembly 33

3.12 Types of retrofit tools 35

3.13 Applied two point loading 36

3.14 Three LVDT under the beam 37

3.15 Installed inclinometer (A) and (B) 38

3.16 Recording the readings of inclinometer 39

3.17 Main bars and spiral stirrup, (Ameer 2012) 40

3.18 Rotating and Preparing 41

3.19 Sub frame assembly of case study 2 41

3.20 Mapping the crack pattern of IBS beam 42

3.21 Un-repaired flexural cracks for previous testing 43

3.22 Outer steel strap 45

3.23 Application of loading at two points 46

3.24 Install LVDT in three points under the beam 47

3.25 Inclinometers to measure the end rotation 48
Of the beam and column.

4.1 Load – deflection curve at the mid span 50

4.2 Load – deflection curve at the left of beam span 51

4.3 Load – deflection curve at the Right of beam span 52

4.4 Combination of deflection curve of case study one 52

4.5 Load –rotation C1 of IBS retrofit beam 53

4.6 Load –rotation C2 of IBS retrofit beam 54

4.7 Load –rotation C3 of IBS retrofit beam 54

4.8 Load – Rotation of IBS column 55

4.9 Major cracks at mid span 56

4.10 Point load which the first crack occurred was 30 KN 57

4.11 Load – crack closing for previous major flexural crack 58

4.12 Recording the crack closing at mid span 58

4.13 Load – deflection at mid span of case study two 60

4.14 Load – deflection at the Left 61

4.15 Load – deflection at the Right 62
4.16 Combinations Load – deflection case study two
4.17 First crack at 40 KN
4.18 Flexural cracks at mid span
5.1 Load-deflection curve at middle
 Of span case study one.
5.2. Fully leveled beam at 50 KN of load
5.3 Deflection of beam at 60 KN of load
5.4 Flexural cracks at failure in 60 KN of load
5.5 Load-deflection curves at middle
 Of span case study two
5.6 Previous deflection of beam before testing
5.7 Fully leveled beam at 50 KN of load
5.8 Deflections at mid span at 131 KN of load
5.9 Flexural cracks at failure in 131 KN of load
5.10 Combination curve case study one and two
CHAPTER 1

INTRODUCTION

1.1 Background

The Industrialised Building System (IBS) is a construction system that is built using prefabricated components that are systematically done using dedicated machine, formworks and special jointing mechanism.

IBS offers benefits to the adopters in term of cost and time, attaining better construction quality and productivity, reducing risk related to occupational safety and health, alleviating issue on unskilled workers and dependency on manual foreign labour and achieving ultimate goal of reducing overall cost of construction (Taherkhani, 2006).

Industrialised Building System (IBS) has proven that it can contribute many advantages in construction project. The Industrialised Building System (IBS) can reduce the number of unskilled and foreign workers on site. Its presence can increase cost and wastage in construction industry. In addition, IBS can make the time period of construction progress become shorter and it can be finished before or on tithe. The quality of the structural works can be guaranteed because the size and the dimensions of the components had been specified through the design. The safe environment
platform can be provided to the workers since the site is clean from the mess of construction tools, prevent the congested environment that full with too many workers and prevent social problems among the workers (Hassim, 2009).

There are five commended types of IBS, precast concrete system, steel frame system, block work system, timber frame system, system formwork (Taherkhani, 2006).

Reinforced concrete structures often are subject to change and improve the efficiency of their performance during her life in service. The main contributing factors are change in their use, new design standards, deterioration due to corrosion in the steel caused by exposure to an aggressive environment and accident at events such as earthquakes.

In such conditions there are two possible solutions: replacement or retrofitting. Full structure replacement might have carries some disadvantages such as high costs for material and labour, a bigger environmental impact and inconvenience due to interruption of the function of the structure. When possible, it is often better to repair or upgrade the structure by using retrofitting.

In this research an experimental investigations is carried out in two case of reinforced concrete IBS beams which previously has been tested to a complete failure. Each case consisting of two columns were in good condition with box steel plate for connection, and one beam with box steel plate in the ends to connect with the columns. Beams in each case where retrofit using external steel plate at the bottom soffit level of the beam and outer stirrup steel strap around the beam length to increase the strength capacity. This work is a study on the behaviour of retrofitted IBS beams that reloaded until the ultimate failure repeated.
1.2 Problem statement

In case of an earthquake in an area where constructions are composed of units IBS, it leads often to damage and destruction in buildings and leaving population from their homes. It’s very necessary to rebuild these buildings as soon possible. The re-construction of damage buildings certainly required more cost time and effort for re-design of these units.

Among the solutions are in this study is the having an IBS components to re-create, restoration and retrofitting of damaged parts such as beams in the site without transported to the factory but partially disassembly or us disassembly at all. Repair is perform using inexpensive materials, available and requires less time and effort beside re-manufacturing and construction.

1.3 Objective of the Study

The objectives of this study are:

1. To identify the opportunity to reclaim IBS strength of severely damaged IBS beams.

2. To identify new strength mechanism repaired IBS beams.

3. To carry out a test to determine the mechanism of failure of repaired IBS beams in laboratory environment.
1.4 Case Study

The case study is a full scaled to rally damaged IBS beams. The beam is repaired to regain flexural and shear strength parameters that affecting the ultimate strength of the retrofitted IBS beams.

1.5 Scope of Study

The scopes of study are the evaluation of

1. Mechanism of failure in cladding flexural and shear

2. Re strengthening instrumentation to restore original strength.

1.6 Significance of study

The study is to propose a better alternative for re-use the damage IBS building due to events such as earthquake risk minimal tooling on sites
REFERENCES

