PRODUCTION OF CYCLODEXTRIN GLUCANOTRANSFERASE FROM ALKALOPHILIC Bacillus sp. TS1-1 USING FED BATCH CULTURE

WAN SALWANIS WAN MD ZAIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical and Natural Resources Engineering
Universiti Teknologi Malaysia

NOVEMBER 2005
“Terima kasih Mami, kakak, abang, adik
dan semua yang terlibat secara langsung dan tidak langsung.
Ingatan yang berpanjangan dan Al-Fatihah untuk Allahyarham Daddy.”
ACKNOWLEDGEMENTS

Bismillahirrahmanirahim.

Firstly, I would like to express my sincerest thanks and appreciations to my supervisor, Associate Professor Dr. Rosli bin Md Illias and co-supervisor, Dr. Madiah binti Md Salleh for their continual professional advice, useful guidance, endless encouragement and support throughout the period in completing this research work.

I also would like to convey my appreciation and gratitude to all the laboratory staff of the Department of Bioprocess Engineering, UTM; Encik Yaakop, Encik Abdul Malek, Encik Muhammad and Puan Siti Zalita for their help and cooperation in providing assistance throughout the work.

My special thanks and gratitude is extended to my lab partners Rozaimi, Azmil, Kamalesh, Khairizal, Nadzarah, Roshanida, Wong, Rui Min, Naqiah, Goh, Chong Wai, Tiong, Chit Lai, Po Kim, Nadia, Amy, Rohaida and others for their support, understanding and friendship. Also not forgetting my ex-housemates (Syau, Ann, Sunet, Ilah, Naza, Azhana & Lin) for their understanding and moral support. I would also like to express my gratitude to Universiti Teknologi Malaysia for the facilities, opportunity as well as financial aid provided in pursuing this study.

My special thanks to my beloved family, especially to my mother for their prayers, patience, guidance and support. And last but not least, my gratitude to Allah S.W.T, Who has made everything possible according to His will.
ABSTRACT

The study of fed batch fermentation was carried out to enhance the production of CGTase from Bacillus sp. TS1-1. The microbes was grown in 2 %%(w/v) soluble starch, 1 %%(w/v) yeast extract, 0.1 %%(w/v) K$_2$HPO$_4$, 0.02 %%(w/v) MgSO$_4$.7H$_2$O and 10 %%(w/v) Na$_2$CO$_3$ solution. Batch fermentation was carried out as control using 5 L fermentor with 4 L working volume. A maximum CGTase activity of 70.32 U/ml was observed during the stationary phase of growth with specific activity of 0.198 U/µg proteins. The fed batch study was carried out to obtain the best feeding mode, carbon and nitrogen sources. Constant feed rate fed batch result gave the highest increment in CGTase production by 25.3% as compared to the batch fermentation. Tapioca starch at concentration of 2 %%(w/v) was selected as the best inducer for both CGTase and biomass production, where improvement of 35.6% and 25.7% was observed respectively, as compared to the batch fermentation. The addition of 0.5 %%(w/v) nitrogen source in the feeding medium failed to improve the CGTase production, but on the other hand increased the biomass significantly. An increment of 69.3% in terms of biomass production as opposed to batch fermentation was obtained with yeast extract. The optimization of carbon and nitrogen concentration using tapioca starch and yeast extract was carried out using Response Surface Methodology (RSM). The optimum condition obtained were 3.3 %%(w/v) of tapioca starch and 0.13 %%(w/v) of yeast extract. The optimized medium improved the CGTase production up to 13.9% as compared to batch fermentation. The production of CGTase in repeated fed batch fermentation using 2 %%(w/v) of tapioca starch was quite consistent even after the third addition of fresh medium with maximum activity fluctuating between 80 - 86 U/ml.
ABSTRAK

Kajian ke atas kaedah fermentasi suapan balik dijalankan untuk mengatasi had-had sekatan yang terdapat di dalam fermentasi berkelompok, seterusnya dapat meningkatkan lagi penghasilan siklodekstrin glukanotransferase (CGTase) daripada

Bacillus sp. TS1-1. Kultur inokulum dibiacakan di dalam medium yang mengandungi 2

%(b/i) kanji terlarut, 1 %(b/i) ekstrak yis, 0.1 %(b/i) K2HPO4, 0.02 %(b/i) MgSO4.7H2O
dan 10 %(b/i) stok larutan Na2CO3. Fermentasi berkelompok (kawalan) dijalankan menggunakan bioreaktor 5 L (isipadu kerja sebanyak 4 L), dan penghasilan CGTase yang maksimum (70.32 U/ml) diperolehi semasa pertumbuhan mula memasuki fasa pegun, dengan aktiviti spesifik sebanyak 0.198 U/µg. Proses penyaringan dijalankan untuk menentukan jenis suapan, sumber karbon dan sumber nitrogen. Suapan secara kadar tetap memberikan peningkatan maksimum aktiviti CGTase sebanyak 25.3% berbanding dengan penghasilan di dalam fermentasi berkelompok. Kanji ubi kayu berkepekatan 2 %(b/i) dipilih sebagai sumber karbon terbaik dengan peningkatan sebanyak 35.6% untuk CGTase dan 25.7% biomas berbanding dengan fermentasi kelompok. Penambahan 0.5 %%(b/i) sumber nitrogen di dalam medium suapan menurunkan aktiviti CGTase, namun begitu pertumbuhan bakteria ini adalah sangat menggalakkan. Ekstrak yis memberikan peningkatan terbaik iaitu sebanyak 69.3%. Proses pengoptimuman kepekatan sumber karbon (kanji ubi kayu) dan nitrogen (ekstrak yis) dijalankan menggunakan kaedah gerakbalas permukaan (RSM). Penghasilan CGTase yang optimum adalah menggunakan 3.3 %(b/i) kanji ubi kayu dan ekstrak yis pada 0.13 %(b/i). Penghasilan CGTase sebanyak 80.12 U/ml diperolehi dengan peningkatan sebanyak 13.9% berbanding penghasilan di dalam fermentasi berkelompok (70.32 U/ml). Keputusan daripada percubaan aplikasi suapan balik ulangan menggunakan medium 2 %(b/i) kanji ubi kayu pula menunjukkan penghasilan CGTase yang agak konsisten walaupun selepas 3 kali kitaran dengan aktiviti maksimum diantara 80 - 86 U/ml.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS / ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

INTRODUCTION

1.1 Introduction and Problem Statement 1
1.2 Objectives of Study 3
1.3 Scopes of Study 3
2 LITERATURE REVIEW

2.1 Starch as a Substrate for CGTase Production
 2.1.1 Structure and Properties of Starch 4
 2.1.2 Starch Processing Enzyme 7

2.2 Cyclodextrins
 2.2.1 Introduction 9
 2.2.2 Structure and Properties of Cyclodextrin 11
 2.2.3 Usage of Cyclodextrin 13
 2.2.3.1 Food and Flavours 13
 2.2.3.2 Cosmetics and Toiletries 13
 2.2.3.3 Pesticides 14
 2.2.3.4 Pharmaceuticals 14
 2.2.5 Production of Cyclodextrin 15
 2.2.5.1 Effect of Substrates on Cyclodextrin Production 15

2.3 Cyclodextrins Glucanotransferase (CGTase) 16
 2.3.1 Introduction 16
 2.3.2 Properties of CGTase 18
 2.3.3 Reaction Catalyzed by CGTae 19
 2.3.3.1 Cyclization 19
 2.3.3.2 Intermolecular Transglycosylation 19
 2.3.3.3 Hydrolysis 20
 2.3.3.4 Disproportionation Reaction 20
 2.3.4 Sources of CGTase 21

2.4 Fermentation 22
 2.4.1 Introduction of Fed Batch 24
 2.4.2 Production of CGTase 25
 2.4.2.1 Medium for Growth and CGTase Production 25
3 MATERIALS AND METHODS

3.1 Chemicals 43
3.2 Culture Conditions for CGTase Production 43
 3.2.1 Source of Bacillus sp. TS1-1 43
 3.2.2 Preparation of Cultivation Medium 44
 3.2.3 Preparation of Bacterial Inoculum 45
 3.2.4 Production of CGTase and Crude Enzyme Preparation
3.3 Fermentation 46
 3.3.1 Fermentor Set up 46
 3.3.2 Batch Fermentation 46
 3.3.3 Fed Batch Fermentation 48
 3.3.4 Repeated Fed Batch Fermentation 48
3.4 Effect of the Cultural Conditions on the
CGTase Production
3.4.1 Selection the Best Feeding Modes 49
3.4.2 Effect of Carbon Sources 49
3.4.3 Effect of the Carbon Source Concentration 50
3.4.4 Effect of Nitrogen Sources 50
3.4.5 Effect of Carbon and Nitrogen Concentration 51
3.4.6 Comparative Study of CGTase Production 51

3.5 Optimization Process 51
3.5.1 Experimental Design 51
3.5.2 Central Composite Design 52

3.6 Analysis Procedure 55
3.6.1 \(\beta \)-Cyclodextrin Forming Activity 55
3.6.2 Detrinizing Activity 55
3.6.3 Determination of Starch Concentration 56
3.6.4 Determination of Glucose Concentration 56
3.6.5 Determination of Biomass Concentration 57
3.6.6 Protein Content 57

4 RESULTS AND DISCUSSION

4.1 Batch Fermentation 59
4.2 Fed Batch Fermentation 63
4.2.1 Evaluation of Feeding Strategy on CGTase Production 63
4.2.2 Effect of Carbon Sources on CGTase Production in Fed Batch 67
Fermentation

4.2.3 Effect of Carbon Source Concentration

4.2.4 Effect of Nitrogen Sources on CGTase Production in Fed Batch Fermentation

4.3 Optimization of Carbon and Nitrogen Concentration for the Enhancement of CGTase Production by Fed Batch Fermentation Using Central Composite Design

4.3.1 Introduction

4.3.2 Analyses of Variance (ANOVA)

4.3.3 Experimental Design: Effect of Medium on CGTase Production

4.3.4 Interpretation of Data on Optimum GTase Production

4.3.5 Effect of Feeding Medium Composition on the CGTase Production

4.3.6 Effect of Feeding Medium Composition on the Biomass Production

4.3.7 Application of Optimized Condition of the Fed Batch Culture on CGTase Production

4.4 Production of CGTase by Repeated Fed Batch Fermentation

4.4.1 Repeated Fed Batch Culture in Optimized Medium

4.4.2 Repeated Fed Batch Culture in Tapioca Starch Medium
5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions 110
5.2 Recommendations 111

REFERENCES 113
APPENDICES 137
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Properties of several types of starch granules</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of amylose and amylopectin</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>A typical composition of moisture content, starch, fibre and protein in several starches</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Members of starch degrading enzyme from (\alpha)-amylase Family (family 13) of glycosyl hydrolase</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>The properties of cyclodextrins</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Characteristics of CGTase produced by various bacteria</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of CGTase production by various types of bacteria and fermentation medium in batch fermentation</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Production of cyclodextrin glucanotransferase in fed batch fermentation</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>Production of CGTase in continuous fermentation by wild strain</td>
<td>37</td>
</tr>
<tr>
<td>2.10a</td>
<td>Production of various enzymes by wild and recombinant organism using fed batch fermentation</td>
<td>40</td>
</tr>
<tr>
<td>2.10b</td>
<td>Production of various enzymes by wild and recombinant organism using fed batch fermentation</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>The equivalence of pH and the percentages of Na(_2)CO(_3) in the modified Horikoshi medium compositions</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>The actual and the coded values of the design variables for the optimization process in 5 L fermenter</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>The matrix of central composite design for optimization process</td>
<td>54</td>
</tr>
</tbody>
</table>
4.1 Effect of various feeding modes on the CGTase production
4.2 Effect of carbon sources on the CGTase production in fed batch culture
4.3 Effect of the starch concentrations in the feeding medium on CGTase and biomass production
4.4 Effect of organic and inorganic nitrogen sources on the CGTase production from Bacillus sp. TS1-1 during fed batch fermentation
4.5 The actual and coded values of the design variables for the optimization process.
4.6 Experimental design layout using CCD. CGTase activity and the maximum biomass concentration of each run were chosen as responses
4.7 Analysis of variance (ANOVA) for optimization of C/N ratio in order to enhance the CGTase production in fed batch fermentation
4.8 Coefficient estimates of variable for optimization in fed batch fermentation (CGTase activity)
4.9 Value for the each coefficient obtained from ANOVA
4.10 The actual and predicted values of CGTase activity
4.11 Effect of carbon and nitrogen concentration in the feeding medium on the CGTase production
4.12 Comparative performance between batch and optimized condition of fed batch culture
4.13 Repeated fed batch fermentation using optimized medium and 2 %(w/v) of tapioca starch
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The structure of amylose</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>The structure of amylopectin</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Action of enzymes involved in the degradation of starch</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>The structures of α-, β- and γ-cyclodextrins</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>The three-dimensional structures of cyclodextrins</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>The three-dimensional structure of CGTase</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic representation of reaction catalyzed by CGTases</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Fermentor set-up for fermentation system</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Time course of CGTase production by Bacillus sp. TS1-1 in batch fermentation</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Graph of $1/X \frac{dP}{dt}$ vs $1/X \frac{dX}{dt}$</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>CGTase activity and biomass concentration for different feeding rate using exponential feeding mode in fed batch fermentation</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Time course of CGTase production by Bacillus sp. TS1-1 in fed batch fermentation (constant rate) fed with 2 % (w/v) tapioca starch</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Time course of CGTase production by Bacillus sp. TS1-1 in fed batch fermentation (constant rate) fed with glucose</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Hypothesis test for polynomial model in CGTase production</td>
<td>84</td>
</tr>
<tr>
<td>Section No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.7</td>
<td>Graph of predicted versus actual values of CGTase activity from Design Expert</td>
<td>88</td>
</tr>
<tr>
<td>4.8</td>
<td>Normal plot of residual for the optimization of CGTase production</td>
<td>90</td>
</tr>
<tr>
<td>4.9</td>
<td>Residuals versus predicted values of CGTase activity</td>
<td>90</td>
</tr>
<tr>
<td>4.10</td>
<td>The two-dimensional response surface for the CGTase production of Bacillus sp. TS1-1</td>
<td>91</td>
</tr>
<tr>
<td>4.11</td>
<td>The three-dimensional presentation of the response surface for the CGTase activity of Bacillus sp. TS1-1</td>
<td>93</td>
</tr>
<tr>
<td>4.12</td>
<td>The three-dimensional presentation of the response surface for the biomass production of Bacillus sp. TS1-1</td>
<td>96</td>
</tr>
<tr>
<td>4.13</td>
<td>Time course of CGTase production by Bacillus sp. TS1-1 in fed batch fermentation using optimized medium</td>
<td>100</td>
</tr>
<tr>
<td>4.14</td>
<td>Starch consumption, pH and glucose concentration profiles of Bacillus sp. TS1-1 grown in optimized condition of fed batch culture</td>
<td>101</td>
</tr>
<tr>
<td>4.15</td>
<td>Time course for CGTase production from Bacillus sp. TS1-1 in repeated fed batch fermentation using optimized medium and 2 %(w/v) tapioca starch</td>
<td>109</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS/ABBREVIATIONS

CCD - Central composite design
CD - Cyclodextrin
CGTase - Cyclodextrin glucanotransferase
D - Dilution rate
DO - Dissolved oxygen
F - Flowrate
g - Gram
H - Height
H_0 - Null hypothesis
H_1 - Alternative hypothesis
hr^{-1} - Per hour
hr - Hour
L - Liter
M - Molar
mg - Miligram
min - Minutes
ml - Milliliter
mM - Milimolar
nm - Nanometer
S - Substrate concentration
S_0 - Initial substrate concentration
R^2 - Regression coefficient
RSM - Response surface methodology
rpm - Round per minute
t - Time
T - Temperature
U - Unit (enzyme activity)
V - Volume
V₀ - Initial volume
v/v - Volume per volume
W - Width
w/v - Weight per volume
Xₘₐₓ - Maximum biomass concentration
μm - Micrometer
μg - Microgram
μ - Specific growth
Å - Angstrom
°C - Degree Celsius
% - Percentage
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Materials and Methods</td>
<td>133</td>
</tr>
<tr>
<td>B</td>
<td>Experiment Data</td>
<td>141</td>
</tr>
<tr>
<td>C</td>
<td>Statistical Experiment Design</td>
<td>147</td>
</tr>
<tr>
<td>D</td>
<td>Statistical Experimental Designs</td>
<td>153</td>
</tr>
<tr>
<td>E</td>
<td>Publications</td>
<td>158</td>
</tr>
</tbody>
</table>
1.1 Introduction and Problem Statement

Microbial extra cellular enzymes are responsible for much of the polymeric organic matter cycling. Diversity of substrates, environments, and organisms has led to the evolution of a prolific variety of enzymes. Amongst the amylases, α-amylase was long thought to be the only bacterial starch-degrading enzyme. At present, it had been discovered, that there were endo and exo-acting amylases with and without α-(1,6) debranching activity with every imaginable optimum temperature and pH. This diversity had fuelled the enzyme industry for the past few decades and still provides sufficient novel enzyme to justify further screening (Priest, 1992). One of the important extra cellular enzymes in biotechnology is called cyclodextrin glucanotransferase (CGTase), which is capable of synthesizing a unique product called cyclodextrin (CD).

CGTase is known to have been produced by various genera of bacteria such as Bacillus, Klebsiella, Psuedomonas, Brevibacterium, Thermoanaerobacterium, Corynebacterium, Micrococcus and many more. All known CGTases produced a mixture of α-, β- and γ-cyclodextrins and their proportion being characteristic of the individual enzymes. CGTase producers can be found in various places such as soil, waste, plantation, hot springs and even deep-sea mud (Georganta et al., 1993). Some known CGTase producers are Bacillus macerans (Kim et al., 2000), Bacillus circulans (Bovetto et al., 1992), Bacillus firmus (Goel and Nene, 1995), Bacillus
stearothermophilus (Kabaivanova et al., 1992), Bacillus coagulans (Akimaru et al., 1991) and Klebsiella pneumonia (Gawande and Patkar., 2001).

The production of CGTase is normally carried out as batch and fed-batch processes or variations of these procedures. Several authors have reported that CGTase production was highly dependent on strain, medium composition and culture conditions. Very little information has been obtained regarding CGTase production using fed batch culture (Chen et al., 1994; Park et al., 1997 and Gawande et al., 2003). Most papers focused on CGTase production in fed batch fermentation using the recombinant organism. Journals reviewing the wild strain or novel-producing enzymes are very scarce. Fed batch culture is used to remove the repressive effects of rapidly utilized carbon sources, reduce the viscosity of the medium and the effect of toxic medium constituents or simply to extend the product formation stage of the process for as long as possible. The fed batch method has also been used to improve the phycocyanin production (Zhang and Chen, 1997), protease from Bacillus sphaericus (Singh et al., 2004), recombinant β-1,3-glucanase (Shene et al., 1999) biomass of Spirulina platensis (Alberto et al., 2003), polysaccharide and ganoderic acid from Ganoderma lucidum (Tang and Zhong., 2002), polysialic acid (Xiaobei et al., 2002) and xylitol from from Bacillus licheniformis (Yoon et al., 2000).

The main purpose of this work is to explore the potential of fed-batch culture as a fermentation system for CGTase production that is produced by an alkalophilic bacteria, Bacillus sp TS1-1. The effect of various parameters, e.g. types of culture, nutrients and concentration of substrates on the kinetic aspects of fermentation, were also studied.
1.2 Objectives of Study

The objective of this research is to enhance the production of CGTase from *Bacillus* sp. TS1-1 in batch, fed batch and repeated fed batch fermentation. Besides that, the effects of various carbon and nitrogen sources and C/N ratio in the feed stream on the CGTase production were also studied.

1.3 Scopes of Study

The scope of the research consists of four parts:

i) To evaluate the feeding controlled strategy for the fed batch fermentation in order to find the best feeding mode that produce the highest CGTase yield.

ii) To investigate the best carbon and nitrogen sources that give the highest increment for CGTase production.

iii) To optimize the of carbon and nitrogen concentration in the feed medium to give the maximum CGTase production using Central Composite Design.

iv) To carry out a comparative study of CGTase production in batch, fed batch and repeated fed batch fermentation.
can be extended in the future in order to diversify the use of the species economically. Several recommendations on the studies are listed below:

1. β-cyclodextrin which has been found to be dominantly produced by CGTase from *Bacillus* sp.TS1-1 using only the crude enzyme has given new dimensions to explore and study on the bioconversion of cyclodextrins.

2. Cloning and expression of CGTase gene from *Bacillus* sp.TSI-1 can also improve the CGTase production. The study should help to understand the characters of the recombinant and mechanisms involved through modeling of the CGTase structure. Besides, the modification of the genetic structure of the bacteria is expected to give a high yield of CGTase. Furthermore, the mutanation of the specific gene also helps to improve the product of interest and this can be studied through various methods.

3. The production of CGTase by novel *Bacillus* sp. TSI-1 in fermenter has been applied using batch and fed batch systems. Therefore, other types of fermentation principles such as continuous fermentation and immobilized cell system can be applied in order to increase the production of CGTase.

4. The characters of CGTase can be further studied in the section of purification processes. The isolation of one particular protein from other contaminating proteins may stimulate the studies of its structure and other properties. Once a suitable cellular source of the protein has been identified, the protein is liberated into the solution and separated from the contaminating material by sequential use of a series of different fractionation techniques or separations. Full characterization of the purified CGTase will be expected to give the increment of the CGTase production.
REFERENCES

Kim, S.W., Kang, S.W. and Lee, J.S. (1997). Cellulase and Xylanase Production by

From Milled Corn Starch in an Ultrafiltration Membrane Bioreactor.
Biotechnology and Bioengineering. 41: 88-94.

Unliquefied Cornstarch Using Cyclodextrin Glycosyltransferase in a Membrane

Corn Strach Without a Pretreatment. Enzyme Microbial Technology. 20: 506-509.

Moderately Heat Treated Cornstarch. Enzyme and Microbial Technology. 7: 1057-
1061.

Cyclodextrin Glycosyltransferase from the Strain of Bacillus sp. Journal of
Agricultural Biology Chemistry. 38(2): 387-393.

Bacillus megaterium Strain No. 5 on Starch. Agriculture, Biology and Chemistry.
38: 2413-2417.

Bacillus ohbensis and its Optimum pH Using HPLC. Journal of Agricultural and
Biological Chemistry. 49(4): 1189-1191.

subtilis ToC46 (pFF1) for the Recombinant β-1,3-Glucanase: Experimental Study
and Modelling. Enzyme Microbial Technology. 24: 247-254

Synthesis of a Recombinant β-1,4-Endoglucanase in Continuous and Fed Batch
Culture. Enzyme Microbial Technology. 27: 248-253

Fed-Batch System by Moretierrella alpina ATCC 32222. Applied Microbiol
Biotechnology. 48:1-5.

by Bacillus sphaericus Using Fed-Batch Culture. Process Biochemistry. 33(9): 1093-
1101

Production of Cellulolytic and Xylanolytic Enzyme by the Rumen Anaerobic Fungus,
Neocallimastix frontalis in a Repeated Batch Culture. Journal of Bioscience and
Bioengineering. 91(2):153-158

