DEVELOPMENT OF INTAKE SYSTEM FOR IMPROVEMENT
OF PERFORMANCE OF COMPRESSED NATURAL GAS
SPARK IGNITION ENGINE

MARDANI

A Thesis submitted in fulfilment of
The requirements for the award of the degree of
Doctor of Philosophy of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

OCTOBER 2004
“For my wife Siti Oniah and all of my children Abang Harits, Mba’ Tazkia, Abang Asad, Mba’ Qonita, Mba’ Azimah, Mba’ Raina and my little baby Adib, jazakumullahu khairan kasiro. May Allah Ta’ala always bless us…”
ACKNOWLEDGEMENTS

The author likes to express his heartiest gratitude to Dr. Rosli Abu Bakar, for his guidance, help and critical examination on this thesis. The author also wishes to express his thanks to Assoc. Prof. Dr. Azhar Abdul Aziz and Prof. Dr. Awaluddin Mohd Shaharoun for their invaluable suggestion during discussion of engine performance and thesis framework.

Thanks to my colleagues: Sin Kwan Leong, Ismail Ali, Low Kean Ann, Tn. Hj. Norizan Mansur, Hazree and Nizham for their helps. Gratitude are also conveyed to Mr. Sairaji, Mr. Tn. Hj. Abdul Wahab, Mr. M. Mazlin, Mr. Hishamuddin and Mr. Subki from Automotive laboratory.

The author would also like to thank the Coordinator of the Post Graduate Studies, at the Faculty of Mechanical Engineering and to others members of the faculty for their direct and indirect assistances and invaluable suggestion on this thesis. Finally, special thanks to the author’s ‘family’ in Malaysia for their great help and pray during this study to complete this thesis.

Thanks to Almighty Allah Ta’ala for His guidance and help.

Mardani bin Ali Sera
ABSTRACT

The improvement of flow strategy was implemented in the intake system of the engine to produce better Compressed Natural Gas engine performance. Three components were studied, designed, simulated, developed, tested and validated in this research. The components are: the mixer, swirl device and fuel cooler device. The three components were installed to produce pressurised turbulent flow with higher fuel volume in the intake system, which is ideal condition for Compressed Natural Gas (CNG) fuelled engine. A combination of experimental work with simulation technique were carried out. The work included design and fabrication of the engine test rig; the CNG fuel cooling system; fitting of instrumentation and measurement system for the performance testing of both gasoline and CNG modes. The simulation work was utilised to design appropriate mixer and swirl device. The flow test rig, known as the steady state flow rig (SSFR) was constructed to validate the simulation results. Then the investigation of the effect of these components on the CNG engine performance was carried out. A venturi-inlet holes mixer with three variables: number of inlet hole (8, 12 and 16); the inlet angles (30°, 40°, 50° and 60°) and the outlet angles (20°, 30°, 40° and 50°) were studied. The swirl-device with number of revolution and the plane angle variables were also studied. The CNG fuel cooling system with the ability to control water flow rate and the coolant temperature was installed. In this study it was found that the mixer and swirl-device improved the swirl ratio and pressure condition inside the intake manifold. The installation of the mixer, swirl device and CNG fuel cooling system had successfully increased 5.5%, 5% and 3% of CNG engine performance respectively compared to that of existing operating condition. The overall results proved that there is a high potential of this mixer and swirl device method in increasing the CNG engine performance. The overall improvement on engine performance of power and torque was about 11% and 13% compared to the original mixer.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
</tr>
<tr>
<td>LITS OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td></td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
</tr>
<tr>
<td>1.2</td>
<td>The Statement of the Problem</td>
</tr>
<tr>
<td>1.3</td>
<td>The Objective of the Study</td>
</tr>
<tr>
<td>1.4</td>
<td>The Scope of The Research</td>
</tr>
<tr>
<td>1.5</td>
<td>The Research Methodology</td>
</tr>
<tr>
<td>1.6</td>
<td>Thesis Organisation</td>
</tr>
</tbody>
</table>
2 LITERATURE REVIEW

2.1 Introduction 8
2.2 The Internal Combustion Engine 8
2.3 CNG as an Alternative Fuel 11
2.4 The Potential of Compressed Natural Gas (CNG) as Automotive Fuel 13
2.5 The CNG Engine Research 17
2.6 The Fuel Intake System 25
 2.6.1 The CNG Mixer 25
 2.6.2 Swirl Device 28
 2.6.3 CNG Fuel Cooling System 33

3 MIXER AND SWIRL DEVICE DESIGN

3.1 Introduction 34
3.2 Mixer Testing 34
 3.2.1 Engine Performance Test 37
 3.2.2 Intake system Test Results 39
3.3 The Selected Design of Mixer 42
3.4 Simulation of Selected Mixer 44
3.5 Results and Discussions 50
 3.5.1 Effect of Inlet Angles 50
 3.5.2 Effect of Number of Inlet Holes 58
 3.5.3 Effect of Outlet Angles 67
3.6 Swirl Device 78

4 THE EXPERIMENTAL VALIDATION OF MIXER

4.1 Introduction 81
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Flowchart of Validation Process</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>The Methodology</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Transparent Mixer</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>The Steady State Flow Test Rig (SSFR)</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>SSFR Measurement System</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>Flow Visualisation Method</td>
<td>88</td>
</tr>
<tr>
<td>4.8</td>
<td>Flow Characteristics Test</td>
<td>90</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Flow Measurement Procedures</td>
<td>90</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Mixture Visualisation</td>
<td>92</td>
</tr>
<tr>
<td>4.9</td>
<td>Results and Discussions</td>
<td>92</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Flow Profiles</td>
<td>92</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Number of Holes</td>
<td>95</td>
</tr>
<tr>
<td>4.9.3</td>
<td>The Discharge Coefficient and Swirl Ratio</td>
<td>97</td>
</tr>
<tr>
<td>4.9.4</td>
<td>Flow Visualisation</td>
<td>99</td>
</tr>
<tr>
<td>4.10</td>
<td>The Selected Mixer Design</td>
<td>102</td>
</tr>
<tr>
<td>4.11</td>
<td>Swirl Device</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>CNG FUEL COOLING SYSTEM</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>108</td>
</tr>
<tr>
<td>5.2</td>
<td>The Cooling System</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Temperature and Thermal Load Measurements</td>
<td>109</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental Procedures for CNG Cooling System</td>
<td>110</td>
</tr>
<tr>
<td>5.5</td>
<td>Results and Discussions</td>
<td>111</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Temperature Profiles</td>
<td>111</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Fuel Temperature Effect on Engine Performance</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>THE METHODOLOGY AND INSTRUMENTATIONS OF ENGINE PERFORMANCE TESTS</td>
<td></td>
</tr>
</tbody>
</table>
6.1 Introduction 118
6.2 Testing Apparatus 118
 6.2.1 The Engine Test Bed 118
 6.2.2 Intake system Test Rig 122
6.3 Instrumentations 122
 6.3.1 Data Acquisition System 123
 6.3.2 Pressure Transducer 127
 6.3.3 Mass Flowmeter 129
 6.3.4 Exhaust Gas Analyser 131
6.4 Experimental Procedures 132
 6.4.1 JIS for Road Vehicle 132
 6.4.2 Engine Performance Test 133
 6.4.3 Torque, Power and Specific Fuel Consumption Measurement 134
 6.4.4 In-Cylinder Pressure Measurements 136
 6.4.5 Air Fuel Ratio Measurement 138

7 RESULTS AND DISCUSSIONS ON CNG ENGINE PERFORMANCE

7.1 Introduction 139
7.2 Original Gasoline and CNG Fuelled Engine Performance 139
 7.2.1 Power and Torque 140
 7.2.2 Fuel Consumption 141
 7.2.3 Pressure-Crank Angle Profiles 149
 7.2.4 Pressure-Volume Diagrams 154
 7.2.5 Effect of Air Fuel Ratio 158
 7.2.6 Rate of Heat Release (ROHR) Profiles 159
 7.2.7 Exhaust Emissions Analysis 162
7.3 Effect of New Mixer on CNG Fuelled Engine Performances 164
7.3.1 Engine Performance 164
7.3.2 Pressure Rise Profiles 165
7.3.3 Indicator Diagrams Profiles 168
7.3.4 Rate of Heat Release Profiles 170

7.4 Effect of Swirl Device 171
7.4.1 Engine Performance 171
7.4.2 Pressure Profiles 172
7.4.3 Indicator Diagrams Profiles 174
7.4.4 Rate of Heat Release Profiles 176

7.5 Effect of CNG Fuel Cooling System 178
7.5.1 Engine Performance 178
7.5.2 Pressure Rise Profiles 179
7.5.3 Indicator Diagrams Profiles 181

7.6 Effect of Advanced Intake System 183
7.6.1 Effect of Advanced Intake System
 On Engine Performance 183
7.6.2 Specific Fuel Consumption 184
7.6.3 Pressure Profiles 187
7.6.4 Indicator Diagrams Profiles 189
7.6.5 Rate of Heat Release Profiles 191

7.7 Quantification, Benefits and Cost 192

8 CONCLUSIONS AND RECOMMENDATION
8.1 Conclusions 194
8.2 Recommendations 195

REFERENCES 196

APPENDICES 207
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO. FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Methodology Flowchart</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>The CNG Engine Research Map (Rosli abu Bakar et al., 2001c)</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Engine Design Considerations (Rosli abu Bakar et al., 2001c)</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Variable Venturi Mixer (IMPCO, 1998)</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Fan Type Mixer (Rosli abu Bakar et al., 2002b)</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Intake with Multi Inlet Holes</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Volumetric Efficiency at Different Engine Speeds (Pukrabek, 1997)</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>A Swirl Device to Create Turbulent</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Intake Port without Swirl Device</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Intake Port with Swirl Device</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Side View of Intake Port with Swirl Device around The Intake Valve</td>
<td>32</td>
</tr>
<tr>
<td>2.11</td>
<td>Intake Temperature Profiles for 1.6L EFI Engine</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Venturi-Type Mixer</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Intake Holes-type Mixer</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Pressure Rise Profile</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Torque Test Results</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Power Test Results</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Tapped Location for Pressure and Velocities Measurements</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Velocity Profile at Intake System</td>
<td>41</td>
</tr>
<tr>
<td>3.8</td>
<td>Pressure Profile at the Intake System</td>
<td>42</td>
</tr>
<tr>
<td>3.9</td>
<td>STAR-CD Display for Mixer Simulation</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>Mixer Simulation Flowchart</td>
<td>47</td>
</tr>
<tr>
<td>3.11</td>
<td>Side View of the Mixer</td>
<td>48</td>
</tr>
</tbody>
</table>
3.2 Isometric Drawing of Mixer Assembly
3.3 Element of Transparent Mixer and Burner
3.4 Closer Look at the Inlet Section of Mixer
3.5 The Whole Display of Transparent Mixer
3.6 Schematic Diagram of Complete SSFR
3.7 Smoke Density and Smoke Generator
3.8 Effect of Outlet Angles with Varies Inlet Angles on Velocity
3.9 Effect of Outlet Angles with Varies Inlet Angles on Pressure Differences
4.10 Effect of Outlet Angles with Varies Inlet Angles on Swirl Number
3.11 Effect of Number of Holes on Velocity Profiles
3.12 Effect of Number of Holes on Pressure Differences
3.13 Effect of Number of Holes on Swirl Number
3.14 Discharge Coefficient for Different Blower Speeds
3.15 Swirl Ratio for Different Engine Speeds
3.16 Front View Smoke Flow Concentration for Different Combination
4.17 Side View Smoke Flow Concentration for Different Combination
3.18 Side View Smoke Flow at 15 litre per minute
3.19 Aluminium Mixer
3.20 Plastic Mixer
3.21 Swirl Device Instalment Position in the Valve Seat of SSFR
3.22 Swirl Number Produced by Swirl Device
3.23 Swirl Ratio for Mixer and Swirl Device
3.24 Swirl Device and Intake Runner Position
3.25 Two Types of Swirl Devices
5.1 Schematic Diagram of the CNG Fuel Cooling System
5.2 Coolant Temperature Profile for all Speeds
5.3 Oil Temperature Profile for All Speeds
5.4 Exhaust Temperature Profile for All Speeds
5.5 Temperature Profiles at Inner and Outer Cylinder Block
5.6 Fuel Temperature Profiles for All Engine Speeds
5.7 Thermal Load Profile for All Engine Speeds
6.1 The Pent-Roof Type Combustion Chamber and Piston
6.2 Element of CNG Conversion Kit
6.3 Schematic Diagram of the Test Rig Facilities
6.4 Pressure and Velocity Measurement in the Intake System
6.5 Intake System Lay Out
6.6 Schematic Diagram of a Principle PC-based DAQ System
6.7 Schematic Diagram of DAQ System Parts
6.8 Basic Formula of Pressure Rise and Temperature Measurement System
6.9 Display of Monitoring Format of the Program
6.10 Pressure and Engine Speed Data
6.11 The Transducer Hole Position in Cylinder No. 1
6.12 Gas Flowmeter Readout in LPM
7.1 Indicator Diagram for CNG and Gasoline
7.2 Specific Fuel Consumption Profile for CNG at Different Loads
7.3 Specific Fuel Consumption Profile for Gasoline at Different Loads
7.4 Specific Fuel Consumption Profile for CNG and Gasoline
7.5 Specific Fuel Consumption versus Power for Gasoline
7.6 Specific Fuel Consumption versus Power for CNG
7.7 Specific Fuel Consumption versus Power for Gasoline and CNG
7.8 Thermal Efficiency for Gasoline and CNG
7.9 Pressure Rise Profile for CNG and Gasoline
7.10 Gasoline Operation Pressure Rise Profile at Different Load
7.11 CNG Fuelled Pressure Rise Profile at Different Load
7.12 Gasoline Fuelled Pressure Rise Profile at Engine Speeds
7.13 CNG Fuelled Pressure Rise Profile at Engine Speeds
7.14 The p-V Diagram of Gasoline and CNG at WOT
7.15 The p-V Diagram of Gasoline at 3500 rpm for Different Loads
7.16 The p-V Diagram of CNG at 3500 rpm for Different Load
7.17 The p-V Diagram of CNG at Different Speeds
7.18 The p-V Diagram of Gasoline at Different Speeds
7.19 CNG Fuelled Pressure Rise Profile at Air Fuel Ratio
7.20 Effect of Air Fuel Ratio on CNG Fuelled Indicator Diagram
7.21 The ROHR Profile of Gasoline and CNG
7.22 Effect of Different Loads on the Gasoline ROHR Profile
7.23 Effect of Different Loads on the CNG ROHR Profile
7.24 Effect of Engine Speeds on the Gasoline ROHR Profile
7.25 Effect of Engine Speeds on the CNG ROHR Profile
7.26 Effect of Engine Speeds on Emission of Carbon Monoxide
7.27 Emission of Carbon Dioxide versus Engine Speeds
7.28 Emission of Hydrocarbon versus Engine Speeds
7.29 Effect of New Mixer on Torque Profile for CNG
7.30 Effect of New Mixer on Pressure Rise
7.31 Effect of New Mixer on Pressure Rise at Different Loads
7.32 Effect of Engine Speeds on CNG Pressure Rise Profile
7.33 Effect of New Mixer on CNG Net Indicated Work
7.34 Effect of Engine Speeds on CNG Indicator Diagram
7.35 Effect of New Mixer on CNG ROHR Profile
7.36 Effect of Engine Speeds on CNG ROHR Profile
7.37 Effect of Swirl on CNG Engine Performance
7.38 Effect of Swirl on Pressure Profile
7.39 Effect of Different Loads on CNG Pressure Profile
7.40 Effect of Swirl Device on Pressure Profile for All Engine Speeds
7.41 Effect of Swirl on CNG Indicator Diagram Profile
7.42 Effect of Different Speeds on CNG ROHR Profile
7.43 Effect of Swirl Device on CNG ROHR Profile
7.44 Effect of Swirl Device at Different Loads on CNG ROHR Profile
7.45 Effect of Swirl Device for all Engine Speeds on CNG ROHR Profile
7.46 Effect of Fuel Cooler on Power of CNG Engine
7.47 Effect of Fuel Cooler on Torque of CNG Engine
7.48 Effect of Fuel Cooling System on the Pressure Profile
7.49 Effect of Engine Speeds on the Pressure Profile 180
7.50 Effect of Different Loads on the Pressure Profile 181
7.51 Effect of Fuel Cooling System on Indicator Diagram 182
7.52 Effect of Fuel Cooler on the Work Produced 182
7.53 Effect of Advanced Intake System on Power 183
7.54 Effect of Advanced Intake System on Torque 184
7.55 Effect of Advanced Intake System on Specific Fuel Consumption 185
7.56 Effect of Advanced Intake System on Specific Fuel Consumption against Power 186
7.57 Effect of Advanced Intake System on Thermal Efficiency 186
7.58 Effect of Advanced Intake System on Pressure Rise Profile 187
7.59 Effect of Advanced Intake System on Pressure Rise at Different Loads 188
7.60 Effect of Advanced Intake System on Pressure Rise at Different Speeds 188
7.61 Effect of Advanced Intake System on Indicator Diagram 189
7.62 Effect of Advanced Intake System on Indicator Diagram at Different Loads 190
7.63 Effect of Advanced Intake System on Indicator Diagram at Different Speeds 190
7.64 Effect of Advanced Intake System on ROHR Profile 191
7.65 Effect of Advanced Intake System on ROHR Profile at Different Loads 191
7.66 The Effect of Advanced Intake System on ROHR Profile At Various Speeds 192
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO. TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Technological Options for Improving Vehicle Fuel Economy</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(DeCicco, J., 1999)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Factors Affecting the Suitability of an Alternative Fuel</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(Stratton, 1996)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Dennis Dart Fuel Requirements for Various Alternative Fuel</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(Stratton, 1996)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Natural Gas Characteristics</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Petronas CNG Properties (Petronas, 2000)</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Petronas CNG Composition (Petronas, 2000)</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Emissions Reduction by CNG Compared to Gasoline and Diesel (Gorman, 2003)</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Methane and Gasoline Characteristics</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(Guibet and Faure-Birchem, 1999)</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Fuel Price</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Properties of Air</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Mechanical Properties of Brass (Juizt and Eduad Ed., 1987)</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>The Measurement System used in the SFFR</td>
<td>88</td>
</tr>
<tr>
<td>3.3</td>
<td>Air Consumption for Various Engine Speeds</td>
<td>91</td>
</tr>
<tr>
<td>3.4</td>
<td>Discharge Coefficient for Different Blower Speeds</td>
<td>97</td>
</tr>
<tr>
<td>3.5</td>
<td>Swirl Ratio at Different Air Flow rate</td>
<td>98</td>
</tr>
<tr>
<td>3.5</td>
<td>Effect of Swirl Device on Swirl Ratio at Different Air Flow rate</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Temperature Code and Its Location</td>
<td>111</td>
</tr>
<tr>
<td>6.1</td>
<td>Engine Specification</td>
<td>119</td>
</tr>
<tr>
<td>6.2</td>
<td>6041A Kistler Piezoelectric Pressure Transducer Specification</td>
<td>128</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.3</td>
<td>822S Top-Trak Mass Flowmeter Specification (Sierra, 2000)</td>
<td>130</td>
</tr>
<tr>
<td>7.1</td>
<td>CNG Fuel Consumption in GLE</td>
<td>142</td>
</tr>
<tr>
<td>7.2</td>
<td>CNG Specific Fuel Consumption</td>
<td>142</td>
</tr>
<tr>
<td>7.3</td>
<td>Thermal Efficiency of CNG Operation</td>
<td>143</td>
</tr>
<tr>
<td>7.4</td>
<td>Gasoline Fuel Consumption</td>
<td>143</td>
</tr>
<tr>
<td>7.5</td>
<td>Thermal Efficiency of Gasoline</td>
<td>143</td>
</tr>
<tr>
<td>7.6</td>
<td>MAP at Different Engine Speeds (in bar)</td>
<td>149</td>
</tr>
<tr>
<td>7.7</td>
<td>Initial Investment to Convert Gasoline to CNG Vehicle (SUTP, 2000)</td>
<td>193</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>Mixer Drawings</td>
<td>207</td>
</tr>
<tr>
<td>B</td>
<td>Fuel Properties</td>
<td>219</td>
</tr>
<tr>
<td>C</td>
<td>Flow Visualisation</td>
<td>225</td>
</tr>
<tr>
<td>D</td>
<td>Thermodynamic Analysis of the Engine</td>
<td>228</td>
</tr>
<tr>
<td>E</td>
<td>Uncertainty Estimation</td>
<td>236</td>
</tr>
<tr>
<td>F</td>
<td>Published Papers</td>
<td>243</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

The strategy to implement alternative fuels in internal combustion engines is becoming the subjects of interest nowadays. The reasons are driven by two factors: the environmental effects and the energy independence from petroleum based fuel. With more than one billion vehicles around the world, vehicle pollution is becoming the most significant source of air pollution (Freidman et al., 2000). The World Health Organisation (WHO) estimated that approximately 460,000 people die prematurely each year as a result of exposure to particulate matter in the air (Walsh, 1999). Moreover, the air pollution also contributes to negative health impacts such as respiratory symptoms, chronic bronchitis, asthma exacerbation and the deficit in growth of lung function (Garcia, 2001). Kunzi et al. (2000) has calculated as much as €360 (equal to RM 1,612)/person/year should be spent as a health cost due to air pollution.

Malaysia, as one of the developing countries, has to deal with this problem too. The situation may even be worst if we consider the following facts that potentially related to air pollution. By the year 2002, 434,954 new vehicles were sold (EON, 2003), making Malaysia on the top of the list compared to other ASEAN countries for four consecutive years. This situation occurs where Kuala Lumpur has already exceed the World Health Organization guidelines in particulate and sulphur dioxide concentration, i.e. exceeding in the value of 119 micrograms/m3 of particulate and 24 micrograms/m3 of sulphur dioxide concentration (APEC
Secretariat, 2000). In addition, the ratio of 129 vehicles per 1,000 people in Malaysia is a strong signal to find a better solution systematically.

From these facts, the priority is to find the solution for a cleaner, affordable and better quality of alternative fuels. Among the alternative fuels, Compressed Natural gas (CNG) has been recognized as one of the promising alternative fuel due to its substantial benefits compared to gasoline and diesel. However, the number of vehicle powered by this alternative fuel is still small compared to the number of the conventional vehicle that powered by gasoline and diesel. In the case of gaseous engine, from 5.5 millions – only one million used CNG and the rest used LPG (Vitale, 1998).

The challenge is not only in the technology aspect but also in the economic aspect. In technological aspect, although most of the alternative fuel engine produced less power, some cars manufacturers had successfully manufactured the commercial alternative fuel vehicle. For example, Honda Civic 1.6 with advanced engine technology has produced even higher engine output based on CNG compared to that of gasoline (Nylun and Lawson, 2000).

The problem is that this high performance engine is generated through massive modification in the engine features, especially in the combustion chamber. In the case of Honda (Suga et al., 1997) and Toyota (Kato et al., 1999), the compression ratio, valve seats and also intake valve timing were modified. This implicate on the high cost that has to be spent, either by car manufacturers or the consumers. Therefore, a simpler and a cheaper method to encourage consumers using the CNG fuelled vehicle will be a great contribution to the society.

Up to now, the improvement on CNG engine performance concentrated on the combustion process. By introducing turbulent flow and modified combustion chambers proved to reduce combustion duration due to improve burning rates (Zhang and Hill, 1996), (Evan et al., 1996) and improve rate of heat release during the main combustion period (Johansson and Olsson, 1995). Adding hydrogen into the CNG/air mixture will also improve the burning rate (Swain et al., 1993). Higher compression ratio recommended in CNG fuelled vehicle (Kato et al., 1999). However, Duan
(1996) concluded that low volumetric efficiency is one of the factor that cause drop the CNG engine performance.

It has also known that the inlet port design and the intake manifold configuration has a direct influence on engine performance and emissions (Blaxill, 1999). Based on this fact, the intake process may give a great contribution toward increasing the CNG engine performance. This study considers the novel design of the intake system as economical devices without major modification. The alteration in the intake system is much simpler and cheaper compared to that of modification on combustion chamber.

World Energy Council (Edward, 1998) predicts that Malaysia and Japan each could have 200,000 natural gas vehicles (NGVs) by 2000. However, this estimation was not reached. Data from IANGV (2003) exposed that the quantity NGV’s was only 7,700, compared to more than 12 millions vehicles registered in Malaysia (Mustaffa, 2003). One of the reasons of this low percentage is that the car buyers need easier way in converting conventional fuel system into CNG fuel system with less modification. Hence, this design may fulfil the requirements, as it does not need to do major modification to convert their conventional fuel engine to that of CNG fuel.

1.2 The Statement of the Problem

This study is aiming at improving the CNG engine performance by implementing the pressurised turbulent flow. The pressurised flow will increase volume of the fuel and the volumetric efficiency and the turbulent increase the flame speed. To promote this condition during intake process, an advanced intake system consisting of a mixer and swirled-device together with the cooling system for CNG fuel was designed and developed in this study.
1.3 **The Objective of the Study**

The objective of this study is to improve the CNG engine performance up to that of gasoline through the implementation of a modified CNG engine intake system. This advanced system was based on a new mixer and swirled-device that implement pressurised and turbulent flow together with a new cooling system for CNG fuel.

1.4 **The Scope of the Research**

The study was carried out based on the following scopes:

1. To determine the factors affecting the pressurised and turbulent flow in the intake process
2. To design and fabricate the mixer and swirl devices suitable for the pressurised and turbulent parameter
3. To design and fabricate the cooling system for CNG fuel
4. To simulate the mixer and the designed swirl devices
5. To test the recommended design of mixer and swirl devices
6. To build the rig for engine testing
7. To set up the measurement and the data acquisition system
8. To test and analyse the engine performance fitted with the new design of intake system

1.5 **The Research Methodology**

The approach of this research was based on the philosophy of adding small, useful and economical devices with the combination of flow principle management without major modification of the intake system. Figure 1.1 showed the methodology flowchart of this research, which combined experimental method with simulation tools.
Figure 1.1 Methodology Flowchart
The literature review concentrated on the state of art of the CNG fuel and engine research. The problem-solution map of the CNG fuelled engine research was then developed. The next step was divided into two parts: the experimental works; and design and simulation processes. Experimental part included designed and fabricated the engine testing experimental rig and CNG fuel cooling system; instrumentation of the measurement system and running the engine performance test for both gasoline and CNG mode. The validation flow rig test bed, known as steady state flow rig test (SSFR) was then constructed.

Simultaneously, the design and simulation steps were initiated. The CNG mixer was designed, simulated and then analysed. The Star CD software with the finite volume method with SIMPLE algorithm used in this simulation process. Moreover, the swirl device was then designed based on variable geometrical computation. The recommended mixer and swirl were then fabricated. Subsequently, a series of recommended mixer and swirl-device were validated in the SSFR. The final recommended design was then fabricated and introduced into the intake system.

1.6 Thesis Organisation

Chapter 2 presents a literature review of the state of the arts effort relating to advanced intake system for optimum CNG fuelled engine performance. Beginning with the automotive trends in implementing alternative fuels, a problem-map solution in the CNG engine technology was demonstrated. The literature on the flow management in the intake system as a tool to improve the CNG engine performance was elaborated. The factors affecting the development of the optimum mixer and swirl device were reported.

Chapter 3 describes the approach on designing the mixer and swirl device. Starting from the design and with testing the mixers, then analysing the results. The simulation stage was then proceed.
Chapter 4 explains the validation of mixer design. Experimental results on effect of various inlet and outlet angles and number of holes on the specified parameters were presented and discussed.

Chapter 5 depicts a validation process of the mixer and swirl device. Description on the Steady State Flow Rig (SSFR) and the procedures on validating process are presented. The visualisation results were also examined. The operational process of the cooling system for CNG fuel was also explained. The technique in characterised the CNG engine temperature profiles was also presented. The results was then analysed in term of heat rejection to coolant.

Chapter 6 sets up a comprehensive coverage on the methodology to perform an advanced intake system. Detail of experimental design, procedures and instrumentations were demonstrated. Depiction on the data acquisition system with its sensor and its software were also provided.

Chapter 7 demonstrated the results and discussion on the effect of advanced intake system on the engine performance. The indicator diagram, pressure rise inside the cylinder and the ROHR were analysed for various combination of mixer and swirl device.

Chapter 8 is the general conclusions and a description of suggestion for future research.
reduced operational cost on the vehicle. As much of RM 4,306 per year can be saved through implementation of the CNG system.

In the overall, the study has provided a simpler, cheaper and effective alternative to improve the CNG engine performance.

8.2 Recommendations

The advanced intake system in this study can be further improved by focusing on the swirl device that can create turbulent without blocking the air passage into the combustion chamber. A combination studies on intake and combustion system in the CNG engine is a possible option that has potential to further improve CNG engine performance.
REFERENCES

