EFFECT OF SYNTHESIS PARAMETERS ON STRUCTURAL AND MORPHOLOGICAL PROPERTIES OF NANOCRystALLINE BISMUTH PHOSPHORUS OXIDE MATERIALS

HARTINI BINTI KHAIRI OSMAN

UNIVERSITI TEKNOLOGI MALAYSIA
EFFECT OF SYNTHESIS PARAMETERS ON STRUCTURAL AND MORPHOLOGICAL PROPERTIES OF NANOCRYSTALLINE BISMUTH PHOSPHORUS OXIDE MATERIALS

HARTINI BINTI KHAIRI OSMAN

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

AUGUST 2013
ACKNOWLEDGEMENT

First and foremost, all praise to be Allah S.W.T., the Almighty, the Benevolent for Allah S.W.T. blessing and guidance for giving me the inspiration to embark this work and instilling me the strength to complete my master research as well as this thesis. Many people have contributed and tough me during the period of this research as well as to the creation and completion of this thesis. I would like to express my gratitude to all who have helped me in one way to another in the research and writing of this thesis.

I especially indebted and grateful to my research supervisor and co-supervisor, Dr. Lee Siew Ling and Dr. Hendrik Oktendy Lintang for their guidance, support, patience, comments, and suggestions, it helped me a lot in my research and thesis writing. I would also like to extend my appreciation to Catalytic Science and Technology (CST) group lecturer, Prof. Dr. Hadi Nur, Dr. Dwi Gustiono, Dr. Leny Yuliati, Dr. Jon Effendi, and Dr. Zainab Ramli for also their comments and suggestions during this research. Not forgotten, the staff of Ibnu Sina Institute (IIS), especially to En. Mohamed Mohd. Salleh, En. Wan Faizal Wan Ahmad, En. Nazri Nawi, and Mrs. Nur Azleena Kasiran for their contribution and facilitate too.

I would also like to express my thanks to the staffs of Faculty of Science, En. Hanan, En. Azidy, Mrs. Suhani, and En. Yasin for their helped. Thanks also to all the lectures from Faculty of Science especially to PM. Dr. Zaiton Abd. Majid that has giving me useful and valuable ideas. On top of that, special thanks to PM. Dr. Mansor Ahmad, Chemistry Program Chairman of Faculty of Science, UPM for allowing me to run ICP analysis and surface area and pore distribution analyses at Faculty of Science, UPM, and also to Ms. Nurhidayu and Mrs. Rusnani, Assistant Science Officer of Faculty of Science, UPM for spending time to run both the ICP
and surface area and pore size distribution analyses. Special thanks also to Mr. Giorgio Schileo, post graduate student of Dr. Antonio Feteira from School of Chemistry, University of Birmingham, UK for times and ideas regarding this research.

Besides, not to be forgotten, my beloved labmates, Jamilah Ekhsan, Yong Shih Ween, Koh Pei Wen, Syafreena Attan, Surya Lubis, Umar Nizar, Syamsi Aini, and Hidayah Ran, for the fully support and helped to during these two years research. Last but not least, a very special thanks to my parents, Hajjah Habsah bt. Jaafar and Haji Khairi Osman b. Omar for their unending support and love. Not forgotten, to my family and friends as well. All of your contribution and support in completing this research so as this thesis are truly appreciated. Thank you so much.
ABSTRACT

Bismuth phosphorus oxide (BPO) has attracted much attention due to its various applications such as catalysts, photocatalysts, ionic conductors, and metal ion sensors. This material is usually produced via solid state reaction, hydrothermal synthesis, and ball milling which are associated with long reaction time, high synthesis temperature, and microsized products. Thus, an attempt was carried out in this research to synthesize nanocrystalline BPO using a relatively simple hot injection method at low reaction temperature. Bismuth acetate and calcium phosphide were used as precursors of bismuth and phosphorus, respectively. Phosphorus precursor reacted with 4 M hydrochloric acid (HCl) to generate phosphine (PH$_3$) gas which later reacted with bismuth precursor in a mixture of 1-octadecene (ODE) and myristic acid (MA). Several parameters in synthesis condition including reaction temperature, type of reaction solvent, ratio of stabilizer (MA) to reaction solvent (ODE), amount of reaction solvent, reaction time, and ageing time were investigated. X-ray diffraction (XRD) results suggested that single phase BPO material with high crystallinity was obtained at reaction temperature 180°C with reaction time of 30 minutes and ratio of MA:ODE of 1:90. The XRD pattern of this material was best fitted with that of reported Bi$_{3.69}$P$_{0.31}$O$_{6.31}$ (PDF 2010:43-0455), implying formation of face centered cubic (FCC) phase with lattice parameter $a = 0.5416$ nm. This FCC phase was in good agreement with transmission electron microscopy (TEM) analysis with average lattice fringes spacing of 0.337 nm. As evidenced, TEM and XRD results showed that particle size of the materials were in range of 10 to 20 nm. These materials are interesting as they have an ordered lamellar structure with both large meso and macro pores, indicating the formation of porous structure between the layers of BPO materials. In conclusion, nanocrystalline BPO was successfully synthesized via hot injection method for the first time.
ABSTRAK

Bismut fosforus oksida (BPO) telah menarik banyak perhatian kerana ia boleh digunakan sebagai pemangkin, foto pemangkin, konduktor ionik, dan pengesan ion logam. Bahan ini biasanya dihasilkan melalui tindak balas keadaan pepejal, sintesis hidroterma, dan kaedah pengisaran bebola yang sering dikaitkan dengan masa tindak balas yang panjang, suhu tindak balas yang tinggi, dan penghasilan produk bersaiz mikro. Oleh itu, suatu usaha telah dijalankan dalam kajian ini untuk mensintesis BPO berhablur nano dengan menggunakan kaedah suntikan panas yang mudah pada suhu tindak balas yang rendah. Bismut asetat dan kalsium fosfida masing-masing telah digunakan sebagai bahan pelopor bismut dan fosforus. Bahan pelopor fosforus telah bertindak balas dengan 4 M asid hidroklorik (HCl) untuk menghasilkan gas fosfin (PH₃) yang kemudiannya bertindak balas dengan bahan pelopor bismut di dalam campuran 1-oktadekena (ODE) dan asid miristik (MA). Beberapa parameter sintesis termasuk suhu tindak balas, jenis pelarut, nisbah penstabil (MA) kepada pelarut (ODE), isipadu pelarut, masa tindak balas, dan masa penuaan telah disiasat. Keputusan pembelauan sinar-X (XRD) mencadangkan BPO berfasa tunggal dengan darjah penghabluran tinggi telah diperoleh pada suhu 180°C dengan masa tindak balas 30 minit dan nisbah MA:ODE bernilai 1:90. Bahan ini sepadan dengan Bi₃.69P₀.₃₁O₆.₃₁ yang telah dilaporkan (PDF 2010:43-0455), mencadangkan pembentukan fasa kiub berpusat muka (FCC) dengan kekisi malar, \(a = 0.5416\) nm. Fasa FCC ini disokong oleh analisis mikroskop penghantaran elektron (TEM) dengan jarak pinggir kekisi berpurata 0.337 nm. Seperti yang dibuktikan, keputusan TEM dan XRD menunjukkan saiz zarah bahan adalah di antara 10 hingga 20 nm. Bahan ini menarik kerana mengandungi struktur lamela yang tersusun dengan liang meso yang besar berserta makro, menunjukkan pembentukan BPO yang berliang. Kesimpulannya, bahan berhablur nano BPO telah berjaya disintesis melalui kaedah suntikan panas untuk kali pertama.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
<td></td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**

1.1 Background of the Study
1.2 Problem Statement
1.3 Objectives of the Study
1.4 Scope of the Study
1.5 Significance of the Study

2 **LITERATURE REVIEW**

2.1 Nanomaterial
2.1.1 Types of Nanomaterial and Their Properties
2.1.2 Nanosized Material versus Bulk Sized Material
2.2 Lamellar Structured Materials
2.2.1 Role of Surfactant in Forming Ordered Lamellar Structure

2.3 Bismuth Phosphate Materials

2.3.1 Applications of Bismuth Phosphate Materials

2.3.2 Preparation Methods of Bismuth Phosphate Materials

2.4 Hot Injection Method

2.4.1 Materials Prepared via Hot Injection Method

2.4.2 Parameters in Hot Injection Method

3 RESEARCH METHODOLOGY

3.1 Research Outline

3.2 Chemicals

3.3 Synthesis of Bismuth Phosphorus Oxide

3.4 Investigation on Parameters in Synthesis Condition

3.4.1 Reaction Temperature

3.4.2 Types of Reaction Solvent

3.4.3 Ratio of Stabilizer (MA) to Reaction Solvent (ODE)

3.4.4 Amount of Reaction Solvent

3.4.5 Reaction Time

3.4.6 Ageing Time

3.5 Characterization of Bismuth Phosphorus Oxide

3.5.1 X-ray Diffraction (XRD)

3.5.2 Transmission Electron Microscopy (TEM)

3.5.3 Field Emission Scanning Electron Microscopy (FESEM)
3.5.4 Energy Dispersive X-ray (EDX) Analysis
3.5.5 Surface Area and Pore Size Distribution Analyses
3.5.6 Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES)

4 RESULTS AND DISCUSSION

4.1 Synthesis and Characterization of Nanocrystalline Bismuth Phosphorus Oxide Materials

4.2 Effect of Reaction Temperature
 4.2.1 Physical Appearance
 4.2.2 X-Ray Diffraction Analysis
 4.2.3 TEM Analysis
 4.2.4 FESEM Analysis
 4.2.5 EDX Analysis
 4.2.6 Surface Area and Pore Size Distribution Analyses
 4.2.7 ICP-OES Analysis

4.3 Effect of Reaction Solvent
 4.3.1 Physical Appearance
 4.3.2 X-Ray Diffraction Analysis
 4.3.3 TEM Analysis
 4.3.4 FESEM Analysis
 4.3.5 EDX Analysis

4.4 Effect of Stabilizer (MA) to Reaction Solvent (ODE) Ratio
 4.4.1 Physical Appearance
 4.4.2 X-Ray Diffraction Analysis
 4.4.3 TEM Analysis
 4.4.4 FESEM Analysis
4.4.5 EDX Analysis 92
4.5 Effect of Reaction Solvent Amount 92
 4.5.1 Physical Appearance 92
 4.5.2 X-Ray Diffraction Analysis 93
 4.5.3 FESEM Analysis 98
 4.5.4 EDX Analysis 99
4.6 Effect of Reaction Time 99
 4.6.1 Physical Appearance 100
 4.6.2 X-Ray Diffraction Analysis 100
 4.6.3 FESEM Analysis 106
 4.6.4 EDX Analysis 108
4.7 Effect of Ageing Time 109
 4.7.1 Physical Appearance 109
 4.7.2 X-Ray Diffraction Analysis 109
 4.7.3 FESEM Analysis 114
 4.7.4 EDX Analysis 115

5 CONCLUSION 116
 5.1 Conclusion 116
 5.2 Recommendations 117

REFERENCES 118
APPENDICES 134
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of nanomaterial</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Different properties of materials in their bulk and nanosizes</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>The preparation method and application of some reported lamellar structured materials</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Bismuth phosphate materials and their applications</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Preparation methods in synthesizing bismuth phosphate materials</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Studied parameters in synthesis condition of hot injection method</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Crystallite size of BPO materials synthesized at different reaction temperatures</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Ratios of peak intensities at 2θ=2.4° and 4.5° of synthesized BPO materials at different reaction temperatures</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Elemental analysis of synthesized single and mixed phase of BPO samples</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Crystallite size of synthesized BPO materials using different reaction solvents</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Ratios of peak intensities at 2θ=27.5° and 41.2° as well as 32.8° and 41.2° of BPO-MA:ODE-5:90 and BPO-MA:ODE-7:90 for phase purity determination</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>Crystallite size of the BPO materials synthesized using different MA:ODE ratios</td>
<td>83</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.7</td>
<td>Crystallite size of BPO materials synthesized using different ODE amount</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Ratios of peak intensities at $2\theta=32.8^\circ$ and 47.2° of all synthesized BPO materials at different reaction times</td>
<td>102</td>
</tr>
<tr>
<td>4.9</td>
<td>Crystallite size of the BPO materials synthesized at different reaction times</td>
<td>104</td>
</tr>
<tr>
<td>4.10</td>
<td>Crystallite size of BPO materials synthesized at different ageing times</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Illustrations of (a) micelle in aqueous solution and (b) reverse micelle in non-aqueous solution</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Illustration of schematic diagrams of inorganic-surfactant lamellar: (a) homogenous solution of inorganic species and surfactant molecules, (b) reverse micelle of surfactant molecules with inorganic species that aggregate, (c) assemble of the reverse micelle into lamellar structure, and (d) removal of surfactant and attainment of ordered layered lamellar inorganic material</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental set-up of hot injection method</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>X-ray diffractograms of BPO materials synthesized at different reaction temperatures (a) BPO-RT-130, (b) BPO-RT-140, (c) BPO-RT-150, (d) BPO-RT-160, (e) BPO-RT-170, (f) BPO-RT-180, (g) BPO-RT-190, (h) BPO-RT-200, and (i) BPO-RT-210</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Wide angle X-ray diffractograms of BPO materials synthesized at different reaction temperatures (a) BPO-RT-130, (b) BPO-RT-140, (c) BPO-RT-150, (d) BPO-RT-160, (e) BPO-RT-170, (f) BPO-RT-180, (g) BPO-RT-190, (h) BPO-RT-200, (i) BPO-RT-210, and (j) matching with the reported Bi${3.69}$P${0.31}$O$_{6.31}$ (PDF 2010:43-0455)</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>Small angle X-ray diffractograms of BPO materials synthesized at different reaction temperatures (a)</td>
<td></td>
</tr>
</tbody>
</table>
BPO-RT-130, (b) BPO-RT-140, (c) BPO-RT-150, (d) BPO-RT-160, (e) BPO-RT-170, (f) BPO-RT-180, (g) BPO-RT-190, (h) BPO-RT-200, and (i) BPO-RT-210

4.4 TEM images of synthesized BPO-RT-130 under magnification of (a) 100 k and (b) 1 million with measured crystallites size

4.5 TEM images of synthesized BPO-RT-130 of (a) selected particle and (b) its electron diffraction pattern

4.6 TEM images of synthesized BPO-RT-180 under magnification of (a) 100 k and (b) 800 k with measured crystallites size

4.7 TEM images of synthesized BPO-RT-180 with (a) selected particle (b) its electron diffraction pattern and (c) its inverse electron diffraction pattern with measured lattice fringes spacing

4.8 TEM images of synthesized BPO-RT-200 under magnification of (a) 100 k and (b) 1 million with measured crystallites size

4.9 TEM images of synthesized BPO-RT-200 with (a) selected particle, (b) its electron diffraction pattern, (c) magnification of electron diffraction pattern, and (d) measured lattice fringes spacing

4.10 Hexagonal particle shape of synthesized BPO materials (a) BPO-RT-130, (b) BPO-RT-180, and (c) BPO-RT-200 with their crystallographic planes

4.11 Schematic presentation of the whole mechanism for the formation of lamellar BPO materials; (a) addition of reaction solvent of ODE and MA, (b) aggregate (micelle) formation from homogeneous solution of ODE and MA, (c) addition of Bi precursor and self-assemble of Bi precursor into
lamellar, (d) P precursor added and covalent bonding of Bi and P precursor formed, and (e) removal of ODE+MA by washing using EtOH
(Note: ▲ = Bi precursor, ▲ ▲ ▲ ▲ ▲ = P precursor, ▲ ▲ ▲ ▲ ▲ = surfactant (MA), and ▲ ▲ ▲ ▲ ▲ = reaction solvent (ODE))

4.12 Schematic diagram of lamellar structure formation in BPO materials: (a) single particle of BP material with hexagonal particle shape and face centered cubic (FCC) crystalline phase and (b-d) formation of ordered lamellar structure

4.13 TEM images of synthesized BPO materials with uniform particle size

4.14 TEM images of synthesized BPO materials with non-uniform particle size

4.15 Schematic diagram of Ostwald ripening effect of the synthesized BPO materials; (a) single particle BPO materials, (b) dissolution of less stable small particles in the solution, (c) reposition into larger particle, (d) attainment of small and large particles, (e) formation of BPO material in various particle size, and (f) TEM images of synthesized BPO material

4.16 FESEM micrographs of BPO materials synthesized at different reaction temperatures (a) BPO-RT-130, (b) BPO-RT-140, (c) BPO-RT-150, (d) BPO-RT-160, (e) BPO-RT-170, (f) BPO-RT-180, (g) BPO-RT-190, (h) BPO-RT-200, and (i) BPO-RT-210

4.17 FESEM micrographs showing formation of lamellar structures in single phase BPO materials synthesized at reaction temperature of (a) 170 °C, (b) 180 °C, and (c) illustration of ordered lamellar structure
4.18 Adsorption-desorption isotherm plot of single phase BPO-RT-180 63
4.19 BJH desorption dV/dlog(W) pore volume of BPO-RT-180 64
4.20 Illustration of the lamellar structured BPO materials with large meso and macropores (in red oval shape) formation resulted from non-uniform slit shape 65
4.21 X-ray diffractograms of BPO materials synthesized using different reaction solvents (a) BPO-RS-DDE(12), (b) BPO-RS-TDE(14), (c) BPO-RS-HDE(16), and (d) BPO-RS-ODE(18) 68
4.22 Wide angle X-ray diffractograms of BPO materials synthesized using different reaction solvents (a) BPO-RS-DDE(12), (b) BPO-RS-TDE(14), (c) BPO-RS-HDE(16), (d) BPO-RSO-ODE(18), and (e) matching with the reported Bi$_{3.69}$P$_{0.31}$O$_{6.31}$ (PDF 2010:43-0455) 70
4.23 Small angle X-ray diffractograms of BPO materials synthesized using different reaction solvents (a) BPO-RS-DDE(12), (b) BPO-RS-TDE(14), (c) BPO-RS-HDE(16), and (d) BPO-RS-ODE(18) 72
4.24 TEM images of BPO-RS-DDE(12) under magnification of (a) 100 k and (b) 800 k with measured crystallites size 74
4.25 TEM images of BPO-RS-DDE(12) with (a) selected particle (b) its electron diffraction pattern, and (c) its inverse electron diffraction pattern with measured lattice fringes spacing 75
4.26 FESEM micrographs of BPO materials synthesized using different reaction solvents (a) BPO-RS-DDE(12), (b) BPO-RS-TDE(14), (c) BPO-RS-HDE(16), and (d) BPO-RS-ODE(18) 77
X-ray diffractograms of synthesized BPO materials using different MA:ODE molar ratios (a) BPO-MA:ODE-0:90, (b) BPO-MA:ODE-0.5:90, (c) BPO-MA:ODE-1:90, (d) BPO-MA:ODE-3:90, (e) BPO-MA:ODE-5:90, and (f) BPO-MA:ODE-7:90

Wide angle X-ray diffractograms of BPO materials synthesized using different MA:ODE molar ratios (a) BPO-MA:ODE-0:90, (b) BPO-MA:ODE-0.5:90, (c) BPO-MA:ODE-1:90, (d) BPO-MA:ODE-3:90, (e) BPO-MA:ODE-5:90, (f) BPO-MA:ODE-7:90, and (g) matching with the reported Bi_{3.69}P_{0.31}O_{6.31} (PDF 2010:43-0455)

X-ray diffractogram of BPO-MA:ODE-0:90

Small angle X-ray diffractograms of synthesized BPO materials using different MA:ODE molar ratios (a) BPO-MA:ODE-0:90, (b) BPO-MA:ODE-0.5:90, (c) BPO-MA:ODE-1:90, (d) BPO-MA:ODE-3:90, (e) BPO-MA:ODE-5:90, and (f) BPO-MA:ODE-7:90

TEM images of synthesized BPO-MA:ODE-3:90 under magnification of (a) 100 k and (b) 800 k with measured crystallites size

TEM images of synthesized BPO-MA:ODE-3:90 with the selected area electron diffraction (SAED)

TEM images of synthesized BPO-MA:ODE-5:90 under magnification of (a) 100 k and (b) 800 k with measured crystallites size

The selected area electron diffraction (SAED) of mixed phase BPO-MA:ODE-5:90

FESEM micrographs of BPO materials synthesized using different MA:ODE molar ratios (a) BPO-MA:ODE-0:90, (b) BPO-MA:ODE-0.5:90, (c) BPO-MA:ODE-1:90, (d) BPO-MA:ODE-3:90, (e)
4.36 X-ray diffractograms of BPO materials synthesized using different ODE volumes (a) BPO-ODE-3, (b) BPO-ODE-13, (c) BPO-ODE-52, (d) BPO-ODE-78, (e) BPO-ODE-104, and (f) BPO-ODE-130

4.37 Wide angle X-ray diffractograms of synthesized BPO materials using different ODE volumes (a) BPO-ODE-3, (b) BPO-ODE-13, (c) BPO-ODE-52, (d) BPO-ODE-78, (e) BPO-ODE-104, (f) BPO-ODE-130, and (g) matching with the reported Bi$_{3.69}$P$_{0.31}$O$_{6.31}$ (PDF 2010:43-0455)

4.38 Small angle X-ray diffractograms of BPO materials synthesized using different ODE volumes (a) BPO-ODE-3, (b) BPO-ODE-13, (c) BPO-ODE-52, (d) BPO-ODE-78, (e) BPO-ODE-104, and (f) BPO-ODE-130

4.39 FESEM micrographs of BPO materials synthesized using different ODE volumes (a) BPO-ODE-3, (b) BPO-ODE-13, (c) BPO-ODE-52, (d) BPO-ODE-78, (e) BPO-ODE-104, and (f) BPO-ODE-130

4.40 X-ray diffractograms of BPO materials synthesized at different reaction times (a) BPO-RT-5, (b) BPO-RT-15, (c) BPO-RT-25, (d) BPO-RT-30, (e) BPO-RT-40, (f) BPO-RT-45, and (g) BPO-RT-60

4.41 Wide angle X-ray diffractograms of BPO materials synthesized at different reaction times (a) BPO-RT-5, (b) BPO-RT-15, (c) BPO-RT-25, (d) BPO-RT-30, (e) BPO-RT-40, (f) BPO-RT-45, (g) BPO-RT-60, and (h) matching with the reported Bi$_{3.69}$P$_{0.31}$O$_{6.31}$ (PDF 2010:43-0455)

4.42 Small angle X-ray diffractograms of BPO materials synthesized at different reaction times (a) BPO-
RTime-5, (b) BPO-RTime-15, (c) BPO-RTime-25, (d) BPO-RTime-30, (e) BPO-RTime-40, (f) BPO-RTime-45, and (g) BPO-RTime-60

4.43 FESEM micrographs of BPO materials synthesized at different reaction times (a) BPO-RTime-5 and (b) BPO-RTime-15 under low magnification

4.44 FESEM micrographs of BPO materials synthesized at different reaction times (a) BPO-RTime-5, (b) BPO-RTime-15, (c) BPO-RTime-25, (d) BPO-RTime-30, (e) BPO-RTime-40, (f) BPO-RTime-45, and (g) BPO-RTime-60

4.45 X-ray diffractograms of the BPO materials synthesized at different ageing times (a) BPO-AT-1, (b) BPO-AT-8, (c) BPO-AT-20, (d) BPO-AT-48, (e) BPO-AT-72, and (f) BPO-AT-168

4.46 Wide angle X-ray diffractograms of BPO materials synthesized at different ageing times (a) BPO-AT-1, (b) BPO-AT-8, (c) BPO-AT-20, (d) BPO-AT-48, (e) BPO-AT-72, (f) BPO-AT-168, and (g) matching with the reported Bi$_{3.69}$P$_{0.31}$O$_{6.31}$ (PDF 2010:43-0455)

4.47 Small angle X-ray diffractograms of BPO materials synthesized at different ageing times (a) BPO-AT-1, (b) BPO-AT-8, (c) BPO-AT-20, (d) BPO-AT-48, (e) BPO-AT-72, and (f) BPO-AT-168

4.48 FESEM micrographs of BPO materials synthesized at different ageing times (a) BPO-AT-1, (b) BPO-AT-8, (c) BPO-AT-20, (d) BPO-AT-48, (e) BPO-AT-72, and (f) BPO-AT-168
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPO</td>
<td>Bismuth phosphorus oxide</td>
</tr>
<tr>
<td>RT</td>
<td>Reaction temperature</td>
</tr>
<tr>
<td>RS</td>
<td>Reaction solvent</td>
</tr>
<tr>
<td>RTime</td>
<td>Reaction time</td>
</tr>
<tr>
<td>AT</td>
<td>Ageing time</td>
</tr>
<tr>
<td>ODE</td>
<td>1-octadecene</td>
</tr>
<tr>
<td>HDE</td>
<td>1-hexadecene</td>
</tr>
<tr>
<td>TDE</td>
<td>1-tetradecene</td>
</tr>
<tr>
<td>DDE</td>
<td>1-dodecane</td>
</tr>
<tr>
<td>MA</td>
<td>Myristic acid</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively couple plasma</td>
</tr>
<tr>
<td>PDF</td>
<td>Powder diffractogram file</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected area electron</td>
</tr>
<tr>
<td>FCC</td>
<td>Face centered cubic</td>
</tr>
<tr>
<td>BCC</td>
<td>Body centered cubic</td>
</tr>
<tr>
<td>etc.</td>
<td>Et cetera/and other things</td>
</tr>
<tr>
<td>e.g.</td>
<td>For example/such as</td>
</tr>
<tr>
<td>i.e.</td>
<td>Id est./that is/that is to</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>k</td>
<td>10^3</td>
</tr>
<tr>
<td>20</td>
<td>Bragg angle</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Research flow chart</td>
<td>134</td>
</tr>
<tr>
<td>B</td>
<td>PDF 2010 file number 43-0455</td>
<td>135</td>
</tr>
<tr>
<td>C</td>
<td>XRD pattern of BiP material reported by Allen et al. (1997)</td>
<td>136</td>
</tr>
<tr>
<td>D</td>
<td>EDX analysis of BPO materials synthesized at different reaction temperature</td>
<td>137</td>
</tr>
<tr>
<td>E</td>
<td>EDX analysis of BPO materials synthesized using different reaction solvent</td>
<td>142</td>
</tr>
<tr>
<td>F</td>
<td>EDX analysis of BPO materials synthesized using different MA:ODE ratios</td>
<td>144</td>
</tr>
<tr>
<td>G</td>
<td>EDX analysis of BPO materials synthesized using different ODE amount</td>
<td>147</td>
</tr>
<tr>
<td>H</td>
<td>EDX analysis of BPO materials synthesized at different reaction time</td>
<td>150</td>
</tr>
<tr>
<td>I</td>
<td>EDX analysis of BPO materials synthesized at different ageing time</td>
<td>154</td>
</tr>
<tr>
<td>J</td>
<td>List of publications</td>
<td>157</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Nanotechnology could be defined as an area of engineering of functional systems at a molecular scale. It covers both current works and concepts that are more advanced. Generally, nanotechnology deals with structures of size ranging 1-100 nanometers in at least one dimension. It also involves developing materials or devices within that particular size [1]. Besides, nanotechnology offers diverse research and applications ranging from extensions of conventional device physics to completely new approaches based on molecular self-assembly. In this era, nanotechnology is a rapidly progressing field in pharmaceuticals, sensors, semiconductors, etc. [2]. Recently, the applications of nanotechnology for advanced material, electronic, and medicine fields have been intensively studied to give enormous impact to mankind [2].

Research in nanotechnology for materials science has been focused on morphological features and unique properties at their nanoscale dimensions. One of the interesting topics is functional modifications of materials having not only different structures such as grains, particles, fibres, pores, crystals or other constituent components but also dimensional such as one-, two-, or three-dimension [3-4]. Usually, materials such as carbon nanotubes, zeolites, and metal oxides are having different physical and chemical properties from their bulk counterparts. Most of the nanostructured materials have high potential applications as drug carriers, catalysts, semiconductors, and electronic materials [5]. Moreover, the nanostructured
materials have shown different functions when their structures or dimensions are different from the bulk. For example, the lamellar structure of zinc oxide could extent its surface and interphases in order to retain semiconductor properties of the material [3].

Recently, lamellar nanostructured materials have been widely studied for the development of catalysts, photocatalysts, sensors, solar cells, photoelectrodes, optoelectronics, interconnectors, and nanoscale electronics [3, 6-8]. In general, the lamellar structured materials could be defined as a material with an ordered layered structure e.g. clay, graphite, tungsten disulfide, boron nitride, nickel oxide, and molybdenum sulfides [6, 9-10]. The structure is usually formed by self-assembly of organic surfactant with inorganic species to produce tubes, wires, and sheets structures [3, 6, 11-14]. These different kinds of lamellar structures can also be applied in other potential applications such as separation membranes, drug and gene delivery, etc. [11, 15].

Bismuth-based materials have been intensively investigated for their versatile applications as catalysts, photocatalysts, ionic conductors, metal ion sensors, and separating radioactive elements [16-19]. Up to the past decades, different crystal structures were reported such as monoclinic with monazite-type at low temperature and trigonal at high temperature using hydrothermal synthesis, ball milling synthesis, and chemical vapour deposition (CVD) process [16-20]. These various crystal structures would offer different properties making them useful for different applications. For instance, trigonal bismuth phosphate was used as a catalyst in several reactions [16, 21]. Meanwhile, the monoclinic crystal structure of bismuth phosphate is a potential candidate in ionic conductor field [22-23]. The formation and application of cubic type i.e. face centered cubic (FCC) and body centered cubic (BCC) of bismuth phosphate material, however, were rarely reported.

Nowadays, bismuth-based nanostructured materials have attracted particular attention for their potential applications as catalysts, semiconductors, sensors, optical, and electronic devises [16, 24-25]. The examples of these bismuth based nanostructured materials are bismuth vanadate, bismuth sulphide, bismuth titanate,
bismuth selenide, bismuth ferrite, and bismuth phosphate. In order to further enhance their performances, various types of nanostructured materials have been synthesized such as rods, tubes, plates, spheres, cocoons, flower-likes, and flakes [17-18, 26-27]. They were usually synthesized via solid state reaction, combustion technique, microwave irradiation, co-precipitation, etc. Similarly, nanostructured bismuth phosphorus oxide (BPO) materials have attracted attention due to low band gap that are useful in applications mentioned above [17]. Unfortunately, nanocrystalline BPO could not be obtained through the synthesis methods mentioned above. Moreover, there is no report on formation of nanocrystalline BPO with lamellar structure.

Recently, relatively new and economical method of hot injection has been successfully developed for the synthesis of monodisperse nanocrystals materials such as cadmium selenide (CdSe), cadmium sulphide (CdS), cadmium telluride and indium phosphide (InP) [28-31]. The method was based on injection of cold precursor into a hot solvent, resulting in nucleation burst of nanocrystals in the reaction solvent. It was found that this method has the advantage to separate nucleation and growth stage of synthesized materials, thus particle size of the materials could be easily controlled [30]. In this research, an attempt was carried out to synthesize nanocrystalline BPO materials with lamellar structure via hot injection method. Several parameters in synthesis condition were investigated in order to get the optimum condition for producing high quality nanocrystalline BPO materials.

1.2 Problem Statement

Nanocrystalline BPO material is a potential candidate for catalyst, photocatalyst, ionic conductor, ion sensor, humidity sensor, separating radioactive element, and modifier for electric properties improvement in phosphate glasses. It was reported that the lamellar layered geometry could enhance the effectiveness or efficiencies of the respective applications due to several unique properties e.g. larger surface area and interphases, hence it is challenging to synthesize nanocrystalline BPO with lamellar structure. However, there were limitations of using previous
methods such as inhomogeneous products, long reaction time, and high reaction temperature which subsequently lead to high cost in production. Obviously, the conventional synthesis methods such as hydrothermal synthesis, ball milling, and CVD process are not able to produce materials in lamellar structure.

Therefore, the hot injection method would be used for solving the above problems in order to produce nanocrystalline BPO with lamellar structure since it appears as a promising method in producing nanostructured materials. For this purpose, several parameters in synthesis condition such as reaction temperature, types of reaction solvent, ratio of stabilizer to reaction solvent, amount of reaction solvent, reaction time, and ageing time were investigated to study their effects on the synthesized nanocrystalline BPO materials.

1.3 Objectives of the Study

The objectives of the study were:

a. To synthesize and characterize nanocrystalline BPO materials via hot injection method.

b. To investigate effect of synthesis parameters on structural and morphological properties in producing high quality nanocrystalline BPO materials.

1.4 Scope of the Study

In this research, study was focused on synthesizing BPO nanocrystalline via hot injection method. The possibility to synthesize single phase material with high crystallinity and purity as well as the formation of lamellar structure via this method was explored. In addition, the effectiveness of this hot injection method for preparing good quality nanocrystalline BPO materials was also studied.
Some parameters in synthesis condition were investigated in order to study their effects on the properties of the resulted nanocrystalline BPO materials. These parameters included the reaction temperature, types of reaction solvent, ratio of stabilizer to reaction solvent, amount of reaction solvent, reaction time, and ageing time.

The characterization of synthesized materials was carried out to examine the structural and morphological properties of nanocrystalline BPO materials. In this research, several techniques of characterization were used, including X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) analysis, surface area and pore size analyses, and inductively coupled plasma-optometry emission spectrometry (ICP-OES).

1.5 Significance of the Study

In this research, the feasibility of synthesizing lamellar structured nanocrystalline BPO materials via hot injection method was investigated. This hot injection method could also be a potential route to prepare good quality nanocrystalline BPO materials in industry scale since this method requires shorter reaction duration and lower reaction temperature.

These BPO materials are potentially applied as semiconductor, ionic conductor, capacitor, catalyst, photocatalyst, separating radioactive elements, ion sensor, thermoelectric devises, etc. It is widely accepted that the performance of these materials could be further increased if they are in their nanoscale having ordered structure which provides them higher surface area and more active sites.
REFERENCES

17. Xue, F., Li, H., Zhu, Y., Xiong, S., Zhang, X., Wang, T., Liang, X. and Qian, Y. Solvothermal Synthesis and Photoluminescence Properties of BiPO₄

69. Adelhelm, P., Hu, Y. S., Chuenchom, L., Antonietti, M., Smarsly, B. M. and Maier, J. Generation of Hierarchical Meso- and Macroporous Carbon from

