ASSESSMENT OF WATER BALANCE APPROACH FOR DIFFERENT WATER SUPPLY CONDITIONS IN DAHUK DAM

MAHER HUSSAIN SOLAIMAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Hydraulics and Hydrology)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JUNE 2013
Specially dedicated to my beloved parents and teachers
ACKNOWLEDGEMENT

First of all, I would like to thank Almighty Allah for giving me strength, hope and health to go through all obstacles to complete this research successfully.

With a deep sense of gratitude, I would like to express my sincere thank to my supervisor Dr. Arien Heryansyah who has been offered invaluable assistant advice, guidance, constant support and high level of inspirations for me through the completion of this research. I have learned a lot from him and I am fortunate to have him as my mentor and supervisor.

My sincere appreciation goes to my mother and my wife for them love, support, kindship and care through these trying periods of my life. My studies also been very hard on them, as we have been far from each other, however, their continuous reassurance and optimism has helped me a lot in being achieve to the best of my ability.

My gratefulness goes to Mr. Bakhtiyar Ameen, Mr. Bahjat Ali, Mr. Jamil Jassim in General Directorate of Investment – Dahuk office, Mr. Karwan Bamarni in Dahuk Dam office, Mrs. Sondes Salima Solevanay in GDID and my sister Jowan Hussain in Dahuk University.

Acknowledgements would not be complete without thanking to my friends who directly or indirectly have been supporting me to step ahead in life.
Dahuk dam system is one of the Kurdistan-Iraq Government strategies to asset water supply. It is the main point for tourism and the only safe source to meet the needs of the city in difficult circumstances of water crisis between the countries of the region, Turkey, Iraq and Syria. In recent years it is observed that the dam is not fulfilling the water requirement of Dahuk city. Therefore water balance calculation of the dam system is needed to evaluate the real water problem. However water balance needs sufficient hydrologic data, which is not available in that region. Generation of sufficient hydrologic data over a long period is necessary before water balance. To ensure that the integrity of the data obtain from different sources, filling the missing data is ascertained, and regression analysis is carried out. Then water balance in Dahuk Dam will be used as an assessment for different conditions by using some scenarios and countermeasures. The Scenario setting is to select the best alternative to dam reservoir survival for mandatory water demand. By using 24 scenarios, it has been shown that the dam was unable to support water demand for irrigation purpose together with domestic water supply and tourism purpose. However by supply water from Khabour River and cancelling the irrigation project, the water level of the reservoir has been enhanced to meet up with the demand for domestic water supply, as shown on Scenario-10. Khabour water contribution should be the program priority to survive the reservoir’s goals in case of integrated water resource management at the Dahuk Dam System.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Study Area</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Problem Statement</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Study Objectives</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope of Study</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>LITRATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Scarcity of Global Water – An Imminent Crisis</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Importance of dams</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Reservoir Water Balance</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Boundaries of Water Balance</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Data Preparation</td>
<td>18</td>
</tr>
</tbody>
</table>
3.2 Research flow chart 19
3.3 The Equation of Water Balance 20
3.4 Inflow to the reservoir 20
3.5 Total Outflows 21
3.6 Water balance evaluation 22
3.7 Estimating Dahuk Dam Inflow 25
3.8 Surface Water Level Required in Reservoir 26
3.9 Converting inflow from nearby Watershed 27
3.10 Scenarios setting and analysis method 34

RESULT and DISSCUSSION
4.1 Data Generation 38
4.3 Reservoir Storage and Water Level 40
4.4 Rainfall in Dahuk Dam 41
4.5 Inflow to the Reservoir 42
4.6 Outflows from the Reservoir 44
4.7 Changes in the Water Storage 47
4.8 Analysis of Water Balance 48
4.9 Tourism's Surface Water Level and Reservoir Operations 49
4.10 Increase of Inflow Ratio 50
4.11 Scenario Analysis 54

CONCLUSION
5.1 Conclusion 58
5.2 Recommendations 59

REFERENCES

APPENDIX 65
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Dahuk Dam and Reservoir characteristics (GDID)</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Climatological information of Dahuk City (Shawkat, 2007)</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>The Bathymetry Survey</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>The monthly discharge at stream flow-gaging station IRQ_T2,</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>The Scenarios setting with Boundary conditions</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>The formation of Excel Software program for scenarios analysis</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Generation of data collection</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Regression Analysis Result between AWR-2007 and GDID</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Yearly inflows to Dahuk reservoir dam</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>The refined reservoir water balance of the Dahuk Dam</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Contributing Area for rainfall station in Khabour catchment area</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>Discharge from Khabour catchment area (Saleh, 2010)</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>The regression analysis for daily discharge of Khabour River</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Scenarios Analysis</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Location of Dahuk Dam</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Dahuk River catchment</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Location of Dahuk Reservoir</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Water shortage in different region</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Water exchanges during a reservoir operation</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of methodology</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>The schematic of water balance in Dahuk dam reservoir</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Khabour River Catchment area with the rainfall station</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Precipitation Data Recorded By GDID Zakho station</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Location of precipitation points according to the AWR-2007</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>Location of precipitation points</td>
<td>31</td>
</tr>
<tr>
<td>3.7</td>
<td>Shown number of rainfall stations inside Khabour River basin</td>
<td>32</td>
</tr>
<tr>
<td>3.8</td>
<td>The average high and low temperature for each month of the year</td>
<td>33</td>
</tr>
<tr>
<td>3.9</td>
<td>Flowchart of scenarios analysis by Excel Program</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>The relationship between the water level and the storage capacity</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>The relationship between the water level and the surface area</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Linear Regression Analysis at period 2000-2007</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Amount of rainfall in Dahuk dam Station from 1987 to 2012</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Yearly inflow to Dahuk Dam Reservoir</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Yearly withdrawals from Dahuk Dam Reservoir</td>
<td>45</td>
</tr>
<tr>
<td>4.7</td>
<td>The historical amount of inflow and Withdrawn Reservoir</td>
<td>45</td>
</tr>
<tr>
<td>4.8</td>
<td>The relationship between reservoir evaporation and reservoir surface</td>
<td>46</td>
</tr>
<tr>
<td>4.9</td>
<td>The period of spill of reservoir water to spillway</td>
<td>47</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>4.10 Times of the reservoir surface elevation that exceeded level of touristic.</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>4.11 Locations of rainfall stations inside the Khabour catchment area</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.12 The Thiessen polygon network in Khabour catchment area</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>4.13 Amount of precipitation depending to Thiessen polygon network</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>4.14 The discharge in Khabour River – Intake point</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>4.15 Surface of water in Dahuk Reservoir according to Scenario-10</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>5.1 Shown Surface of water in Dahuk Reservoir at 2012</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDID</td>
<td>General Directorate for Irrigation and Dam</td>
</tr>
<tr>
<td>DDR</td>
<td>Dahuk Dam’s Reservoir</td>
</tr>
<tr>
<td>DDC</td>
<td>Dahuk Dam’s Catchment</td>
</tr>
<tr>
<td>KRC</td>
<td>Khabour River’s catchment</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Monthly Rainfall According To AWR-2007</td>
<td>66</td>
</tr>
<tr>
<td>B</td>
<td>Monthly Rainfall in Dahuk Dam According GDID</td>
<td>71</td>
</tr>
<tr>
<td>C</td>
<td>Generate Rainfall Data from 1986 to 2000 by depending on AWR-2007 with using linear Regression in Excel program.</td>
<td>73</td>
</tr>
<tr>
<td>D</td>
<td>Shown Regression Analysis between GDID Rainfall Data and AWR-2007</td>
<td>79</td>
</tr>
<tr>
<td>E</td>
<td>Monthly Precipitation (mm) According to GDID in Khabour</td>
<td>82</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

On the surface of the earth the renewable of fresh water sources becomes irregular and it is limited to distribution in time and space. Despite the natural variation, humans contain to supply water from different locations by collecting it in more reliable and supply in constant range with reduce by various losses like evaporation and consumption. That system is called water storage or reservoir. Various water sources including groundwater, stream flow, rainfall, and/or snow are replaced by reservoir system (Tallaksen, 2004). The aim of water storage is to meet several goals such as reducing the risk of droughts and floods, hydropower, drinking supplies, irrigation, recreation and fishing (UNESCO, 2006). Although reservoirs and dams have the positive effect on more reliable supply as well as negative effects on ecosystem functions (Dynesius and Nilsson, 1994). Therefore a research on water balance are necessary to integrate the function of reservoir system on water supply and ecosystem.

1.2 Study Area

One of the Iraq Government strategies to asset water supply is Dahuk dam system. Geographically, the dam is located at Dahuk city - Kurdistan Region -north
Iraq near the Turkish border. In recent years, climate has changed from wet to dry, and the capacity of water storage in the dam reservoir has decreased, therefore; the quantity of water in dam reservoir is not sufficient for irrigation. As a reason, the government decided to exploit this reservoir for urban uses, touristic, and domestic in Dahuk city, ensuing cancelling the must irrigations project.

Since 1993, the Lake of Dahuk dam is one of the main sources of drinking for Dahuk city, in addition to Mosul’s dam lake, where water was pumped to Dahuk city. While Turkey started to build numerous dams in Tigris River that flew from Taurus Mountains (Turkey) to Iraq and reaches the Mosul dam (Ohara et al., 2011), as shown in Figure 1.1, the crisis began between the two countries, as a consequence the government understood that it cannot depend on Mosul Lake to reach exigency water to Dahuk city in the future, and it has to think of another solution.

![Figure 1.1: Location of Dahuk Dam](image)

The Dahuk River is located approximately 450 km far from Baghdad in Kurdistan Region north Iraq. The lower Dahuk River is regulated by Dahuk Dam 2 km in the north of Dahuk city. It was constructed mainly for supplying water to irrigate 4600 ha of the agriculture area. Other purposes are: Fishing and tourism.
During the 1993 Dahuk Reservoir was also used to supply drinking water to Dahuk City. The dam and catchment’s Characteristics are provided in Table 1.1.

Table 1.1: Dahuk Dam and Reservoir characteristics (GDID)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full supply level</td>
<td>615.75 masl</td>
</tr>
<tr>
<td>Wall height</td>
<td>619.73 masl</td>
</tr>
<tr>
<td>Full supply storage capacity</td>
<td>52 MCM</td>
</tr>
<tr>
<td>Surface area at full supply</td>
<td>2.560 Million km2</td>
</tr>
<tr>
<td>Crest length</td>
<td>740 m</td>
</tr>
<tr>
<td>Reservoir catchment area</td>
<td>135 km2</td>
</tr>
<tr>
<td>Spillway type</td>
<td>Bell-Mouth</td>
</tr>
<tr>
<td>Spillway capacity</td>
<td>81 m3/sec</td>
</tr>
<tr>
<td>Life storage</td>
<td>47.51 MCM</td>
</tr>
<tr>
<td>Dead storage</td>
<td>4.39 MCM</td>
</tr>
</tbody>
</table>

Note: MCM is million cubic meter

masl is Meters above sea level

The Dahuk River has two main tributaries, Garmava River and Sindor River as shown in Figure 1.2.

![Figure 1.2: Dahuk River catchment](image-url)
The climate of this location is similar to the climate of Mediterranean and partly to the climate of Iranian region, the weather is characterized by dry hot in Summer and cold rainy in Winter with snow falls on the high mountains (Anderson et al., 2008). Mainly rainstorms occur from 15th October to 15th May while other times of the year are dry. The amplitude varies between winter and summer temperature is high. The annual mean temperature is 19.5 °C (Shawkat, 2007). Table 1.2 shows the climatological information of the region, obtained from metrological office - Dahuk city. The hydrologic data (1986-2001) was lost due to civil war, so it is not allowed to consider short period in evaluating the hydrological system even find information for longer duration. Additional note, the quality of water and the soil degradation problems of its natural resources and effective living conditions of the settled villages in the area will not be consider in research.

Table 1.2: Climatological information of Dahuk City (Shawkat, 2007)

<table>
<thead>
<tr>
<th>Month</th>
<th>Average Temp</th>
<th>Rainfall (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>January</td>
<td>12.2</td>
<td>4.4</td>
</tr>
<tr>
<td>February</td>
<td>13.2</td>
<td>3.86</td>
</tr>
<tr>
<td>March</td>
<td>15.8</td>
<td>0.91</td>
</tr>
<tr>
<td>April</td>
<td>22.3</td>
<td>11.21</td>
</tr>
<tr>
<td>May</td>
<td>30.9</td>
<td>17.69</td>
</tr>
<tr>
<td>June</td>
<td>36.2</td>
<td>21.73</td>
</tr>
<tr>
<td>July</td>
<td>29.7</td>
<td>24.63</td>
</tr>
<tr>
<td>August</td>
<td>39.13</td>
<td>23.68</td>
</tr>
<tr>
<td>September</td>
<td>24.46</td>
<td>20.85</td>
</tr>
<tr>
<td>October</td>
<td>27.46</td>
<td>15.86</td>
</tr>
<tr>
<td>November</td>
<td>18.73</td>
<td>9.61</td>
</tr>
<tr>
<td>December</td>
<td>12.48</td>
<td>4.46</td>
</tr>
<tr>
<td>Average</td>
<td>25.21</td>
<td>13.74</td>
</tr>
</tbody>
</table>

Geologically, the south of the area is bounded by the White Mountain and the north by Zakho Mountain as shown in Figure 1.3. The structure of the area involves deposits of the Eocene which are represented by a number of formations: slightly dolomite limestone, an alternative of dolomite marls, gypsum rocks, alternative of
clay marls, clay limestone, polemicist sandstone and Fragmental Detritus (small rock fragments) (Mohammed, 2010).

Figure 1.3: Location of Dahuk Reservoir

1.3 Problem Statement

The problem of Dahuk reservoir is, the impossibility of getting the needed amount of water to cover the need of Dahuk city, or continue to maintain aesthetic area for touristic purposes, due to the decrease in rainfall, increase of temperatures, and the constant expansion in the area of the city, while The Basin of Dahuk dam was the only safe source to meet the needs of the city in difficult circumstances of water crisis between the countries of the region, Turkey, Iraq and Syria. Therefore, the water balance calculation of the dam system is needed, and researches of water balance in Dahuk dam will be conducted to be used as an assessment for different conditions. But due to the effect of climate change and the potential growth in population which may not be the best solution, so increase of water supply by additional sources, such as the Khabour River (Figure 1.1), have to be considered to
reach the expansion in demand from project by using some scenario and countermeasures. However, more infrastructures are required to assist the process of bringing water, like improving the water quantity in this source. Hence, better considerations for Dahuk Reservoir water balance tend to manage the best available program and Scenarios.

1.4 Study Objectives

To achieve this evaluation the following objectives are targeted:

1- To generate sufficient hydrologic data for the Dahuk dam.
2- To identify the exemplary water balance for water supply scheme in the Dahuk dam.
3- To select potential program for the integrated water resource management at the Dahuk dam system.

1.5 Scope of Study

This paper intends to study:

1- The emphasis on the selection of a suitable Scenarios program, and specification in water balance problem for Dahuk reservoir.
2- The sensitivity of fluctuation in the uses of water consumption motivated, which helps in the ranking the Scenarios program.
3- The advantage of the selected Scenario program in proper balancing process insensitive resolutions related to conditions of natural water resources which is a parameter for future evaluation in this area.

