DEVELOPMENT OF AN OPTICAL PULSIN G BY USING POCKELS EFFECT

THIAN LEE ENG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Physics)

Faculty of Science
Universiti Teknologi Malaysia

AUGUST, 2005
To my beloved parents,
brother and sisters
Although it is beyond my ability to adequately thank people who have helped me in completing this project, I can at least mention some names of those whose help I consider above and beyond the call of duty without which I could have never completed my work. My supervisor, Associate Professor Dr. Noriah Binti Bidin, deserves my special thanks for being my advisor and for giving me invaluable guidance in this work. I would also like to extend my gratitude to my co-supervisor, Dr. Yaacob Bin Mat Daud for giving me unending patience in directing my work. My gratitude also goes to other collaborators and classmates including Mr. Nyan, Hadi, Kua, Hazimin, Izi, Fairus, Naza, E怅, Fatin and Aizi for their help and support. They were always ready to provide help whenever needed, their friendship will never be forgotten. Finally, I must thank to my parents, and my family including my brother Hua Guey, my sisters Lee Nak and Lee Chuang for their love, faithful support and encouragements in these years.
ABSTRACT

Laser produced from active medium is normally in continuous mode. The beam can be modulated by inserting switching mechanism. An electro-optic mechanism is one of the techniques used to alter the operation of laser beam from continuous into pulse mode. Hence, the objective of this project is to develop an optical switch system by using Pockels effect. Helium-Neon (He-Ne) laser was used as continuous light source in the project. Calcite and quartz crystals were employed as natural birefringent materials. While a synthetic birefringent material, lithium niobate was used as a Pockels cell. The lithium niobate crystal can become birefringent only through the application of electric field. Therefore, several pulse generators were developed and used to trigger an electro-optic driver to electrify the lithium niobate crystal. A Pockels cell house was designed and fabricated by using perspex. The Pockels cell house was completed with electrodes. The performance of the fabricated Pockels cell was compared to the commercial Pockels cell. Both of the Pockels cells exhibited similar characteristic, whereby the linear polarization state of laser light was turned into circular state when it entered the electrified Pockels cells with $a : b$ ratio of 1.0 : 1.0 (2 kV and 3 kV voltage applied) and 1.1 : 1.0 (4 kV voltage applied). This converts the continuous He-Ne beam into pulse mode. The generation of the laser pulse can be operated either in a single or repetitive mode. It depends on the frequency of the pulse generator. The amplitude of the produced laser pulse was increased by increasing the voltage supplied to electrify the lithium niobate crystal. The amplitude of the produced laser pulse by using transverse Pockels cell was 500 mV, 700 mV and 1000 mV at 2 kV, 3 kV and 4 kV applied voltage. While the result obtained by using commercial Pockels cell was 700 mV, 900mV and 1200 mV.
ABSTRAK

# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Light Modulation</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.2 The History Of Electro-optic</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.3 Research Background</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.4 Comparison Between Different Techniques Of Beam Modulation</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.5 Research Objectives</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1.6 Scopes Of Research</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>1.7 Organization Of Thesis</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
# 2 THEORY

2.1 Introduction 10
2.2 Polarization 10
2.3 Malus’ Law 12
2.4 Birefringence (Double Refraction) 14
2.5 Analysis Of Elliptically Polarized Light 15
2.6 Optics Of Uniaxial Crystal 16
2.7 The Pockels (Linear Electro-optic) Effect 18

# 3 METHODOLOGY

3.1 Introduction 21
3.2 BPX65 Photodetector 22
3.3 Equipments 23
   3.3.1 Helium-Neon (He-Ne) Laser 24
   3.3.2 Polarizer and Analyzer 25
   3.3.3 Quartz Crystal 26
   3.3.4 Calcite Crystal 27
   3.3.5 Lithium Niobate Crystal (LiNbO₃) 28
   3.3.6 Pockels Cell 29
   3.3.7 TDS 210 Digitizing Real-Time Oscilloscope 30
   3.3.8 Long Scale Galvanometer And Photoelectric Detector 31
   3.3.9 High Voltage Probe 33
3.4 Demonstration Of The Birefringence Phenomenon 34

# 4 DEVELOPMENT OF PULSE GENERATORS

4.1 Introduction 38
4.2 Electro-optic Driver 39
4.3 CD4528BCN Dual Monostable Multivibrator 39
4.4 Pulse Generators 41
4.4.1 Repetitive Mode With Frequency Range Less Than 300 Hz 42
4.4.2 Single Pulse 44
4.4.3 Repetitive Mode With Frequency Of 1 Hz 46
4.5 Calibration Of Pulse Generators 50
4.6 Triggering Of An Electro-optic Driver 56
4.7 Summary 59

5 DETERMINATION OF THE POLARIZATION STATE OF HE-NE LIGHT OUT OF NATURAL BIREFRINGENT MATERIALS

5.1 Introduction 60
5.2 Polarization State Of He-Ne Light 61
5.3 Polarization State Of He-Ne Light Out Of Quartz Crystal 65
5.4 Polarization State Of He-Ne Light Out Of Calcite Crystal 71
5.5 Summary 76

6 DEVELOPMENT OF TRANSVERSE POCKELS CELL

6.1 Introduction 77
6.2 Designing Of Pockels Cell House 78
6.3 Fabrication Of Transverse Pockels Cell 78
6.4 Electrifying The Transverse Pockels Cell 79
6.5 Experiment Of He-Ne Polarization By Using Pockels Cell 80
6.6 Characterization Of He-Ne Polarization State Through Transverse Pockels Cell 83
6.7 Characterization Of He-Ne Polarization State Through Commercial Pockels Cell 92
6.8 Comparison Between The Output Intensity Of The Commercial and Transverse Pockels Cell 99
6.9 Summary 101

7 OPTICAL SWITCH

7.1 Introduction 102
7.2 Optical Switching Operation 102
7.3 He-Ne Switching By Using Transverse Pockels Cell 105
7.4 He-Ne Switching By Using Commercial Pockels Cell 109
7.5 Comparison Between The Switching of He-Ne By Using The Transverse Pockels Cell And The Commercial Pockels Cell 111
7.6 Summary 113

8 CONCLUSIONS AND SUGGESTIONS

8.1 Conclusion 114
8.2 Problems 116
8.3 Suggestions 117

REFERENCES 118
APPENDICES A – O 124-140
PRESENTATION 141
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Comparison between different modulation techniques</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Some negative and positive uniaxial crystals</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>The truth table of CD4528BCN dual monostable multivibrator</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Calibration result obtained from various pulse generators</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Data obtained from the experiment of the He-Ne light polarization</td>
<td>63</td>
</tr>
<tr>
<td>5.2</td>
<td>Polarization of He-Ne light out of Q</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Polarization state of He-Ne out of calcite</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>Determination of He-Ne polarization state out of the transverse Pockels cell</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Determination of He-Ne polarization state out of the commercial Pockels cell</td>
<td>99</td>
</tr>
<tr>
<td>7.1</td>
<td>Light switching by using transverse Pockels cell</td>
<td>108</td>
</tr>
<tr>
<td>7.2</td>
<td>Light switching by using commercial Pockels cell</td>
<td>111</td>
</tr>
</tbody>
</table>
**LIST OF FIGURES**

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Lumped modulator and its electric circuit</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Traveling-wave modulator using two-plate structure</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Zigzag modulator</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Optical waveguide modulator</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>An electromagnetic wave</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Light wave passing through a polarizer</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Resolution of the amplitude of the transmitted light, $A_0$ into two components, $A_1$ and $A_2$</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The crystal resolves polarized light into ordinary, $O$ and extraordinary, $EO$ beams</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Resolution of the amplitude of transmitted polarized light into two components, $a$ and $b$</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Principal plane of the crystal ($kz$) and (a) ordinary beam and (b) extraordinary beams</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Transverse Pockels effect</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Longitudinal Pockels effect</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of BPX65 photodetector</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Typical spectral response of BPX65 photodiode</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>He-Ne laser with 1 mW output power</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>He-Ne laser with 4 mW output power</td>
<td>25</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>3.5</td>
<td>Polarizer</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>Quartz crystal</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>Calcite crystal</td>
<td>28</td>
</tr>
<tr>
<td>3.8</td>
<td>Cubic lithium niobate crystal</td>
<td>29</td>
</tr>
<tr>
<td>3.9</td>
<td>Laser light enters a Pockels cell through the window beside the insulator housing</td>
<td>30</td>
</tr>
<tr>
<td>3.10</td>
<td>LT PYRKAL CJSC Pockels cell</td>
<td>30</td>
</tr>
<tr>
<td>3.11</td>
<td>TDS 210 Digitizing Real Time Oscilloscope</td>
<td>31</td>
</tr>
<tr>
<td>3.12</td>
<td>Schematic diagram of detector system</td>
<td>32</td>
</tr>
<tr>
<td>3.13</td>
<td>Long scale galvanometer</td>
<td>32</td>
</tr>
<tr>
<td>3.14</td>
<td>Photoelectric detector</td>
<td>33</td>
</tr>
<tr>
<td>3.15</td>
<td>Tektronix high voltage probe</td>
<td>34</td>
</tr>
<tr>
<td>3.16</td>
<td>Demonstration setup of birefringence</td>
<td>35</td>
</tr>
<tr>
<td>3.17</td>
<td>Ordinary, $O$ and extraordinary, $EO$ beams out of the calcite. (a) The existence of the two He-Ne beams out of calcite and (b) The two projected beams of He-Ne</td>
<td>36</td>
</tr>
<tr>
<td>3.18</td>
<td>Occurrence of double images of object when viewed through the calcite</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Electro-optic driver</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic diagram of CD4528BCN dual monostable multivibrator</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>CD4528BCN dual monostable multivibrator</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Schematic diagram of the pulse generator ($f &lt; 300$ Hz)</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>The whole block circuit diagram of the pulse generator ($f &lt; 300$ Hz)</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Schematic diagram of single pulse generator</td>
<td>45</td>
</tr>
<tr>
<td>4.7</td>
<td>The block circuit diagram of single pulse generator</td>
<td>45</td>
</tr>
<tr>
<td>4.8</td>
<td>Schematic diagram of the pulse generator with frequency of 1 Hz</td>
<td>47</td>
</tr>
<tr>
<td>4.9</td>
<td>The block diagram of the pulse generator with the frequency of 1 Hz</td>
<td>47</td>
</tr>
</tbody>
</table>
4.10 The oscillograms of the input at label of (a) A, (b) B, (c) Clear and the output (d) Q of Figure 4.9

4.11 The circuit of 1 Hz pulse generator mounted in a black plastic box

4.12 (a) Frequency versus resistance graph and (b) Frequency versus 1/R graph for pulse generator with $f < 300 \text{ Hz} \ (V_{in} = 10 \text{V and 12V})$

4.13 (a) Frequency versus resistance graph and (b) Frequency versus 1/R graph for pulse generator with 1 Hz ($V_{in} = 10 \text{V and 12V}$)

4.14 Pulse width versus resistance graph for pulse generator with $f < 300 \text{ Hz}$

4.15 Pulse width versus resistance graph for the single pulse generator

4.16 Pulse width versus resistance graph for the pulse generator ($f = 1 \text{ Hz}$)

4.17 The output of the electro-optic driver when triggered by (a) pulse generator with frequency of 100 Hz, and (b) single pulse generator

4.18 The pulse width of (a) 1μs, (b) 2μs, (c) 3μs and (d) 4μs produced by the pulse generators

5.1 Schematic diagram of the experiment to determine the polarization of He-Ne light

5.2 Experimental arrangement for measuring polarization state of He-Ne laser

5.3 Current ratio, $i/i_o$ versus $\cos^2 \theta$ graph

5.4 Schematic diagram of the experiment to determine the polarization state of He-Ne out of quartz crystal, Q

5.5 Experiment setup for determination of the polarization state of He-Ne out of quartz crystal, Q

5.6 Oscillation of He-Ne light out of quartz crystal

5.7 Graph of current, $i$ versus $\cos^2 \theta$ out of quartz crystal, Q
5.8 Schematic diagram of the experiment to determine the polarization state of He-Ne light out of calcite crystal  
5.9 Experimental setup for the determination of the polarization state of He-Ne light out of calcite  
5.10 Current, $i$ versus $\cos^2 \theta$ out of calcite graph  
6.1 Fabricated Pockels cell house  
6.2 The setup of the transverse Pockels cell  
6.3 Ensemble of optical switch  
6.4 Schematic diagram of the experiment by using fabricated transverse Pockels cell  
6.5 Experimental arrangement by using fabricated transverse Pockels cell  
6.6 Schematic diagram of the experiment by using commercial Pockels cell  
6.7 Experimental arrangement by using commercial Pockels cell  
6.8 Graph of power, $P$ versus $\theta$ at 2 kV out of transverse Pockels cell  
6.9 Graph of power, $P$ versus $\theta$ at 3 kV out of transverse Pockels cell  
6.10 Graph of power, $P$ versus $\theta$ at 4 kV out of transverse Pockels cell  
6.11 $P$ versus $\cos^2 \theta$ at 2 kV ($f = 100$ Hz)  
6.12 $P$ versus $\cos^2 \theta$ at 2 kV ($f = 200$ Hz)  
6.13 $P$ versus $\cos^2 \theta$ at 3 kV ($f = 100$ Hz)  
6.14 $P$ versus $\cos^2 \theta$ at 3 kV ($f = 200$ Hz)  
6.15 $P$ versus $\cos^2 \theta$ at 4 kV ($f = 100$ Hz)  
6.16 $P$ versus $\cos^2 \theta$ at 4 kV ($f = 200$ Hz)  
6.17 $P$ versus $\theta$ graph at $f = 100$ Hz ($V = 2$ kV, 3 kV and 4 kV)  
6.18 $P$ versus $\theta$ graph at $f = 200$ Hz ($V = 2$ kV, 3 kV and 4 kV)  
6.19 Graph of power, $P$ versus $\theta$ at 2 kV out of commercial
6.20 Graph of power, $P$ versus $\theta$ at 3 kV out of commercial Pockels cell

6.21 Graph of power, $P$ versus $\theta$ at 4 kV out of commercial Pockels cell

6.22 $P$ versus $\theta$ at $f = 100$ Hz ($V = 2$ kV, 3 kV and 4 kV)

6.23 $P$ versus $\theta$ at $f = 200$ Hz ($V = 2$ kV, 3 kV and 4 kV)

6.24 $P$ versus $\cos^2 \theta$ at 2 kV ($f = 100$ Hz)

6.25 $P$ versus $\cos^2 \theta$ at 2 kV ($f = 200$ Hz)

6.26 $P$ versus $\cos^2 \theta$ at 3 kV ($f = 100$ Hz)

6.27 $P$ versus $\cos^2 \theta$ at 3 kV ($f = 200$ Hz)

6.28 $P$ versus $\cos^2 \theta$ at 4 kV ($f = 100$ Hz)

6.29 $P$ versus $\cos^2 \theta$ at 4 kV ($f = 200$ Hz)

6.30 $P$ versus $\theta$ ($f = 100$ Hz and $V = 4$ kV)

7.1 Schematic diagram of light switching experiment by using transverse Pockels cell

7.2 Light switching experiment by using transverse Pockels cell

7.3 Schematic diagram of light switching experiment by using commercial Pockels cell

7.4 Light switching experiment by using commercial Pockels cell

7.5 Output He-Ne light signal ($V = 2$ kV; $f = 55$ Hz)

7.6 Output He-Ne light signal ($V = 3$ kV; $f = 55$ Hz)

7.7 Output He-Ne light signal ($V = 4$ kV; $f = 55$ Hz)

7.8 Output He-Ne light signal ($V = 2$ kV; $f = 100$ Hz)

7.9 Output He-Ne light signal ($V = 3$ kV; $f = 100$ Hz)

7.10 Output He-Ne light signal ($V = 4$ kV; $f = 100$ Hz)

7.11 Variation of the laser pulse amplitude to the applied voltage
LIST OF SYMBOLS

\( a \) - Amplitude of the light component \( A_1 \)
\( A_0 \) - Amplitude of the transmitted light
\( A_1 \) - Amplitude of the light component
\( A_2 \) - Amplitude of the light component
\( A_s \) - Total amplitude of the light
\( B \) - Pulse width
\( C \) - Capacitance
\( b \) - Amplitude of the light component \( A_2 \)
\( d \) - Width of the crystal
\( E \) - Electric vector
\( EO \) - Extraordinary beam
\( f \) - Frequency
\( F \) - Focal length
\( H \) - Magnetic vector
\( I \) - Intensity of the transmitted electromagnetic or mechanical waves
\( I \) - Intensity of the He-Ne light
\( I_0 \) - Intensity of the incident light
\( i \) - Current
\( k \) - Multiple factor
\( k \) - Wave vector of the light wave
\( K_{PD} \) - Responsivity of the photodiode
\( l \) - Length of the crystal
\( n_e \) - Refraction index of the extraordinary beam
\( n_0 \) - Refraction index of the ordinary beam
\( \Delta n \) - Birefringence or double refraction
M - Slope of the graph
\( O \) - Ordinary beam
P - Light power
\( P_1 \) - Polarizer
\( P_2 \) - Analyzer
Q - Quartz crystal
\( r \) - Electro-optic coefficient
R - Resistance
t - Period
V - Applied voltage
\( V_{\text{a}} \) - Average voltage
\( V_{\text{in}} \) - Supplied voltage
z - Optical axis
\( \lambda \) - Wavelength of the light
\( \theta \) - Angle of the analyzer
\( \Delta \phi \) - Phase retardation
# LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Technical specifications of the electro-optic driver</td>
<td>124</td>
</tr>
<tr>
<td>B</td>
<td>Optical properties of lithium niobate</td>
<td>125</td>
</tr>
<tr>
<td>C</td>
<td>CD4528BCN Dual Monostable Multivibrator</td>
<td>126</td>
</tr>
<tr>
<td>D</td>
<td>Data obtained from the experiment by using transverse Pockels cell (f = 200 Hz and V = 2 kV)</td>
<td>129</td>
</tr>
<tr>
<td>E</td>
<td>Data obtained from the experiment by using transverse Pockels cell (f = 100 Hz and V = 2 kV)</td>
<td>130</td>
</tr>
<tr>
<td>F</td>
<td>Data obtained from the experiment by using transverse Pockels cell (f = 200 Hz and V = 3 kV)</td>
<td>131</td>
</tr>
<tr>
<td>G</td>
<td>Data obtained from the experiment by using transverse Pockels cell (f = 100 Hz and V = 3 kV)</td>
<td>132</td>
</tr>
<tr>
<td>H</td>
<td>Data obtained from the experiment by using transverse Pockels cell (f = 200 Hz and V = 4 kV)</td>
<td>133</td>
</tr>
<tr>
<td>I</td>
<td>Data obtained from the experiment by using transverse Pockels cell (f = 100 Hz and V = 4 kV)</td>
<td>134</td>
</tr>
<tr>
<td>J</td>
<td>Data obtained from the experiment by using commercial Pockels cell (f = 200 Hz and V = 2 kV)</td>
<td>135</td>
</tr>
<tr>
<td>K</td>
<td>Data obtained from the experiment by using commercial Pockels cell (f = 100 Hz and V = 2 kV)</td>
<td>136</td>
</tr>
<tr>
<td>L</td>
<td>Data obtained from the experiment by using commercial Pockels cell (f = 200 Hz and V = 3 kV)</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Data obtained from the experiment by using commercial Pockels cell ($f = 100,\text{Hz}$ and $V = 3,\text{kV}$)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Data obtained from the experiment by using commercial Pockels cell ($f = 200,\text{Hz}$ and $V = 4,\text{kV}$)</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data obtained from the experiment by using commercial Pockels cell ($f = 100,\text{Hz}$ and $V = 4,\text{kV}$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Light Modulation

Applications of laser light always require the modulation of some properties of the laser light wave. The modulation of light wave is to control variation of some detectable properties of the light wave, such as its intensity (amplitude), phase, wavelength (frequency) or polarization (direction of the beam propagation) (Schawlow, 1969; Hammer, 1975). A modulator is a device that alters a detectable property of a light wave corresponding to an applied electric signal (Hammer, 1975).

Actually there are a number of methods which can be used to modulate laser light such as mechanical, electro-optic, magneto-optic and acousto-optic. Most mechanical methods such as rotating mirror and mechanical shutter or chopper used for laser-beam modulation are slow, unreliable and have much inertia to allow the faster light modulation (Kaminow and Turner, 1966; Schawlow, 1969). Thus, the mechanical methods are seldom used in modern modulation equipment. Hence, the interaction between laser wave and electric, magnetic or acoustic fields acting through the electro-optic, magneto-optic and acousto-optic effect are used to modulate laser-beam (Kaminow and Turner, 1966; Chen, 1970). Modulation of
laser-beam by using these effects is faster and more reliable than the mechanical methods. Among these three interactions, electro-optic effect has received most attention and is widely used for light modulation as it provides the fastest modulation (Schawlow, 1969; Booth and Hill, 1998). For electro-optic effect, the application of an electric field across certain crystal is used to result in change of refraction index of the crystal. The crystal becomes birefringent under the influence of the applied electric field (O’Konski, 1978; Noriah Bidin, 2003). These crystals include, potassium dihydrogen phosphate (KDP), potassium dideuterium phosphate (KD*P), lithium niobate (LiNbO3), lithium tantalite (LiTaO3) and cesium dihydrogen arsenate (CDA) (Kuhn, 1998).

The electro-optic effect can be used to control the intensity or phase of the propagating light (Yariv, 1997). The modulation by using electro-optic effect is the basic operation concept for the optical modulator, optical switch, Q-switch, and deflector (Zajac, 1982; Laud, 1985; Chuang, 1996).

1.2 The History Of Electro-optic

In 1875, Kerr observed that certain dielectric medium become doubly refractive when placed in a strong electric field (Schawlow, 1969; Kaminow, 1974). This effect was consequently named as Kerr effect, or quadratic electro-optic effect. He also discovered this effect in liquids such as carbon disulphide (Kaminow and Turner, 1966; Camatini, 1973; Kaminow, 1974). The Kerr effect can be observed in any crystal (Schawlow, 1969).

The linear electro-optic effect was introduced by Pockels in 1893 (Jenkins, and White, 1976). The linear electro-optic effect is always called as Pockels effect to distinguish it from Kerr effect. This effect can occur only in crystals that lack of a
center of symmetry (Schawlow, 1969). During the nineteenth century, Pockels examined the Pockels effect in quartz, tourmaline, sodium chlorate and K-Na tartrate salt (Rochelle salt) (Kaminow and Turner, 1966).

1.3 Research Background

The first useful Pockels cell was made of potassium dihydrogen phosphate (KDP) by Billings in 1949. However, this device was not capable to be used for high-frequency operation. In 1961, Schawlow, developed a high frequency laser modulator made of KDP crystal based on the Pockels effect. But, the power required was too high for practical use. This stimulated interest of many researchers in searching other feasible crystals (Kaminow, 1974).

Since then, lithium niobate (LiNbO₃), lithium tantalite (LiTaO₃) and ammonium dihydrogen phosphate (ADP) are a few more capable materials used for light modulation (Schawlow, 1969). In 1967, Kaminow and his group constructed light intensity modulators by using LiTaO₃ and LiNbO₃. The performance of the LiNbO₃ intensity modulator has of slight advantage compared to the LiTaO₃ due to the larger electro-optic coefficient of LiNbO₃. Light modulation by using Pockels effect on LiNbO₃, KDP and ADP was well established (White and Chin, 1972; Salvestrini et al., 2004).

A few forms of modulator have been developed by using Pockels effect. They are lumped, traveling wave, zigzag, and optical waveguide modulator. The configuration of each type of modulator has been described by Chen (1970). The physical construction of each modulator is illustrated in Figure 1.1, 1.2, 1.3 and 1.4 (Chen, 1970). Among them, lumped modulator is most suitable to be used for
modulation of frequency < 1 GHz and with the crystal length about 1 cm. Traveling-wave and zigzag modulator are used for modulation of frequencies greater than 1 GHz (Denton et al, 1967). The type of modulator chosen depends on the required driving power and crystal length (Chen, 1970).

![Lumped modulator and its electric circuit](image1)

**Figure 1.1:** Lumped modulator and its electric circuit (Chen, 1970)

![Traveling-wave modulator using two-plate structure](image2)

**Figure 1.2:** Traveling-wave modulator using two-plate structure (Chen, 1970)
A lumped electro-optic optical modulator has been developed by using single crystal LiTaO₃ which is in a cylinder form. A transistor driver-amplifier with a 0.2 W output power is used to drive the LiTaO₃ at a light wavelength of 632.8 nm. In order to reduce the voltage for modulation, the modulator is configured in the transverse mode. The modulator provides 40% intensity of modulation (Kaminow and Sharpless, 1967).
The accurate and direct determination of the phase retardation due to the birefringence of certain materials can be done by using a technique based on the linear variation of the transmitted intensity with the applied electric field to an amplitude modulator (O’Shea, 1985).

1.4 Comparison Between Different Techniques Of Beam Modulation

Besides the Pockels (linear electro-optic) effect, other techniques like magneto-optic, acousto-optic and Kerr effects can also be used to change the refraction index of an optical medium through the application of an external field. However the Pockels (linear electro-optic) effect is chosen because of some advantages. The comparison between different techniques of laser beam modulation is listed in Table 1.1.
Table 1.1: Comparison between different modulation techniques

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| 1. Pockels (linear electro-optic effect) | - Fastest modulation speed (Schawlow, 1969; Booth and Hill, 1998; O’Shea, 1985).  
- Easy electric field generation (Booth and Hill, 1998).  
- Precise timing.                          | - Expensive.                                                                 |
|                                |                                                                             | - Only occur in the 21 types of crystal classes (Bessley, 1976; Noriah Bidin, 2003).  
- Required large voltage.  
- To get good result need high quality polarizer (Booth and Hill, 1998). |
| 2. Kerr effect                 | - Occur in all the 32 types of crystal classes (Bessley, 1976).             | - Kerr coefficient of most crystals is small.                                  |
|                                |                                                                             | - Nitrobenzene with high Kerr coefficient is toxic and unstable (Bessley, 1976). |
|                                |                                                                             | - Required higher voltage than Pockels effect (Lothian, 1975).                |
| 3. Acoustic effect             | - Simple radio frequency circuit.                                           | - Slow opening times (Booth and Hill, 1998)                                   |
|                                |                                                                             | - Hard to generate require magnetic strength (Bessley, 1976).                 |

There are many techniques that can be used to modulate the laser beam by changing the refraction index of an optical medium. But electro-optic promises a better offer than the rest. It can be used either as an internal or external modulator (Bessley, 1976).
In this project, Pockels effect has been applied to produce an optical switch. It is an important element in the construction of a Q-switched Nd:YAG laser for medical purpose.

1.5 Research Objectives

The objectives of this research are listed as followed:

1. To diagnose birefringence characteristic,
2. To design a trigger system,
3. To develop a Pockels cell and
4. To characterize the output of an optical switch.

1.6 Scopes of Research

In this research, the polarization of He-Ne light was analyzed by using Malus’ Law. Natural birefringent materials, like quartz and calcite crystal were used as specimen.

A transverse Pockels cell was developed by applying electric field across the lithium niobate crystal. High voltage was supplied to Pockels cell. A pulse generator was designed to trigger the switch in single mode and repetitive mode.
1.7 Organization of Thesis

This thesis consists of seven chapters. The introduction, research background, objectives and scopes of research are briefly mentioned in Chapter 1. Chapter 2 describes some important theories that are related to optical switch. Chapter 3 discusses about the optical and electrical equipments used to accomplish the project. The development of the pulse generator used to trigger the electro-optic driver is discussed in Chapter 4. Chapter 5 describes about the preliminary works on natural birefringent materials. The development of a transverse Pockels cell and it diagnostic will be discussed in Chapter 6. The application of Pockels cell as an optical switch is elaborated in Chapter 7. Finally, the conclusions of this research, research problems and suggestions are in Chapter 8.
dimension and the material of the electrodes in the transverse Pockels cell were not suitable to produce a strong electric field to the crystal.

The CD4528BCN dual monostable multivibrator used was very sensitive. The operation of single and repetitive mode pulse generator could not be combined. Therefore, two types of pulse generator were developed.

8.3 Suggestions

The project should be continued for further studies by packaging or combining all the separate components like pulse generator, power supply, electro-optic driver and Pockels cell to become a complete optical switch system.

In order to use this system as a Q-switch system for high power laser, the Pockels cell should be provided with a temperature controller to avoid overheating, which will damage the crystal during switching.

It is also suggested that an interlocking system should be installed in this system to avoid any accident, by switching off the system immediately whenever overheating occurs.

Further studies can also be carried out to determine the most suitable material, dimension and method to produce a better electrode.
REFERENCES


