MATHEMATICAL MODELLING OF MASS TRANSFER
IN MULTI-STAGE ROTATING DISC CONTACTOR COLUMN

NORMAH MAAN

UNIVERSITI TEKNOLOGI MALAYSIA
MATHEMATICAL MODELLING OF MASS TRANSFER
IN A MULTI-STAGE ROTATING DISC CONTACTOR COLUMN

NORMAH MAAN

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy

Faculty of Science
Universiti Teknologi Malaysia

OCTOBER 2005
To

my beloved husband, Zainidi and

my loving daughters, Nur Ezzat and Nur Amira

and

especially my loving

and supportive parents, Hj. Maan and Hjh. Eashah
ACKNOWLEDGEMENT

First of all, I thank ALLAH (SWT), the Lord Almighty, for giving me the health, strength and ability to write this thesis.

I wish to express my deepest gratitude to my supervisor, Assoc. Prof. Dr. Jamalludin Bin Talib, who suggested the research topic and directed the research. I thank him for his enduring patience. My special thanks are also due to my co-supervisor, Dr. Khairil Anuar Arshad, and to Assoc. Prof. Dr. Tahir Bin Ahmad for contributing ideas, discussing research plans, and encouragement.

I am forever indebted to my employer Universiti Teknologi Malaysia (UTM) for granting me the study leave and providing the facilities for my research.

Finally, I am grateful for the help in different ways from a number of individuals. Among them are Dr. Rohanin, Dr. Zaitul, Pn. Sabariah and other friends.
ABSTRACT

In this study, the development of an improved forward and inverse models for the mass transfer process in the Rotating Disc Contactor (RDC) column were carried out. The existing mass transfer model with constant boundary condition does not accurately represent the mass transfer process. Thus, a time-varying boundary condition was formulated and consequently the *new fractional approach to equilibrium* was derived. This derivation initiated the formulation of the modified quadratic driving force, called *Time-dependent Quadratic Driving Force (TQDF)*. Based on this formulation, a Mass Transfer of A Single Drop (MTASD) Algorithm was designed, followed by a more realistic Mass Transfer of Multiple Drops (MTMD) Algorithm which was later refined to become another algorithm named the Mass Transfer Steady State (MTSS) Algorithm. The improved forward models, consisting of a system of multivariate equations, successfully calculate the amount of mass transfer from the continuous phase to the dispersed phase and was validated by the simulation results. The multivariate system is further simplified as the Multiple Input Multiple Output (MIMO) system of a functional from a space of functions to a plane. This system serves as the basis for the inverse models of the mass transfer process in which fuzzy approach was used in solving the problems. In particular, two dimensional fuzzy number concept and the pyramidal membership functions were adopted along with the use of a triangular plane as the induced output parameter. A series of algorithms in solving the inverse problem were then developed corresponding to the forward models. This eventually brought the study to the implementation of the Inverse Single Drop Multi-stage (ISDMS)-2D Fuzzy Algorithm on the Mass Transfer of Multiple Drops in Multi-stage System. This new modelling approach gives useful information and provides a faster tool for decision-makers in determining the optimal input parameter for mass transfer in the RDC column.
ABSTRAK

TABLE OF CONTENTS

## CHAPTER	TITLE	PAGE
THEESIS STATUS DECLARATION | |
SUPERVISOR’S DECLARATION | |
TITLE PAGE | i |
DECLARATION | ii |
DEDICATION | iii |
ACKNOWLEDGEMENT | iv |
ABSTRACT | v |
ABSTRAK | vi |
TABLE OF CONTENTS | vii |
LIST OF TABLES | xii |
LIST OF FIGURES | xv |
LIST OF SYMBOLS | xvii |
LIST OF APPENDICES | xix |

1	INTRODUCTION	1
1.1 | Preface | 1
1.2 | Motivation | 2
1.3 | Objectives of the Research | 4
1.4 | Scope of Study | 4
1.5 | Significance of the Findings | 5
1.6 | Thesis Organization | 5
1.7 | Summary | 6
2 LITERATURE REVIEW

2.1 Introduction 8

2.2 Liquid-liquid Extraction 8
 2.2.1 Rotating Disc Contactor Column 10

2.3 Hydrodynamic 12
 2.3.1 Terminal Velocity 12
 2.3.2 Slip and Characteristic Velocity 13

2.4 Drop Breakage Phenomena 14
 2.4.1 Drop Size 15
 2.4.2 Maximum Drop Size 15
 2.4.3 Drop Breakage 16
 2.4.4 Critical Drop Size and Critical Rotor Speed 16
 2.4.5 Initial Number of Drops 17
 2.4.6 Probability of Breakage 17
 2.4.7 Mean Number of Daughter Drops Produced 18

2.5 Mass Transfer 18
 2.5.1 The Whitman Two-film Theory 19
 2.5.2 The Penetration Theory 21
 2.5.3 Dispersed Phase Mass Transfer Coefficient 22
 2.5.4 Continuous Phase Mass Transfer Coefficient 23
 2.5.5 Overall Mass Transfer Coefficient 24

2.6 The Existing Forward Mathematical Models of the Processes in the RDC Column 24
 2.6.1 Talib’s work 24
 2.6.2 Ghalehchian’s work 26
 2.6.3 Mohamed’s work 26
 2.6.4 Arshad’s work 27

2.7 Inverse Modelling 28
 2.7.1 Introduction 28
 2.7.2 Inverse Problem in Sciences and Engineering 30
 2.7.3 Classes of Inverse Problem 32
 2.7.4 Solution of Inverse Problem 33

2.8 Fuzzy Logic Modelling 34
 2.8.1 The Basic Concepts of Fuzzy set Theory 35
6.2 Theoretical Details
 6.2.1 Relation 119
 6.2.2 Fuzzy Relation 121
6.3 Fuzzy Number of Dimension Two 121
 6.3.1 Alpha-level 123
6.4 Inverse Modelling of the Mass Transfer Based
 on Two Dimensional Fuzzy Number 125
 6.4.1 The ISDSS-2D Fuzzy Algorithm 126
 6.4.2 Numerical Example 131
 6.4.3 Simulation Results 137
6.5 Inverse Model of the Mass Transfer of a Single
 Drop in a Multi-Stage RDC Column Based on
 Two Dimensional Fuzzy Number 138
 6.5.1 The Inverse of Single Drop Multi-stage-2D
 Fuzzy (ISDMS-2D Fuzzy) Algorithm 141
 6.5.2 Simulation Results 144
6.6 Implementation of ISDMS-2D-Fuzzy Algorithm
 on the Mass Transfer of Multiple Drops in the
 Multi-stage System 145
 6.6.1 Simulation Results 146
6.7 Discussion and Conclusion 147

7 CONCLUSIONS AND FURTHER RESEARCH 152
 7.1 Introduction 152
 7.2 Summary of the Findings and Conclusion 152
 7.3 Further Research 157

REFERENCES 159
APPENDIX A 165
APPENDIX B 167
APPENDIX C 169
APPENDIX D 171
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The ill-posed and well-posed problems</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Normalized dispersed and continuous phase concentration</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>The Values of resident time and the slip velocity for each drop size</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>The values of $a1$ and $b1$</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>The concentration of the drops along the column</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Experiment 1-Continuous phase (aqueous) and dispersed phase (organic)</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Experiment 2-Continuous phase (aqueous) and dispersed phase (organic)</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Experiment 1-Normalized continuous and dispersed phase concentrations</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Experiment 1-De-normalized continuous concentrations</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>The error By Quadratic fitting</td>
<td>83</td>
</tr>
<tr>
<td>4.7</td>
<td>The concentration of the dispersed and continuous phase according MTMD and MTSS Algorithm</td>
<td>95</td>
</tr>
<tr>
<td>5.1</td>
<td>Design parameters</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Preferred input values</td>
<td>105</td>
</tr>
<tr>
<td>5.3</td>
<td>Preferred output values</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>α-cuts values for input parameters</td>
<td>107</td>
</tr>
<tr>
<td>5.5</td>
<td>α-cuts values for output parameters</td>
<td>108</td>
</tr>
<tr>
<td>5.6</td>
<td>The combination for each α-cuts values parameters</td>
<td>108</td>
</tr>
<tr>
<td>5.7</td>
<td>The output of each combination of each α-cuts</td>
<td>108</td>
</tr>
<tr>
<td>5.8</td>
<td>The min and max of the combination for each α-cuts values</td>
<td>109</td>
</tr>
<tr>
<td>5.9</td>
<td>Input combination with fuzzy value $z = 0.8377$</td>
<td>110</td>
</tr>
<tr>
<td>5.10</td>
<td>Input combination with fuzzy value $z = 0.9561$</td>
<td>111</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Optimized input parameters</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Calculated output parameters</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Simulation 1: The results of input domains [30.8, 57.6] and [9.2, 17.5]</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Simulation 2: The results of input domains [28.8, 59.6] and [7.2, 19.5]</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>The errors between the calculated input values and preferred values for different input domain</td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td>The errors between the calculated output values and preferred values for different input domain</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>The values of alpha-level set</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Input combination with fuzzy value (z = 0.7697)</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Error of input and output parameters</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>The errors between the calculated input values and the preferred values for different input domain</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>The errors between the calculated output values and the preferred values for different input domain</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>The errors of the output solution of ISDSS and ISDSS-2D-Fuzzy Algorithms</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>The input data for simulations of ISDMS-2D-Fuzzy Algorithm</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>The results of ISDMS-2D-Fuzzy Simulations</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>ISDMS-2D-Fuzzy: The errors between the calculated Input values and preferred values for different input domain</td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>ISDMS-2D-Fuzzy: The errors between the calculated output values and preferred values for different Input Domain</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>Set Data 1: The input data for simulations of IMDMS-2D-Fuzzy Algorithm</td>
<td></td>
</tr>
<tr>
<td>6.12</td>
<td>IMDMS-2D-Fuzzy: The errors between the calculated Input values and preferred values</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>IMDMS-2D-Fuzzy: Errors of the calculated output against preferred values and Experimental Data 1</td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>Set Data 2: The input data for simulations of IMDMS-2D-Fuzzy Algorithm</td>
<td></td>
</tr>
<tr>
<td>6.15</td>
<td>IMDMS-2D-Fuzzy: Errors between the calculated input values and preferred values</td>
<td></td>
</tr>
</tbody>
</table>
6.16 IMDMS-2D-Fuzzy: Errors of the calculated output against preferred values and Experimental Data 2
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Single contacting stage</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of RDC column</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Mass transfer at interface</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Stage wise back-flow for mass transfer process</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Forward problem</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Inverse problem</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>(F_1 = { x \in \mathbb{R}</td>
<td>x \text{ is about } a_2 })</td>
</tr>
<tr>
<td>2.8</td>
<td>The fuzzy logic modelling</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>The velocity of 10 different sizes of drops in the RDC column</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Sorption curve for sphere with surface concentration (a_1 + b_1 t)</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Fractional approach to equilibrium vs. time</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic diagram to explain the mass balance process</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow chart of mass transfer process in the 23-stage RDC column for MTASD Algorithm</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>The profile of the medium and drop concentration along the column with respect to the new fractional approach to equilibrium</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>The profile of the medium and drop concentration along the column with respect to the new fractional approach to equilibrium and Crank solution</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>The concentration of the continuous and dispersed phase of new model, Talib model and experimental</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>The continuous phase concentration along the column: Experiment Data 1</td>
<td>80</td>
</tr>
<tr>
<td>4.8</td>
<td>The error between the continuous phase concentration of Experiment Data 1 with and without de-normalized values</td>
<td>82</td>
</tr>
</tbody>
</table>
4.9 The error is fit to Quadratic-like curve

4.10 The continuous phase concentration along the column with corrected value : Experiment Data 1

4.11 Flow chart for mass transfer process at itr=1

4.12 Flow chart for mass transfer process at itr=2

4.13 Flow chart for mass transfer process at itr=3

4.14 Flow chart describing the mass transfer process itr=4,5,6,...,n

4.15 Schematic diagram of the mass transfer process in the 23-stage RDC column

4.16 Flow Chart For Mass Transfer Process

4.17 The concentration of continuous and dispersed phase of MTMD, MTSS Algorithm and Experimental

5.1 The MIMO System

5.2 Schematic diagram of the forward model in a Multi-stage RDC column

5.5 Fuzzy Algorithm

5.4 The view of the input and output parameters of the system

5.5 Triangular fuzzy number of the input parameters

5.6 Triangular fuzzy number of the output parameters

5.8 Intersection between induced and preferred output for continuous phase concentration

5.9 The MIMO system is separated into 2 MISO systems

6.1 Pyramidal fuzzy number

6.2 Pyramidal fuzzy number from Cartesian product of two triangular fuzzy numbers

6.3 The Induced Plane

6.4 The Preference Output

6.5 (a) The Intersection Between Preferred and Induced Output
 (b) Level Curve of (a)

6.6 ISDMS-2D Fuzzy model

6.7 The flow chart representing the three phases
LIST OF SYMBOLS/NOTATIONS

\(a\) - radius of a sphere
\(A\) - Column cross sectional area \((m^2)\)
\(C\) - Concentration \((kg/m^3)\)
\(d\) - Drop diameter \((m)\)
\(d_c\) - Column diameter \((m)\)
\(d_{cr}\) - Critical drop diameter for breakage \((m)\)
\(d_{max}\) - Maximum stable drop diameter \((m)\)
\(d_o\) - Initial drop diameter \((m)\)
\(d_{32}\) - Sauter mean drop size \((m)\)
\(d_{av}\) - Average diameter of drop \((m)\)
\(D_c\) - Molecular diffusivity in continuous phase \((m^2/s)\)
\(D_d\) - Molecular diffusivity in dispersed phase \((m^2/s)\)
\(D_e\) - Eddy diffusivity \((m^2/s)\)
\(D_{oe}\) - Overall effective diffusivity \((m^2/s)\)
\(D_r\) - Rotor diameter \((m)\)
\(D_s\) - Stator diameter \((m)\)
\(e\) - Back-flow ratio
\(E\) - Power consumption per unit mass (Eq. (2.9)) \((w/kg)\)
\(E_{am}\) - Axial mixing coefficient \((m^2/s)\)
\(E_c\) - Continuous phase axial mixing coefficient \((m^2/s)\)
\(E_o\) - Eotvos number
\(F_d\) - Flowrate of dispersed \((cm^3/s)\)
\(f_r\) - Fraction of daughter drop
\(g\) - Acceleration due to gravity \((m^2/s)\)
\(g_i\) - Dynamic volume fraction of drops with size \(d_i\)
\(h\) - Height of column \((m)\)
\(h_c\) - Height of an element of compartment \((m)\)
\(H\) - Column height \((m)\)
\(k_d\) - Drop film mass transfer coefficient \((m/s)\)
\(K_{od_i}\) - Overall dispersed phase based mass transfer coefficient for drop with size \(d_i\) \((m/s)\)
\(m\) - Exponent in the equation of slip velocity
\(M\) - Morton number in terminal velocity
\(N_r\) - Rotor speed \((s^{-1})\)
\(N_{cr}\) - Critical rotor speed for drop breakage \((s^{-1})\)
\(N_{cl}\) - Number of classes
N_{st} - Number of stages
P - Probability of breakage
P_{R} - Power consumption per disc (w/m^3)
Re - Drop Reynolds number
Re_{k} - Drop Reynolds number using V_k
$Re_{D,\omega}$ - Disc Reynolds number based on angular velocity
Sc - Schmidt number
Sh - Sherwood number
$t_{r,i}$ - Resident time of drops with size d_i in a stage (s)
V - Drop volume (m^3)
V_c - Continuous phase superficial velocity (m/s)
V_d - Dispersed phase superficial velocity (m/s)
V_k - Drop characteristic velocity (m/s)
V_t - Slip velocity (m/s)
V_i - Drop terminal velocity (m/s)
We - Weber number for drop
$We_{D,\omega}$ - Disc angular Weber number
x_m - Mean number of daughter drops
X - Hold-up

Greek symbols

Φ - Equilibrium curve slope (dC_d/dC_c
γ - Interfacial tension (N/m)
β_n - Eigenvalues
μ_c, μ_d - Continuous and dispersed phase viscosities ($mPas$)
ρ_c, ρ_d - Continuous and dispersed phase densities (kg/m^3)
$\Delta \rho$ - densities differences (kg/m^3)
κ - Viscosity ratio
ω - Angular velocity (s^1)
ω_{cr} - Critical angular velocity (s^1)

Superscripts

* - dimensional variables
$'$ - differentiation with respect to η
s - denotes steady part of the solution
u - denotes unsteady part of the solution

Subscripts

c, d - Continuous and dispersed phase
i - drop size classes
n - Stage number
av - average value
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GEOMETRICAL AND PHYSICAL PROPERTIES OF RDC COLUMN</td>
<td>165</td>
</tr>
<tr>
<td>B</td>
<td>GLOSSARY</td>
<td>167</td>
</tr>
<tr>
<td>C</td>
<td>PAPERS PUBLISHED DURING THE AUTHOR’S CANDIDATURE</td>
<td>169</td>
</tr>
<tr>
<td>D</td>
<td>MATLAB PROGRAM : INVERSE ALGORITHM</td>
<td>171</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Preface

The study of liquid-liquid extraction has become a very important subject to be discussed not just amongst chemical engineers but mathematicians as well. This type of extraction is one of the important separation technology in the process industries and is widely used in the chemical, biochemical and environmental fields. The principle of liquid-liquid extraction process is the separation of components from a homogeneous solution by using another solution which is known as a solvent [1, 2]. Normally, it is used when separation by distillation is ineffective or very difficult. This is due to the fact that certain liquids cannot withstand the high temperature of distillation.

There are many types of equipments used for the processes of liquid-liquid extraction. The concern of this research is only with the column extractor type, namely the Rotating Disc Contactor Column (RDC). Modelling the extraction processes involved in the RDC column is the major interest in this work. Modelling can be divided into two categories. One is the forward modelling and the other is the inverse modelling.

From mathematical and physical point of view, it is generally easier to calculate the “effect of a cause” or the outputs of the process than to estimate the “cause of an effect” or the input of the process. In other words, we usually know how to use mathematical and physical reasoning to describe what would be measured if conditions were well posed. This type of calculation is called a forward problem. The resulting
mathematical expressions can be used as a model and we call the process in obtaining
the values of outputs as forward modelling.

On the other hand, inverse problems are problems where the causes for a desired
or an observed effect are to be determined. Inverse problem come paired with direct
problems and of course the choice of which problem is called direct and which is called
inverse is, strictly speaking, arbitrary [3]. Before an inverse problem can be solved, we
first need to know how to solve the forward problem. Then the appropriate steps or
algorithms need to be determined in order to get the solution of the inverse model.

Apart from producing an improved mathematical model for the mass transfer
process, another concern of this research is to develop the inverse models that can
determine the value of the input parameters for a desired value of the output parameters
of the mass transfer process in the multi-stage RDC column.

1.2 Motivation

Several models have been developed for the modelling of RDC columns. The
modelling shows that the drop size distribution and the mass transfer processes are
important factors for the column performances. Since the behavior of the drop breakage
and the mass transfer process involve complex interactions between relevant parameters,
the need to get as close as possible to the reality of the processes is evident.

Several researchers namely Korchinsky and Azimzadih[4], Talib[5],
Ghalehchian[6] and Arshad[7] had been working in this area. Korchinsky and
Azimzadih[4] introduced a stage wise model for mass transfer process, which was
furthered by Talib[5] and Ghalehchian[6]. The unsteady-state models developed by
Talib[5] are referred to as the IAMT (Initial Approach of Mass Transfer) and BAMT
(Boundary Approach of Mass Transfer). To get closer to reality, Ghalehchian[6] had
developed a new steady-state model of mass transfer by including the idea of axial
mixing into the simulation of the mass transfer process. Then Arshad[7] developed a
new steady state model for hydrodynamic process, which updates the current hold up
and drops velocities in every stage after certain time intervals until the system reaches
steady state.
The mass transfer models are based on a radial diffusion equation with a constant boundary condition. However a mass transfer model with varied boundary condition has yet to be developed. The development of the model will enhance the understanding of the real process. This is because in reality the concentration of the drops in each compartment in the RDC column is not constant.

The mathematical simulation models of the processes in the RDC column are very complex and need excessive computer time, particularly in predicting the values of output parameters. The determination by trial and error of the input parameter values in order to produce the desired output need excessive computer time and it will be costly if the actual processes are involved. This type of problem is known as inverse problem. Therefore, to overcome these difficulties, an alternative approach based on fuzzy logic is considered.

Fuzzy logic is a well-known method for modelling such uncertain systems of great complexity. They have been approved and demonstrated by many researchers in other disciplines of study to have the capability of modelling a complicated system as well as predicting the actual behavior of a system. So, this study will adopt this method for assessing inverse modelling of the mass transfer process in the RDC column.

A few researchers for examples Ahmad et.al. [8, 9] and Ismail et. al. [10] have been using this approach in their works. Ahmad developed an algorithm which was used in determining the optimized electrical parameters of microstrip lines. The problem was presented as multiple input single output (MISO) system of some algebraic equations. Whilst, the problem involved in Ismail’s work is a multiple input multiple output (MIMO) system of a crisp state-space equation. Both works used a one dimensional fuzzy number concept and a triangular membership function.

The forward model of the mass transfer process in the RDC column consists of Initial Boundary Value Problem (IBVP) of diffusion equation, a nonlinear and a few of linear algebraic equations. The details of the equations will be found in Chapter 3 to 6. Thus the multivariate system modelled by these equations can be simplified as MIMO system. In this work, a two dimensional fuzzy number concept will be used. A pyramidal membership function will be also implemented in this work.
1.3 Objectives of the Research

1. To investigate an equation that will be used as the boundary condition of the IBVP.

2. To formulate a new fractional approach to equilibrium based on the IBVP of time-dependent boundary condition.

3. To formulate a modified driving force based on the new fractional approach to equilibrium.

4. To develop an algorithm for the mass transfer of a single drop in the multi-stage RDC column.

5. To develop algorithms for the mass transfer of the multiple drops in the multi-stage RDC column.

6. To establish a technique for assessing the inverse models of the corresponding new forward mass transfer models.

1.4 Scope of Study

This study will be based on a radial diffusion equation with varied boundary value problem for mass transfer process and a few algebraic equations governed by experiments carried out by a previous researcher for the process of hydrodynamics in the RDC column. The study will also be based on the experimental data obtained by the researchers at the University of Bradford under contract to Separation Processes Service, AEA Technology, Harwell.

In this study, the development of inverse model will be based on the concept of fuzzy algorithm. In this development, the mathematical equations used in mathematical forward modelling are also being considered. This model is a structure based model.
1.5 Significance of the Findings

This study achieves a new development of the forward model which will provide a better simulation and hence get a better control system for the RDC column. This study also give a significant contribution in the form of algorithms. These algorithms are able to calculate the optimal solution of the inverse model for the mass transfer process in the RDC column. The inverse model will give a new paradigm to the decision maker or to the engineer in making decision to decide approximate values of input concentrations of continuous and dispersed phases for desired values of output concentrations of continuous and dispersed phases.

1.6 Thesis Organization

Chapter 2 gives a literature review on liquid-liquid extraction in general. It is then followed by a review on the RDC columns including the important processes involved. The theoretical details on the drop distribution, breakage phenomena and the mass transfer process are also included. The existing forward mathematical modelling by the most recent researchers are presented. These reviews are significantly used as a background in order to develop a new mass transfer model; which will be described in Chapter 3.

To achieve Objective 6 of the research, the review on the inverse problem in general, including the definition, the examples of real world problems, the classes of the inverse problem and the steps involved in solving the problem are given. Whilst Section 2.8 will provide the reviews on the Fuzzy Concepts. These concepts will be applied in Chapters 5 and 6 to develop an algorithm for solving the corresponding inverse problem.

Chapter 3 provides the formulation of the varied boundary function from the experimental data in [5]. The details of the exact solution of the IBVP with the time depending function boundary condition will be shown which is then followed by the derivation of the new fractional approach to equilibrium. The comparison between the new fractional approach to equilibrium and the one introduced in [11] will be made in the last section of Chapter 3.
Chapter 4 comprises the development of the forward models of the mass transfer in the multi-stage RDC column. Prior to the development, the formulation of the modified quadratic driving force which is called \textit{Time-dependent Quadratic Driving Force (TQDF)} will be given. Based on this formulation, a Mass Transfer of A Single Drop Algorithm is designed and this is then followed by a more realistic Mass Transfer of Multiple Drops Algorithm. An alternative method for calculating the mass transfer of a Multi-Stage System will also be presented in the form of an algorithm named as the Mass Transfer Steady State Algorithm.

Chapter 5 discusses the formulation of the inverse model for mass transfer process in the RDC column. The mappings which represent the forward model involved will also be given. Basically this chapter introduces an \textit{Inverse Single Drop Single Stage-Fuzzy (ISDSS-Fuzzy)} model which represents the mass transfer process of a single drop in a single stage RDC column. This model is a base for the inverse model of the mass transfer process in the real RDC column.

Chapter 6 provides the theoretical details which become the basis for accomplishing the task of the thesis. The details are about the relation of two crisp sets and this is followed by the relation of two fuzzy sets. We also include some examples which can explain the concept more clearly. From fuzzy relation we extend the concept of fuzzy number of dimension one to dimension two. Section 6.4 discusses the development of the Inverse Model of Mass Transfer Process of a Single Drop in a Single Stage RDC Column based on the two dimensional fuzzy number. We then implement the algorithm to the mass transfer process in the multi-stage RDC column.

We then summarize the findings and suggest areas for further research in Chapter 7.

1.7 Summary

In this introductory chapter, a short introduction on the liquid-liquid extraction process particularly on the RDC column has been presented. The deficiency of the existing mass transfer models in the multi-stage RDC column has also briefly discussed. Next, come the research objectives and scope, and the contributions of the work
described in the thesis. Finally, the outline of the thesis is presented.

The current chapter serves as a defining point of the thesis. It gives direction and purpose to the research and the discussions presented here are the basis for the work done in the subsequent chapters.
controlled and adjusted such as that of rotor speed \((N_r)\), dispersed phase flow rate \((F_d)\) and interfacial tension \((\gamma)\). Although interfacial tension could not be controlled directly but at least by varying this value will provide us with some useful information. These three parameters are determined or fixed outside the RDC column, but once they are applied to the modelling, it will give whatever calculated value for the holdup. This is an inverse problem of type coefficient inverse problem.

- Development of the intra-stage control system for the RDC column.

In this study the inverse problem in determining the value of the input parameter for the desired value of output of 23-stage RDC column has been successfully solved. Intra-stage control system is the control system inside the RDC column. The inverse algorithm developed in this study only need the information of the input and output parameters outside the RDC column. Whilst for the intra-stage control, more information is needed in particular the information on the concentrations of both liquids at certain stage or if possible at every stage in the RDC column.

- Further investigation and development on the theory of two dimensional fuzzy number in multi-stage systems.

- Development of the integrated model of the hydrodynamic and mass transfer processes.

Parallel processing is suggested to be introduced in order to develop the integrated model of the hydrodynamic and mass transfer processes. This integrated model is hoped to give better simulation and better control system for the RDC column.
REFERENCES

15. University of Bradford and The Institution of Chemical Engineers. *Introduction to Solvent Extraction Technology*. Bradford. 1975

