SPEECH INTELLIGIBILITY PREDICTION MODEL
IN ROOM WITH REFLECTIVE DOME

MOKHTAR BIN HARUN

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

MAY 2005
To my dearest parents for their love, kindness and blessings
To my beloved wife for her understanding, support and encouragement
To my children Muhammad Haziq, Muhammad Hafiz, Muhammad Haikal and Nureen Farhanah whose presences are precious and enlighten my life
To my sisters and brothers, and their family
ACKNOWLEDGEMENTS

I am deeply thankful and grateful to Allah s.w.t. on His blessings that this research activity is successful, and the writing of this thesis is completed.

I would like to thank my supervisors Prof. Dr Tharek Abd. Rahman and Prof Dr. Md. Najib Ibrahim. Their guidance, continuous support, and advice are invaluable. Also, my appreciation goes to the late Mr. Md. Yunus Jaafar for his helps in statistical analysis.

I would like to thank all the Pegawai Masjid dan Surau Daerah in districts of Johor for their kind assistance. Also, special thanks to all Chairpersons, Imam, Bilal and supporting staffs in the respective mosques in Johor, Negeri Sembilan, Selangor and Kedah for their full cooperation for allowing author to perform building investigations and measurement at odd hours for in their entrusted mosques.

Many thanks to Mr. Adnall Bakar from Acoustics Research Laboratory in Fakulti Kejuruteraan Elektrik, Mr. Zulkifli Harun, Mr. Mohd. Azraz Azmai, Ms. Nazira Yunus and Mr. Ridwan Hamzah for their assistance in equipment performance testing, field measurements, data managements and simulation works.

Last but not least, I thank to friends in Fakulti Kejuruteraan Elektrik for their friendship and kindness. I am indebted to my employer Universiti Teknologi Malaysia for granting me study leave, and to Ministry of Science Technology and Environment Malaysia for granting IRPA fund to pursue this research.
ABSTRACT

This thesis presents research works on developing the objective speech intelligibility prediction models in room with dome in terms of acoustics, and room and dome geometry. The purpose of the research was to enable one to predict speech intelligibility (SI) in room with dome as early as at the conceptual design stage. The developed SI prediction models have made possible the estimation of the acceptable room and dome dimension ratios for speech, the determination of the significant acoustics parameters that affect SI, and the determination of achievable SI scores at any audience area in room with dome. The research was begun with pilot study and room investigations in large mosques with dome in Johor. Similar works were later extended in Negeri Sembilan, Selangor and Kedah. Basic dimensions of room and dome, types of dome, types of ceiling, and types of material and finishes in room and on dome surfaces were obtained. Having completed room investigation activity, acoustics measurements were conducted in thirty-two mosques with dome, with dome volume ranging from 100 m³ to 10000 m³ to determine Speech Interference Level (SIL), reverberation time (RT60) and speech intelligibility assessor, Speech Transmission Index (STI); the parameters that are required for the development of SI prediction models. It was found that RT60 is able to predict minimum SI scores in area 6° outside sound source coverage area, which is STI_{OUT6_{(min)}}. Average SI under dome area, STI_{DA_{(mean)}} is found to be efficiently predicted by average sound absorption coefficients of the room. Both STI_{DS_{(min)}} and STI_{DS_{(mean)}} are well predicted by room and dome geometry. From the simulation works, it has been found that the developed SI prediction models have achieved acceptable prediction accuracy for the practical purposes, with multiplication of 0.2 to 2.6. Therefore, the development of SI prediction models has been successful, accurate and time effective to obtain optimum achievable SI in room with dome.
ABSTRAK

Tesis ini menerangkan hasil kerja penyelidikan membina model objektif untuk meramal kejelasan percakapan (KP) dalam ruang berkubah menggunakan parameter akustik, dan geometri ruang dan kubah. Tujuan kajian ini ialah untuk membolehkan peramalan KP dalam ruang berkubah, sebelum ianya dibina lagi. Model peramalan KP yang berjaya dibina dapat menentukan dimensi ruang dan kubah yang betul, dapat menentukan parameter akustik signifikan yang mempengaruhi KP, dan dapat membuat peramalan tahap KP pada mana-mana kedudukan pendengar dalam ruang berkubah. Penyelidikan dimulakan dengan kajian pandu dan penyiasatan ruang di masjid-masjid besar di Johor. Kajian yang sama kemudiannya diteruskan di Negeri Sembilan, Selangor dan Kedah. Dimensi asas ruang dan kubah, jenis kubah, jenis siling, dan jenis bahan yang menyelaput permukaan ruang dan kubah telah diperolehi. Selepas itu, pengukuran akustik telah dijalankan di tiga puluh dua buah masjid berkubah, berisipadu 600 hingga 10000 meter-padu, bagi mendapatkan Tahap Gangguan Percakapan (SIL), masa gemaan (RT60) dan penilai KP Index Penghantaran Percakapan (STI). Hasil kajian mendapati bahawa RT60 dapat meramalkan KP terendah di luar kawasan 6° liputan sumber bunyi, iaitu STI_{OUT6(min)}. Purata KP di ruang bawah kubah STI_{DA(mean)} boleh diramal oleh purata angkali penyerapan bunyi. Kedua-dua STI_{DS(min)} dan STI_{DS(mean)} dapat diramalkan oleh geometri ruang dan kubah. Hasil kerja simulasi menunjukkan bahawa model peramalan KP yang dibina berjaya mencapai tahap kejituan yang boleh diterima, dengan faktor pekali 0.2 hingga 2.6. Oleh itu, kerja pembangunan model peramalan KP telah berjaya, tepat serta menjimatkan masa untuk digunakan bagi meramal tahap optima KP sesebuah ruang berkubah.
TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE i
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xx
LIST OF SYMBOLS xxvi
LIST OF ABBREVIATIONS xxx
LIST OF APPENDICES xxxiv

1 INTRODUCTION 1

1.1 Introduction 1
1.2 Background of Research Problem 1
1.3 Purpose and Objectives of Research 6
1.4 Scope of Works and Limitations of the Research 6
1.5 Research Contributions 7
1.6 Structure and Thesis Layout 7
Factors Affecting Speech Intelligibility

2.1 Introduction

2.2 Definition of Speech Intelligibility

2.3 Previous Research in Room With Dome

2.3.1 Room with Dome

2.3.2 Speech Intelligibility Assessment

2.3.2.1 Subjective Method

2.3.2.2 Objective Method

2.4 Justification for the Use of Objective Methods in the Research

2.5 Factors Affecting Speech Intelligibility in Room

2.5.1 Background Noise

2.5.1.1 Background Noise Level (L_N)

2.5.1.2 Signal to Noise Ratio (SNR)

2.5.1.3 Speech Interference Level (SIL)

2.5.1.4 Noise Criteria (NC)

2.5.1.5 Balanced Noise Criteria (NCB)

2.5.2 Room Material and Finishes

2.5.2.1 Sound Absorption Coefficients

2.5.2.1.1 Sound Absorption of Solid

2.5.2.1.2 Sound Absorption of Voids

2.5.2.1.3 Sound Absorption of Perforation

2.5.3 Room Geometry

2.5.3.1 Room Resonance (f₀)

2.5.3.2 Initial Time Delay Gap (ITDG)

2.5.4 Combination of Material and Finishes, and
Geometry of the Room

2.5.4.1 Direct Sound Level (L_D) 33
2.5.4.2 Reverberant Sound Level (L_R) 35
2.5.4.3 Reverberation Time (RT60) 35
2.5.4.4 Early Decay Time (EDT) 38
2.5.4.5 Clarity 41

2.6 Acoustics Measures 42
2.6.1 Speech Transmission Index (STI) 42
2.6.2 Rapid STI (RASTI) 46
2.6.3 Articulations Loss of Consonants (AL_{cons}) 47

2.7 Summary 51

3 EXPERIMENTAL SET-UP 53

3.1 Introduction 53

3.2 Pilot Study 53
3.2.1 Criteria of Room Samples 54
3.2.2 Types of Dome 55
3.2.3 Types of Ceiling 55

3.3 Sampling 55
3.3.1 Determination of Room Samples 55
3.3.2 Determination of Measurement Points in Room Samples 57
3.3.3 Features of Room and Dome 60

3.4 Physical Investigation of Room and Dome 60
3.4.1 Measurement of Basic Dimensions 60
3.4.2 Material and Finishes 63

3.5 Measurement of Objective and Acoustics Measures 63
3.5.1 The Parameters 63
3.5.2 Set up of Equipment 64
3.5.3 Calibration 64
3.5.4 Measurement Procedures 66
3.6 Data Acquisition 67
 3.6.1 Measurement of Background Noise Level (L_N) 68
3.7 Data Management 71
3.8 Analysis Procedures of Background Noise Level (LN) Using Balanced Noise Criteria (NCB) 72
3.9 Analysis Procedures of Measured Speech Transmission Index (STI) 73
3.10 Analysis Procedures for Determining the Significance Frequency of Reverberation Time (RT60) 78
3.11 Analysis Procedures for Determining Average Sound Absorption Coefficients (α) In Room Samples 79
3.12 Analysis Procedures for Assessing Sound Reflection in Room Samples by Means of Initial Time Delay Gap (ITDG) 80
3.13 Procedures for Simulation Works 80
3.14 Summary 82

4 ACOUSTICS QUALITY OF ROOM SAMPLES 84
4.1 Introduction 84
4.2 Evaluation of Background Noise Level Using Balanced Noise Criteria (NCB) 84
4.3 Relationship of Groups of Speech Transmission Index (STI) 90
4.4 Determination of Significance Frequency of Reverberation Time (RT60) 94
4.5 The Analysis of Average Sound Absorption Coefficient in Room Samples 100
5 SPEECH INTELLIGIBILITY PREDICTION MODEL AS FUNCTION OF ROOM AND DOME GEOMETRY

5.1 Introduction 112
5.2 Selection of Samples of Room with Dome 112
5.3 Room Basic Dimensions 115
5.4 Dome Basic Dimensions 116
5.5 Room and Dome Volumes 117
5.6 Room and Dome Surface Areas 118
5.7 Correlation and Significance Tests of Room and Dome Parameters
 5.7.1 Room Basic Dimensions Parameters 119
 5.7.2 Dome Basic Dimensions Parameters 127
 5.7.3 Room and Dome Volume Parameters 130
 5.7.4 Room and Dome Surface Area Parameters 133
5.8 Summary of Correlation Coefficient and Test of Room and Dome Parameters 139
5.9 Development of Speech Intelligibility (SI) Prediction Model
 5.9.1 Direct Regression of Room and Dome Dimension Parameters to Speech Transmission Index (STI) 139
 5.9.2 The Ratio of Room and Dome Parameters 141
5.10 STI_{ALL} Prediction Model 144
5.10.1 Developed STI\textsubscript{ALL} Prediction Model 144

5.10.2 The Effect of Room Height (RH) and Dome Diameter (DD) on STI\textsubscript{ALL}(min) 146

5.10.3 The Effect of the Ratio of Dome Surface Area (DSA) to Floor Surface Area, and Wall Surface Area (WSA) on STI\textsubscript{ALL}(max) 148

5.11 STI\textsubscript{DA} Prediction Model 151

5.11.1 Developed STI\textsubscript{DA} Prediction Model 151

5.11.2 The Effect of the Ratio of Room Height (RH) to Dome Diameter (DD), and Dome Volume on STI\textsubscript{DA}(min) 152

5.11.3 The Effect of the Ratio of Room Height (RH) to Dome Diameter (DD), and Dome Volume on STI\textsubscript{DA}(mean) 153

5.12 STI\textsubscript{DS} Prediction Model 157

5.12.1 Developed STI\textsubscript{DS} Prediction Model 157

5.12.2 The Effect of the Ratio of Dome Volume (DVO) to Total Volume of Room (TVO) and Dome Diameter (DD) on STI\textsubscript{DS}(min) 158

5.12.3 The Effect of the Ratio of Floor Surface Area (FSA) to Ceiling Surface Area (CSA and Dome Surface Area (DSA) on STI\textsubscript{DS}(mean) 160

5.13 STI\textsubscript{OUT6} Prediction Model 162

5.13.1 Developed STI\textsubscript{OUT6} Prediction Model 162

5.13.2 The Effect of the Ratio of Mean Height (MEH) to Mean Length (MEL), and Mean Width of the Room (MEW) on STI\textsubscript{OUT6}(max) 163

5.13.3 The Effect of the Ratio of Mean Height (MEH) 166
(MEH) to Mean Width (MEW), and Mean Length of the Room (MEL) on STI\textsubscript{OUT6(mean)}

5.14 Verification of Accuracy of the Developed Speech Intelligibility Prediction Models

5.15 Summary

6 CONCLUSIONS

6.1 Conclusions

6.2 Recommendations for Future Works

REFERENCES

APPENDIX A – I
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Speech intelligibility assessment in built room with dome</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Factors affecting speech intelligibility</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Design criteria of NC</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Speech intelligibility assessor</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Weighting factors for calculating STI (Burroughs, 200</td>
<td>45</td>
</tr>
<tr>
<td>2.6</td>
<td>Speech intelligibility rating of STI (Templeton et al.,</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1993c)</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Speech intelligibility rating of ALcons (Templeton et al.,</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1993c)</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Details of physical investigation (Mokhtar Harun et al.,</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2002a)</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Room samples for the research</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Features of room and dome.</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Features of room and dome in thirty-two room samples</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Room and dome Basic Dimensions</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>Objective and acoustics measures</td>
<td>64</td>
</tr>
<tr>
<td>3.7</td>
<td>Groups of STI</td>
<td>75</td>
</tr>
<tr>
<td>3.8</td>
<td>Groups of RT60</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>NCB in room samples</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>ANOVA table for SIL and NCB analysis</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>NCB conformance of room sample</td>
<td>87</td>
</tr>
<tr>
<td>4.4</td>
<td>Analysis of background noise in room samples at low and high frequency</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>Descriptive statistics for groups of STI in room samples</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Detailed STI score classification in the STI groups</td>
<td>91</td>
</tr>
</tbody>
</table>
4.7 Correlation coefficients among groups of STI 92
4.8 Post hoc comparison test for group of STI 93
4.9 Relationship of among groups of STI 93
4.10 Correlation coefficients of groups of RT60 95
4.11 Relationship among groups of RT60 96
4.12 Post hoc comparison test for measured and calculated RT60 at 500 Hz and 1000 Hz in samples 96
4.13 Prediction model of STI_ALL in terms of groups of RT60 97
4.14 Prediction model of STI_DA in terms of groups of RT60 97
4.15 Prediction of STI_DS in terms of groups of RT60 97
4.16 Prediction of STI_OUT6 in terms of groups of RT60 98
4.17 Percentage surface area of material and finishes on wall 101
4.18 Percentage surface area of material furnished on floor, ceiling and dome 102
4.19 Sound absorption coefficients of material and finishes in room samples (Egan, 1988c, Kuttruf, 1989, and Ahmad Khan Said, 1990a) 102
4.20 Average sound absorption coefficient in room samples at frequency between 125 Hz and 4000 Hz 103
4.21 Prediction model of STI_DS by means of sound absorption coefficient 103
4.22 Room and dome dimension, and area of voids in room samples 105
4.23 Descriptive statistics of source-to-listener distance (D_SL), direct and reflected path distance (D_DirRef), ITDG and STI in room samples 106
4.24 Regression of STI as function of D_SL, D_DirRef, and ITDG 109
5.1 Combination of characteristics of room samples 113
5.2 Determination of samples of room with dome for analysis 114
5.3a Room basic dimensions 115
5.3b Minimum, maximum and average of basic room dimensions 115
5.4 Dome basic dimensions 116
5.5 Types of room and dome volumes 117
5.6 Types of room and dome surface areas in room samples 118
5.7 Correlation coefficient and significance of room basic dimension parameters 122
5.8 Relationship of length of room to other basic room dimension parameters 122
5.9 Relationship of width of room to other basic dimensions parameters 123
5.10 Relationship of height of room to other room basic dimensions parameters
5.11 Correlation coefficient and significance of dome basic dimension parameters
5.12 Relationship of dome basic dimension parameters within the group
5.13 Correlation coefficient and significance of room and dome volume parameters
5.14 Relationship of room and dome volumes within the group
5.15 Correlation coefficient and significance of room and dome surface area parameters
5.16 Relationship of room and dome surface area within the group
5.17 Multiple correlation coefficient (R^2) and P-value of room and dome dimension parameters
5.18 Direct multiple regression of STI in terms of room and dome parameters
5.19 Ratio of room basic dimensions parameters
5.20 Ratio of dome basic dimension and volume parameters
5.21 Ratio of room and dome surface area parameters
5.22 STI_{ALL} prediction model
5.23 STI_{DA} prediction model
5.24 STI_{DS} prediction model
5.25 STI_{OUT6} prediction model
5.26 Room characteristics of the simulated room samples
5.27 Measured and simulated STI
5.28 AveSTI in the simulated room samples by in terms of RT60
5.29 Groups of RT60 in simulated room samples
5.30 NomdSTI in simulated room samples by means of RT60
5.31 Speech intelligibility band rating SI Band Rating (Diff) in room samples by means of RT60
5.32 Accuracy of the developed SI prediction models in terms of RT60
5.33 Speech intelligibility band rating SI Band Rating (Diff) in the simulated room samples in terms of average sound absorption coefficient
5.34 AveSTI in simulated room samples in terms of room and dome geometry
5.35 NomdSTI in simulated room samples by means of room
5.37 Speech intelligibility band rating SI Band Rating (Diff) in room samples by means of dome and room geometry

5.38 Accuracy of the developed prediction models in terms of room and dome geometry

A.1 Technical Specification of sound source B&K type 4224
A.2 Calibration chart of 01dB Calibrator CaL01
A.3 Technical specifications of sound calibrator 01dB Type CAL 01
A.4 Calibration chart condenser microphone Type 1220
A1.1 Material and finishes of wall in room samples
A1.2 Material and finishes of floor and ceiling in room samples
A1.3 Material and finishes on interior surfaces of dome
A1.4 Development of STI prediction model as function of ITDG and its parameters

B.1 Simulated RT60
B.2 Room and dome parameters of the simulated room samples
B.3 Calculated average sound absorption coefficients and NRC
B.4 Simulated average sound absorption coefficients and NRC
B.5 STI\textsubscript{ALL} in room samples
B.6 STI\textsubscript{DA} in room samples
B.7 STI\textsubscript{DS} in room samples
B.8 STI\textsubscript{OUT6} in room samples
C.1a STI for room samples IPA, KEN, LAR and MER
C.1b STI for room samples PBE, SED and DWM
C.2 The post hoc comparison test at 5% significant level of STI on right and left side of room

F.1 NCB numerical ratings in one-octave band (in dB) (Beranek, 1989)
F.2 Average background noise level (L\textsubscript{N}) at frequency between 50 Hz and 800 Hz
F.3 Average background noise level (L\textsubscript{N}) at frequency
between 1000 Hz and 10000 Hz

F.4 NCB of room samples

G.1 Set L_{nc} resulted L_{fc} and measured L_N in the calibration room

G.2 Calibration constant B the five sets of L_{ne}

H.1 Description of sound source positions for RT60 consistency test

H.2 RT60 with all doors to coupled rooms opened

H.3 RT60 with all doors to coupled rooms closed

H.4 Correlation matrix of RT60 consistency test with doors to coupled rooms: (a) opened, (b) closed

H.5 The post hoc or comparisons test of RT60 for consistency test

I.1 RT60, STI and RASTI at various source-to-listener distance D_{SL} in Sample BKR

I.2 RT60 and STI at various source-to-listener distance (D_{SL}) in Sample DWM

I.3 RT60 and STI at various source-to-listener distance (D_{SL}) in Sample IPA

I.4 RT60 and STI at various source-to-listener distance (D_{SL}) in Sample MER

I.5 RT60 and STI at various source-to-listener distance (D_{SL}) in Sample SED

I.6 RT60 and STI at various source-to-listener distance (D_{SL}) in Sample SEG

I.7 RT60 and STI at various source-to-listener distance (D_{SL}) in Sample TAN

I.8 RT60 and STI at various source-to-listener distance (D_{SL}) in Sample TOK

I.9 Minimum, maximum and average values of STI

I.10 Volume and surfaces areas of room samples

I.11 Lengths, widths and height in room samples

I.12 Lengths, widths, and heights of samples

I.13 Descriptive statistics for room basic dimensions
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.14</td>
<td>Correlation coefficients and P-values for minimum, maximum and mean of room basic dimensions</td>
</tr>
<tr>
<td>I.15</td>
<td>Dome basic dimensions</td>
</tr>
<tr>
<td>I.16</td>
<td>Statistical analysis (a) descriptive, and (b) Pearson correlation coefficient for dome basic dimensions in room samples</td>
</tr>
<tr>
<td>I.17</td>
<td>Room and dome volumes in room samples</td>
</tr>
<tr>
<td>I.18</td>
<td>Volumes in room samples, (a) descriptive statistics, and (b) Pearson correlation coefficient</td>
</tr>
<tr>
<td>I.19</td>
<td>Surface areas in room samples</td>
</tr>
<tr>
<td>I.20</td>
<td>Statistical analysis (a) Descriptive, and (b) Pearson correlation coefficient of surface areas in room samples</td>
</tr>
<tr>
<td>I.21</td>
<td>Speech Transmission Index (STI) for all groups: $\text{STI}{\text{ALL}}$, $\text{STI}{\text{DA}}$, $\text{STI}{\text{DS}}$ and $\text{STI}{\text{OUT6}}$</td>
</tr>
<tr>
<td>I.22</td>
<td>Descriptive statistics of STI in samples for $\text{STI}{\text{ALL}}$, $\text{STI}{\text{DA}}$, $\text{STI}{\text{DS}}$, and $\text{STI}{\text{OUT6}}$</td>
</tr>
<tr>
<td>I.23</td>
<td>Correlation coefficient minimum STI in room samples for $\text{STI}{\text{ALL}}$, $\text{STI}{\text{DA}}$, $\text{STI}{\text{DS}}$, and $\text{STI}{\text{OUT6}}$</td>
</tr>
<tr>
<td>I.24</td>
<td>Correlation coefficient maximum STI in room samples for $\text{STI}{\text{ALL}}$, $\text{STI}{\text{DA}}$, $\text{STI}{\text{DS}}$, and $\text{STI}{\text{OUT6}}$</td>
</tr>
<tr>
<td>I.25</td>
<td>Correlation coefficient for average STI in room samples for $\text{STI}{\text{ALL}}$, $\text{STI}{\text{DA}}$, $\text{STI}{\text{DS}}$, and $\text{STI}{\text{OUT6}}$</td>
</tr>
<tr>
<td>I.26</td>
<td>Post hoc or multiple comparison test for minimum STI score among STI group</td>
</tr>
<tr>
<td>I.27</td>
<td>Post hoc or multiple comparison test for maximum STI score among STI group</td>
</tr>
<tr>
<td>I.28</td>
<td>Post hoc or multiple comparison test for average STI score among STI group</td>
</tr>
<tr>
<td>I.29a</td>
<td>Calculation sheet of average absorption coefficient in room sample</td>
</tr>
<tr>
<td>I.29b</td>
<td>Calculation sheet of average absorption coefficient in room sample (Cont. 1)</td>
</tr>
<tr>
<td>I.29c</td>
<td>Calculation sheet of average absorption coefficient in room samples (Cont 2)</td>
</tr>
<tr>
<td>I.30</td>
<td>Measured RT60 in room samples</td>
</tr>
</tbody>
</table>
I.31 Calculated RT60 in room samples 275
I.32 Post hoc or multiple comparison test for measured and calculated RT60 data at 500 Hz 276
I.33 Post hoc or multiple comparison test for measured and calculated RT60 data at 1000 Hz 277
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Floor plan showing STI in room with dome (Ahmad Khan Said, 2001)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Patterns of RT60 in a room with domes (Mokhtar Harun et al., 2000)</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Solutions to speech intelligibility problem in underground working area enclosed by the dome (Inoue et al., 1998)</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Illustration of the acoustics treatment for dome in Trans World Exhibition center (Clark, 1999)</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Solutions to speech intelligibility problem in King Abdullah Mosque Amman Jordan (Abdelazeez et al., 1991)</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Floor plan showing testing site for speech intelligibility effect on curved surfaces (Khaiyat, 1994a)</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Just-reliable communication distance (D_{jrc}) for talker and listener (Levitt and Webster, 1998)</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>NC curves (Templeton et al., 1993a)</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Direction angle of the arrival of sound energy</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Section view of room sample showing calculation of initial-time-delay gap (ITDG) via Ray Tracing (Burroughs, 2002)</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Sound pressure level versus distance for direct and reverberant sound</td>
<td>34</td>
</tr>
<tr>
<td>2.7</td>
<td>Absorption coefficients α (dB/m) for sound in air at temperature 20°C as a function of frequency</td>
<td>38</td>
</tr>
</tbody>
</table>
(Bass et al., 1972 and Evans et al., 1972)

2.8 EDT at 1 kHz for a measurement point in Sample KTI

2.9 EDT is constant over a wide range of frequency from 125 Hz to 1 kHz (Atal et al., 1966)

2.10 EDT versus source-to-listener distance (D_{SL}) (Bradley, 1991)

2.11 EDT (a) on balcony seats, and (b) under balcony (Bradley, 1991)

2.12 Modulation transfer function (MTF) in STI (Steeneken and Houtgast, 1985)

2.13 Illustration of specific periodic RASTI tests signal and determination of initial modulation index (m_i) of 0.40 and 0.32 for 500 Hz and 2000 Hz respectively (Steeneken, 1985)

2.14 Percentage contribution of frequency spectrum to articulation in normal speech (Davis and Davis, 1997)

3.1 Types of dome found installed in room samples

3.2 Types of ceiling in room samples (a) flat, and (b) slanting

3.3 Plan showing locations of measurement points in room

3.4 Configuration of equipment for acoustics measurement

3.5 Set up of equipment for acoustics measurement

3.6 The display of dBBATI software showing pull down menu field.gsm and TERATAI_5.gsa

3.7 Sub window display of dBBATI software of file field.gsm showing control panel for the measurement of RT60

3.8 Setting up of dBBATI software in file field.gsm showing parameters for measurement of L_N

3.9 Setting up dBBATI software in file field.gsm showing parameters for measurement of RT60

3.10 Setting up of dBBATI software in file field.gsm showing parameters for measurement of L_{eq}

3.11 Setting up of dBBATI software in file field.gsm showing parameters for measurement of STI

3.12a A sample of records recorded by measurement file in dBBATI software

3.12b A sample of measurement record file created by author
3.13 Plan showing measurement locations of STI_{ALL} 76
3.14 Plan showing measurement locations of STI_{DS} 76
3.15 Plan showing measurement locations of STI_{DA} 77
3.16 Plan showing measurement locations of STI_{OUT6} 77
4.1 Background noise level analysis for Sample TEL 89
4.2 Background noise level analysis for Sample TSR 89
4.3 Predictions of STI_{ALL(min)} by RT60_B 98
4.4 Prediction of STI_{ALL(mean)} by RT60_B 99
4.5 Prediction of STI_{DS(min)} by RT60_B 99
4.6 Box plot for STI in room samples 107
4.7 Box plot for Initial Time Delay Gap (ITDG) in room samples 107
4.8 Box plot for source-to-listener distance (D_{SL}) in room samples 108
4.9 Box plot for direct and reflected sound path distance (D_{DirRef}) in room samples 108
4.10 The effects of ITDG on STI with fixed source-to-listener distance (D_{SL}) 109
4.11 The effect of ceiling height on ITDG for fixed STI 110
5.1 The ratio of standard deviation (SD) to mean and number of samples of room basic dimension parameters 120
5.2 The ratio of standard deviation (SD) to mean, and to number of samples of the minimum, maximum and average values of basic dimensions parameters 121
5.3 (a) Minimum length (MNL) as a function of average length (MEL), (b) Maximum length (MXL) as function of average length (MEL), and (c) Average length (MEL) as function of maximum height (MXH) in the samples in simple linear and exponential equations 124
5.4 Maximum width (MXW) as a function of average width (MEW) in the sample in (a) simple linear, and (b) exponential equation 125
5.5 (a) Minimum height (MNH) as a function of maximum height (MXH), (b) Maximum height (MXH) as function of average height (MEH) in the samples in simple linear and exponential equation 126
5.6 The ratio of mean and standard deviation (SD) and number of samples (N) of dome basic
and number of samples (N) of dome basic dimensions parameters

5.7 (a) Dome diameter (DD) as function of radius of curvature (RC), (b) Radius of curvature (RC) as function of room height (RH) in the samples in simple linear and exponential equation

5.8 Ratio of standard deviation (SD) to mean, and number of samples of room and dome volume parameters

5.9 (a) Total volume of samples (TVO) as function of room volume (RVO), (b) Room volume of samples (RVO) as function of volume of dome cylinder (EVO), and (c) Dome volume (DVO) as function of volume of dome cylinder (EVO) in the samples in simple linear and exponential equations

5.10 The ratio of standard deviation (SD) to mean, and number of samples of room and dome surface area parameters

5.11 (a) Total surface area of samples (TSA) as function of floor surface area (FSA), (b) Room surface area of samples (RSA) as function of wall surface area (WSA) of room samples in simple linear and exponential equations

5.12 (a) Dome surface area (DSA) as function of area of curvature (ACV), (b) Floor surface area (FSA) as function of surface area of dome cylinder (ACY) of room samples in simple linear and exponential equation

5.13 (a) Wall surface area (WSA) as a function of surface area of curvature (ACV), (b) Ceiling surface area (CSA) as function of surface area of curvature (ACV), and (c) Surface area of curvature (ACV) as a function of surface area of dome cylinder (ACY) in the samples in simple linear and exponential equations

5.14 The effect of room height (RH) on STI_{ALL(min)} at fixed dome diameter (DD)

5.15 The effect of wall surface area (WSA) on STI_{ALL(max)} at fixed ratio of dome surface area (DSA) to floor surface area (FSA)

5.16 The effect of dome volume (DVO) on STI_{DA(min)} at fixed ratio of room height (RH) to dome diameter (DD)

5.17 The effect of dome volume (DVO) on STI_{DA(mean)} at fixed ratio of room height (RH) to dome
diameter (DD)

5.18 The effect of dome diameter (DD) on $\text{STI}_{D}(\text{min})$ at fixed ratio of dome volume (DVO) to total volume of room (TVO)

5.19 The effect of dome surface area (DSA) on $\text{STI}_{D}(\text{mean})$ at fixed ratio of floor surface area (FSA) to ceiling surface area (CSA)

5.20 The effect of mean length (MEL) on $\text{STI}_{\text{OUT}}(\text{max})$ at fixed mean height (MEH) to mean width (MEW)

5.21 The effect of mean width (MEW) on $\text{STI}_{\text{OUT}}(\text{mean})$ at fixed ratio of mean height (MEH) to mean length (MEL)

5.22 Room building process in EASE 3.1 for simulation purposes (a) floor area, (b) floor and wall, (c) floor, wall and ceiling, and (d) floor, wall, ceiling and dome cylinder

5.23 The complete built up room in EASE 3.1 for simulation purposes

A.1 Symphonie Measurement System and its minimum computer configuration

A.2 The summary of Symphonie Measurement System components

A.3 Field response of condenser microphone Type 1220

A1.1 Dimensions of room samples (a) plan, (b) section

A1.2 Location for measurements of dome basic dimensions

C.1 Plan showing the location of STI measurement in room samples

C.2 STI on right and left hand side in IPA

C.3 STI on right and left hand side in KEN

C.4 STI on right and left hand side in LAR

C.5 STI on right and left hand side in MER

C.6 STI on right and left hand side in PBE

C.7 STI on right and left hand side in SED

C.8 STI on right and left hand side in DWM

F.1 NCB contour curves (Beranek, 1989)

F.2 Analysis of background noise level in Sample BBE

F.3 Analysis of background noise level in Sample BPE
F.4 Analysis of background noise level in Sample KTI 278

G.1 Sound source B&K Type 4224 279

G.2 Types of sound power level of the sound source: Wide band, Spectrum I and Spectrum II 280

G.3 Measured L_{nc} and L_N at various frequency 284

H.1 Floor plan showing 203 m3 main test room and the adjacent coupled rooms 288

H.2 Arrangement of doors in main test room to coupled rooms: (a) doors closed, (b) doors opened 289
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cross-sectional area of the hole</td>
</tr>
<tr>
<td>A_c</td>
<td>Total absorption area of the calibration room</td>
</tr>
<tr>
<td>a</td>
<td>Zero correction constant</td>
</tr>
<tr>
<td>α, $\bar{\alpha}$</td>
<td>Average sound absorption coefficient</td>
</tr>
<tr>
<td>α_{n-e}</td>
<td>Average sound absorption coefficient from Norris-Eyring method</td>
</tr>
<tr>
<td>$\bar{\alpha}_x, \bar{\alpha}_y, \bar{\alpha}_z$</td>
<td>Average sound absorption coefficient in x, y, and z-axis respectively</td>
</tr>
<tr>
<td>C_{se}</td>
<td>Early-to-late-arriving sound energy ratio</td>
</tr>
<tr>
<td>C_{50}</td>
<td>Clarity</td>
</tr>
<tr>
<td>c</td>
<td>Speed of sound in air</td>
</tr>
<tr>
<td>D, D_{SL}</td>
<td>Source-to-listener distance</td>
</tr>
<tr>
<td>D_{cr}</td>
<td>Critical distance</td>
</tr>
<tr>
<td>D/R</td>
<td>Direct-to-reverberant ratio</td>
</tr>
<tr>
<td>Df</td>
<td>Average frequency range per mode</td>
</tr>
<tr>
<td>D_{jrc}</td>
<td>Just-reliable communication distance</td>
</tr>
<tr>
<td>d_1</td>
<td>Distance of direct path from listener-to-receiver</td>
</tr>
<tr>
<td>dN</td>
<td>Average number of modes per frequency or mode density</td>
</tr>
<tr>
<td>$\frac{dN}{Df}$</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>Dissipation coefficient</td>
</tr>
<tr>
<td>F</td>
<td>Frequency of the eigentone</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>f_0</td>
<td>Frequency of the first mode</td>
</tr>
<tr>
<td>f_m</td>
<td>Octave modulating frequency from 0.63 Hz to 12.5 Hz</td>
</tr>
</tbody>
</table>
f_N - Number of eigentone

f_c - Critical frequency

K - Listener correction factor

k - A constant equals $13.82/RT60$

L - Loudness

l - Thickness of the perforated panel

L_1, L_2, L_3, L_4, L_5 or $L_{1,2,3,4,5}$ - Lengths of a room

L_D - Direct sound level

L_N - Background noise level

L_K - Sensitivity of microphone

L_{eq} - Sound pressure level at listener’s position

L_{fc} - Sound pressure level at the center of calibration room

L_{nc} - Sound pressure level at the sound source, with microphone touching perpendicular to the source

L_n - Average stationary mean background noise level in the room (dB)

L_r - Mean square value of the reflected sound pressure (dB)

L_R - Reverberant level

L_w - Sound power level

L_x, L_y, L_z - Room dimensions in x, y and z-axis

λ - Wavelength

Mo - Resulting modulation index at listener’s position

Mi - Initial modulation index of the test signal
\(M(F) \) - Modulation Transfer Function

\(m \) - Modulation factor

\(m_a \) - Mass of air

\(m(f_m) \) - Resultant reduction factor as function of modulating frequency

\(N_x, N_y, N_z \) - Integers 0, 1, 2, 3 \ldots \infty

\(N \) - Total number of sound source

\(P, p \) - Pressure

\(P_{el} \) - Maximum electrical power

\(P_{ref} \) - Reference pressure

\(p_n \) - Stationary uniform noise pressure inside the room

\(p_r \) - Mean value of the reflected sound pressure in the room

\(\pi \) - Constant equals 3.1412

\(\rho_o \) - Air density

\(q, Q \) - Directivity factor

\(\sigma \) - Perforation ratio

\(R^2 \) - Multiple correlation coefficient

\(RT60_e \) - Reverberation time of an empty reverberant chamber

\(RT60_{ws} \) - Reverberation time of a reverberant chamber with sample

\(R_T \) - Room constant

\(r_1 \) - Distance of direct sound
r_2 - Distance of reflected sound

r_{LH} - Source-to-listener distance

r_h - Reverberation distance

σ - Perforation ratio

τ - Transmission coefficient

S - Total surface area of the room

S_I - The surface area of the hole

S_2 - The surface area of solid of the perforated panel

S_x, S_y, S_z - Total surface area of the parallel surfaces on the x, y and z-axis

S / N - Normalized signal to noise

T - Reverberation time

t_x - The time taken when the sound source is stopped until that sound is 10 dB decayed

θ - Angle between direct and reflection sound path

U - Total volume flow density

V - Volume of room

$W_{1,2,3,...,N}$ - Widths of a room

W_k - Weighting factor

ω - Angular frequency

Z_a - Acoustics impedance of material

z_c - Characteristics impedance of material
LIST OF ABBREVIATIONS

ACV Area of curvature
ACY Area of dome cylinder
AI Articulation Index
AI_{cons} Articulation Loss of Consonants
AMP Area of main prayer area
ANOVA Analysis of variance
ANSI American National Standards Institute
AveSTI Average value of simulated STI and measured STI
AWA Area of wall
CSA Ceiling surface area
CVO Ceiling volume
DC Dome diameter of curvature
DD Dome diameter
DH Dome height
DSA Dome surface area
DVO Dome volume
EDT Early Decay Time
EVO Volume of dome cylinder
HB Height to mouth of dome
HC Height of dome cylinder
ITDG Initial Time Delay Gap
L_{1,2,3,...,N} Lengths in room
MEH Mean height of the room
MEL Mean length of room
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEW</td>
<td>Mean width of the room</td>
</tr>
<tr>
<td>MFP</td>
<td>Mean Free Path</td>
</tr>
<tr>
<td>MNH</td>
<td>Minimum height in the room</td>
</tr>
<tr>
<td>MNL</td>
<td>Minimum length in the room</td>
</tr>
<tr>
<td>MNW</td>
<td>Minimum width in the room</td>
</tr>
<tr>
<td>MPA</td>
<td>Main prayer area</td>
</tr>
<tr>
<td>MRT</td>
<td>Modified Rhyme Test</td>
</tr>
<tr>
<td>MsmdSTI</td>
<td>Measured STI</td>
</tr>
<tr>
<td>MXH</td>
<td>Maximum height in the room</td>
</tr>
<tr>
<td>MXL</td>
<td>Maximum length in the Room</td>
</tr>
<tr>
<td>MXW</td>
<td>Maximum width in the Room</td>
</tr>
<tr>
<td>NCB</td>
<td>Balanced Noise Criteria</td>
</tr>
<tr>
<td>NH</td>
<td>Minimum dimension in room</td>
</tr>
<tr>
<td>NomdFactor</td>
<td>Normalized factor</td>
</tr>
<tr>
<td>NomdSTI</td>
<td>Normalized STI</td>
</tr>
<tr>
<td>NSR</td>
<td>Noise-to-Signal Ratio</td>
</tr>
<tr>
<td>PredSTI</td>
<td>Predicted STI</td>
</tr>
<tr>
<td>RASTI</td>
<td>Rapid Speech Transmission Index</td>
</tr>
<tr>
<td>RC</td>
<td>Radius of curvature</td>
</tr>
<tr>
<td>RCB</td>
<td>Balanced Room Criteria</td>
</tr>
<tr>
<td>RDDL</td>
<td>Ratio dome diameter to length of room</td>
</tr>
<tr>
<td>RDHFA</td>
<td>Ratio DH to floor area of the room</td>
</tr>
<tr>
<td>RDMEH</td>
<td>Ratio dome diameter to MEH</td>
</tr>
<tr>
<td>RDMEL</td>
<td>Ratio dome diameter to MEL</td>
</tr>
<tr>
<td>RDMEW</td>
<td>Ratio dome diameter to MEW</td>
</tr>
<tr>
<td>RDMNL</td>
<td>Ratio dome diameter to MNL</td>
</tr>
<tr>
<td>RDMXH</td>
<td>Ratio dome diameter to MXH</td>
</tr>
<tr>
<td>RDSPH</td>
<td>Ratio of dome surface area to product of floor and ceiling surface area</td>
</tr>
</tbody>
</table>
RFSCW Ratio of floor surface area to product of wall and ceiling surface area
RH Room height not including the dome
RHEPT Ratio of mean height to product of mean length, width and height of room sample
RHSAH Ratio of surface area of cylinder of dome to surface area of floor of room samples
RMNVH Ratio of minimum height to minimum length in room sample
RMWLH Ratio MEW to MEL to MEH
RMXH Ratio maximum height to mean height of the room
RMXL Ratio maximum length to mean length of the room
RMXW Ratio maximum width to mean width of the room
RRCDD Ratio RC to DD
RRHDD Ratio of RH to DD
RRMEW Ratio radius of curvature to MEW
RRMNL Ratio radius of curvature to MNL
RRSTS Ratio of room surface area to total surface area of sample
RRVT Ratio of room volume to total volume of room samples
RSA Room surface area
RT60 Reverberation time
RVO Room volume
RVEHP Ratio of mean height to product of mean length and mean width of room sample
RWSFC Ratio of wall surface area to floor and ceiling surface area
RXWLH Ratio MXW to MXL to MXH
SE Standard error
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL</td>
<td>Speech Interference Level</td>
</tr>
<tr>
<td>SimSTI</td>
<td>Simulated STI</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>STI</td>
<td>Speech Transmission Index</td>
</tr>
<tr>
<td>STI_ALL</td>
<td>Group STI values measured throughout the room</td>
</tr>
<tr>
<td>STI_DA</td>
<td>Group of all STI data measured under the dome area in a room</td>
</tr>
<tr>
<td>STI_DS</td>
<td>Group of all STI data measured in line and in front of sound source</td>
</tr>
<tr>
<td>STI_max</td>
<td>Maximum value of STI_ALL</td>
</tr>
<tr>
<td>STI_mean</td>
<td>Average value of STI_ALL</td>
</tr>
<tr>
<td>STI_min</td>
<td>Minimum value of STI_ALL</td>
</tr>
<tr>
<td>STI_OUT6</td>
<td>Group of all STI data measured in area off 6° off-axis in front of sound source</td>
</tr>
<tr>
<td>TSA</td>
<td>Total surface Area of Sample</td>
</tr>
<tr>
<td>TVO</td>
<td>Total volume of sample</td>
</tr>
<tr>
<td>V</td>
<td>Room volume</td>
</tr>
<tr>
<td>VCY</td>
<td>Volume of dome cylinder</td>
</tr>
<tr>
<td>VSA</td>
<td>Surface area of voids on wall</td>
</tr>
<tr>
<td>XH</td>
<td>Maximum dimension in room</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Technical Specifications and Calibration</td>
<td>197</td>
</tr>
<tr>
<td>A1</td>
<td>Dimensions and Finishes of Room and Dome</td>
<td>202</td>
</tr>
<tr>
<td>B</td>
<td>Simulation of Prediction Models in EASE Windows 3.0</td>
<td>208</td>
</tr>
<tr>
<td>C</td>
<td>Effects of Right and Left Sides of Room on STI Score in Room With Dome</td>
<td>213</td>
</tr>
<tr>
<td>D</td>
<td>Spherical Dome Formula</td>
<td>222</td>
</tr>
<tr>
<td>E</td>
<td>Ellipsoid Dome Formulas</td>
<td>223</td>
</tr>
<tr>
<td>F</td>
<td>The Analysis of Background Noise Level in Room Samples Using Balanced Noise Criteria (NCB)</td>
<td>224</td>
</tr>
<tr>
<td>G</td>
<td>Calibration of Sound Source B&K Type 4224</td>
<td>233</td>
</tr>
<tr>
<td>H</td>
<td>Methods of Measurement and Acquisition of RT60</td>
<td>240</td>
</tr>
<tr>
<td>I</td>
<td>Data and Results of Acoustics and Room and Dome Parameters</td>
<td>247</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

The chapter begins with an explanation of the background of research problem. It then proceeds with listing the objectives of the undertaken research. Next, it lays out research questions, scope of work and limitations in the study. Finally it list down the contributions of the research, and structure of chapters in the thesis.

1.2 Background of Research Problem

An ability to hear a speech is not the same as intelligible upon hearing a speech. Speech intelligibility means how clearly what is said can be heard. Although a speech is heard, the speech may not be clear or understood at all (Templeton et al., 1993).

The objective of hearing a speech is speech intelligibility. Speech intelligibility is the net result of the conditions under which communications takes place. It includes the behavior of talker and listener, the shape and finishes of the room, and the communication system under which the speech sound is propagated (French and Steinberg, 1947).

Dome, the shape that generates unequal distribution of sound waves, may cause a serious speech intelligibility problem (Cremer et al., 1982). The existence of dome in a room causes the arrival of groups of reflection within a short period of time, which degrades speech intelligibility (Mapp, 2002).
Attempts were made to study spatial distribution of speech intelligibility in relation to the location of dome. Using the score of Speech Transmission Index (STI) as the criteria, Ahmad Khan Said (2001) has found out that the STI scores are relatively low under the dome area (Figure 1.1). This is due to high reverberation time RT_{60} of this mosque. In a different study using RT_{60} as the criteria, Mokhtar Harun et al. (2000) found that the RT_{60} under the dome area was relatively high. This is due to reflective surface of the dome.

Figure 1.1 Floor plan showing STI in room with dome (Ahmad Khan Said, 2001)
Figure 1.2 Patterns of RT60 in a room with domes (Mokhtar Harun et al., 2000)

Note: Domes are displayed to show location at which the measurement of RT60 were made.

Reports show room with dome poses speech intelligibility problems, which requires extensive and expensive treatment. Inoue *et al.* (1998) reported that a 20 m dome in an underground working area was treated with 12 pieces of 1.7 m width hanged cotton canvases, 310 m2 absorptive rubber tiles on the floor, and 30 pieces of 32 kg/m3 glass fibre boards (Figure 1.3). Clark (1999) reported that a 17187 m2 exhibition space was treated with 9300 m2 banners (Figure 1.4). Abdelazeen *et al.* (1991) reported that the King Abdullah Mosque in Jordan was treated with sandwiched panels that consist of 50 mm thick mineral wool and 8 mm thick plywood with 24% perforated of 50 mm air gap (Figure 1.5).
The 1100 pieces of banners cover 9300 squared-meter area attached to the ceiling support beams.

Figure 1.3: Solutions to speech intelligibility problem in underground working area enclosed by the dome (Inoue et al., 1998)

Figure 1.4 Illustration of the acoustics treatment for dome in Trans World Dome exhibition center (Clark, 1999)
Extensive treatment does not guarantee satisfactory speech intelligibility. Md. Najib Ibrahim et al. (2003) has found out that sound reflections in room with dome cannot be reduced solely by room treatment. For instance, the National Stadium in Kuala Lumpur had once undergone a major treatment to improve its speech intelligibility (Ahmad Khan Said, 1990). Even after the remedies, the existing sound system installation has to be operated below the optimum level.

If the treatment were not possible in order to preserve the originality and aesthetics of the room, the sound system arrangement of the room would be extensive, obtrusive and costly. Mapp (2003) has cautioned that by mounting small, high-density, and low directivity loudspeakers in room with speech intelligibility problem, the number of loudspeakers could easily exceed 100 to 200 loudspeakers.

In extreme case, the mosque with reflective dome may have to be demolished. The Sultan Ahmad Shah I Mosque, in Kuantan Pahang, had been demolished in 1989 due to serious speech intelligibility problems. The cost for
acoustics treatment was unbearable and it was more economical to rebuild the mosque with treated dome (Ahmad Khan Said, 1990).

The above problems arise because speech intelligibility in those rooms cannot be predicted prior to construction. Such an extensive and costly mistake would have been avoided should speech intelligibility could be predicted during the design stage. Therefore, this research attempts to develop speech intelligibility prediction model in room with reflective dome.

1.3 Purpose and Objectives of Research

The purpose of this research is to develop the speech prediction models in room with dome that is accurate and acceptable for practical purposes.

The objectives of this study are as follows.

1. To identify factors that affect speech intelligibility.

2. To identify and select the most reliable and comprehensive speech intelligibility assessor.

3. To develop speech intelligibility prediction model for room with dome.

4. To verify the developed prediction models with the Ray Tracing based simulation.
1.4 Scope of Work and Limitations of the Research

Mosques are selected as samples due to the fact that mosque acoustical function is mainly for speech. Unlike churches and multipurpose rooms, such as National Stadium and National Science Centre in Kuala Lumpur, mosque adopts no musical performance or musical instruments to be played in it.

The geometry of room samples selected for the study is restricted to combination of rectangular room and dome. Follows are scope set for this research.

a. The room sample selected has not undergone any acoustics treatment.
b. The plan and form of samples are symmetrical.
c. The dome, material and room finishes of dome in room samples are made of hard material, and are sounds reflective.
d. Volume of room sample is 10000 ft3 (or 280 m3) and above.
e. Ratio of dome to room volume of room samples is at least 1:10.
f. Ray Tracing Simulation of EASE 3.0 is used to verify the developed speech intelligibility (SI) prediction models
g. Real room with dome are to be used to analyse and compare the developed SI prediction models

1.5 Research Contributions

The undertaken research work has contributed to the expansion of knowledge in the field of acoustics and speech intelligibility in room with reflective dome.

The developed speech intelligibility prediction models are capable of predicting the speech intelligibility at the room’s architectural design stage. The prediction model at such an early stage enables the changes in form, shapes, and material and finishes of room
before the design is finalized. The use of prediction models save time, cost, and maintains the aesthetics of the room.

1.6 Structure and Thesis Layout

The next five chapters cover all research activities in evaluating and developing speech intelligibility prediction models in room with dome.

The second chapter provides a summary of literature on factors affecting speech intelligibility in room. Three speech intelligibility assessors currently available and used are also discussed.

The third chapter describes methodology of the research. Pilot study, sampling of room samples, and room investigation are described. The calibration of equipment, equipment set up, and procedures for measurement of objective measures and acoustics measures are presented in this chapter.

Acoustics quality of room samples in terms of objective measures are described in Chapter IV. This chapter presents analysis of objective measures and their relation to STI. The developed speech intelligibility prediction models in terms of RT60, sound absorption coefficient, and ITDG is also tabulated.

The process of developing speech intelligibility prediction model in terms of room and dome dimensions is described in Chapter V. The simulation of the prediction model to Ray Tracing based simulation is presented at the final section of this chapter.

Lastly, the final chapter provides conclusions of the research. The undertaken research also has brought about future suggestions and strategy to improve the developed models. Those ideas are presented in section on suggestions for future work.
REFERENCES

