DEVELOPMENT OF BIOGRANULES USING SELECTED MIX CULTURE OF DECOLOURISING BACTERIA FOR TREATMENT OF TEXTILE WASTEWATER

KEE THUAN CHIEN

UNIVERSITI TEKNOLOGI MALAYSIA
DEVELOPMENT OF BIOGRANULES USING SELECTED MIX CULTURE OF DECOLOURISING BACTERIA FOR TREATMENT OF TEXTILE WASTEWATER

KEE THUAN CHIEN

A thesis submitted in fulfilment of the requirements for the award of the degree of
Master of Science (Bioscience)

Faculty of Biosciences and Bioengineering
Universiti Teknologi Malaysia

NOVEMBER 2012
Specially dedicated to my family members
ACKNOWLEDGEMENT

People from all walks of life have contributed towards my comprehension and completion of this study. In particular, I wish to convey my upmost gratitude to the main thesis supervisor, Assoc. Prof. Dr. Zaharah Bt. Ibrahim and my co-supervisor, Dr. Khalida Bt. Muda for their aid in supervision and encouragement. Their continued support was the key factor in the completion of this thesis. Million thanks to Kuok Foundation for financially supported this study. I will be sure to fulfill the promise to pledge myself in serving and bring contribution to my country.

I am also feeling grateful to Universiti Teknologi Malaysia (UTM) in providing top facilities for my study and research. Staffs of biochemical lab and research lab 2 from Faculty of Biosciences and Bioengineering as well as Civil Engineering Environmental Department also deserves special thanks for their assistance in this study. I am greatly indebted to my fellow postgraduate friends and undergraduate juniors for their sincere advice and supports. Last but not least, greatest appreciation to all my family members for their unconditional love and care. Once again, for those who are not listed in this limited space, you have my sincere gratitude for your assistance at various occasions. Thank you.
ABSTRACT

Biological treatment of textile wastewater using granules involves the application of self-immobilisation of high density biomass under intermittent facultative anaerobic and aerobic system. Since granules are dense and have high settling velocity, high density of active biomass to be retained without being washed out, minimising previous problems of using suspended biomass in treating textile wastewater. The use of synthetic wastewater containing single or several combinations of dyes for the development of granules has been widely studied. However, little has been reported on the development of granules using more complex and toxic real textile wastewater. Hence, there is a need to develop granules that are well adapted to real textile wastewater in order to improve the treatment efficiency. In this study, granules consisting of bio-augmented consortium of four locally isolated decolourising bacteria were successfully developed under intermittent facultative anaerobic-aerobic system. Sludge was added as seeding agent in a single 1 L SBR reactor at hydraulic retention time (HRT) of 6 h. The 16S rDNA molecular analysis showed that ZK1 (JQ773350), ZK2 (JQ773351), ZB1 (JF742762) and ZB2 (JF742761) were closely related to Bacillus pumilus, Bacillus cereus, Brevibacillus panacihumi and Lysinibacillus fusiformis respectively. After 112 days, the size of the granules reached 3.3 ± 1 mm and were dark grey in colour, with integrity coefficient of 25 ± 2, settling velocity of 56 ± 5 m h⁻¹ and sludge volume index (SVI) of 35 ± 5.5 mL g⁻¹. Biomass concentration was 13 ± 0.8 g L⁻¹ and 11 ± 0.6 g L⁻¹ for MLSS and MLVSS respectively. In general, the developed granules showed good removal for colour (70 %; initial ADMI values ranging from 500 to 2000) and COD (53 %; initial values ranging from 400 to 1,500 mg L⁻¹) at HRT of 24 h with intermittent facultative anaerobic (18 h) and aerobic (6 h).
ABSTRAK

Rawatan biologi air sisa tekstil dengan granul melibatkan pengumpulan biojisim berkepekatan tinggi dalam sistem olahan berselang seli fakultatif anaerobik dan aerobik. Dengan ketumpatan dan halaju enapan yang tinggi, granul yang terdiri daripada biojisim aktif yang berkepekatan tinggi dapat dikekalkan dalam reactor dan ini mengurangkan masalah penggunaan biojisim terampai dalam rawatan sebelum ini. Air sisa sintetik dengan satu atau kombinasi perwarna telah diguna secara meluas untuk pembentukan granul. Namun, pembentukan granul dengan air sisa tekstil mentah yang lebih kompleks dan toksik jarang dilaporkan. Oleh itu, keadaan ini menjanakan permintaan untuk pembentukan granul yang bersesuaian dengan air sisa tekstil mentah dalam meningkatkan prestasi rawatan. Granul dalam kajian ini terdiri daripada kombinasi empat bacteria penyahwarna diasing daripada kilang tekstil tempatan terbentuk dalam sistem olahan berselang seli fakultatif anaerobik dan aerobik. Enapcemar ditambahkan dalam reactor penjujukan berkelompok 1 L dengan masa tahan hidraul selama 6 jam. Analisis penjujukan telah mengenal pasti ZK1 (JQ773350), ZK2 (JQ773351), ZB1 (JF742762) and ZB2 (JF742761) masing-masing berkait rapat dengan Bacillus pumilus, Bacillus cereus, Lysinibacillus fusiformis dan Brevibacillus panacihumi. Selepas 112 hari, granul terbentuk mencapai saiz 3.3 ± 1 mm dan berwarna kelabu gelap, dengan koefisien intergriti 25 ± 2, halaju enapan purata 56 ± 5 m j⁻¹ dan indeks halaju enapan (SVI) 35 ± 5.5 mL g⁻¹. Kepekatan biojisim dalam campuran pepejal terampai (MLSS) dan campuran pepejal terampai sejatan (MLVSS) adalah masing-masing 13 ± 0.8 g L⁻¹ dan 11 ± 0.6 g L⁻¹. Secara umumnya, granul yang terbentuk berkeupayaan menyahwarna (70 %; nilai awal Indeks Pembuatan Pewarna Amerika: 500 hingga 2000) dan penyingkiran COD (53 %; nilai awal: 400 hingga 1,500 mg L⁻¹) pada masa tahan hidraul 24 jam dengan sistem olahan berselang seli fakultatif anaerobik (18 jam) dan aerobic (6 jam).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of study | 1
1.2 Problem statement | 3
1.3 Objectives | 4
1.4 Scope of study | 5

2 LITERATURE REVIEW

2.1 Dyes | 6
2.1.1 Types of dyes | 7
2.1.2 Fixation of dyes | 8
2.2 Azo dyes and its hazard

2.3 Azo dyes in textile wastewater
 2.3.1 Treatment of azo dye containing textile wastewater

2.4 Biological treatment of azo dyes (Xenobiotics)
 2.4.1 Combined anaerobic-aerobic biological treatment of azo dyes in textile wastewater
 2.4.1.1 Anaerobic azo dye reduction
 2.4.1.2 Aerobic degradation of aromatic amines

2.5 Dye degrading microorganisms

2.6 Microbial immobilisation

2.7 Biogranulation
 2.7.1 Formation of granular sludge
 2.7.2 Types of biological granulation
 2.7.2.1 Anaerobic granulation
 2.7.2.2 Aerobic granulation
 2.7.3 Physical characteristics of granules
 2.7.3.1 Size and morphology
 2.7.3.2 Settling ability
 2.7.3.3 Density and strength
 2.7.3.4 Cell surface hydrophobicity
 2.7.3.5 Exopolysaccharides
 2.7.4 Factors affecting the formation of granules
 2.7.4.1 Settling time
 2.7.4.2 Volumetric exchange ratio
 2.7.4.3 Substrate composition
 2.7.4.4 Organic loading rate
 2.7.4.5 Hydrodynamic shear force
 2.7.4.6 Feast and famine regime
 2.7.4.7 Hydraulic retention time
 2.7.4.8 Presence of inorganic composition
 2.7.4.9 Concentration of dissolved oxygen
2.7.4.10 Slow growing organisms 35
2.7.4.11 Reactor configuration 35
2.7.5 Storage stability 35
2.8 Sequencing batch reactor (SBR) in wastewater treatment 36

3 MATERIAL AND METHODS 39
3.1 Introduction 39
3.2 Isolation and characterisation of textile wastewater decolourising bacteria
 3.2.1 Isolation of decolourising bacteria from raw textile wastewater 40
 3.2.2 Cellular and colony morphology of the isolated bacteria 41
 3.2.3 Screening for removal of colour and COD by the isolated bacteria 42
 3.2.4 Auto aggregation assay 42
 3.2.5 Surface hydrophobicity assay 43
3.3 Identification of the selected textile wastewater decolourising bacteria
 3.3.1 Isolation of genomic DNA 44
 3.3.2 Analysis of genomic DNA 45
 3.3.3 Polymerase chain reaction (PCR) 46
 3.3.4 PCR product purification 47
 3.3.5 Purified DNA estimation 48
 3.3.6 Sequencing of 16S rDNA gene and homology analysis 48
3.4 Development of granules 49
 3.4.1 Characterisation of textile wastewater and preparation of seed sludge 50
 3.4.2 Preparation of nutrient broth and nutrient agar as growth medium for the selected
decolourising bacteria

3.4.3 Sequencing batch reactor set up 51
3.4.4 Experimental procedures for development of granules 52

3.5 Characterisation of developed granules 53
3.5.1 Stereo microscopic examination of seed sludge and granules 53
3.5.2 Field-emission scanning electron microscopic (FESEM) analysis 54
3.5.3 Settling velocity (SV) 54
3.5.4 Sludge volume index (SVI) 54
3.5.5 Biomass concentration 55
3.5.6 Granular strength (IC) 56
3.5.7 Colour removal 57
3.5.8 COD reagents and COD removal 57
3.5.9 Biosorption of granules 58
3.5.10 Population distribution of the bacteria on developed granules 58
3.5.11 Experimental procedures for characterization of developed granules 59

3.6 Treatment of non sterile raw textile wastewater 61
3.6.1 Effect of different HRT on ADMI and COD removal 61

4 RESULTS AND DISCUSSION 62
4.1 Characterisation of textile wastewater decolourising bacteria 62
4.1.1 Cellular and colony morphology of isolated decolourising bacteria 62
4.1.2 Growth profile and analysis of pH 64
4.1.3 Screening for removal of colour and COD by the isolated decolourising bacteria 66
4.1.4 Auto aggregation assay 69
4.1.5 Surface hydrophobicity assay 69
4.2 Identification of the selected decolourising bacteria 70
4.3 Characterisation of developed granules 75
4.3.1 Stereo microscopic examination of seed sludge and granules 75
4.3.2 Field-emission scanning electron microscopic (FESEM) analysis 76
4.3.3 Settling velocity 79
4.3.4 Sludge volume index (SVI) 80
4.3.5 Biomass concentration 82
4.3.6 Granular strength 83
4.3.7 Colour removal 84
4.3.8 COD removal 87
4.3.9 Population distribution of the bacteria in developed granules 88
4.4 Treatment of non sterile raw textile wastewater 90
4.4.1 Effect of different HRT on ADMI and COD removal 90

5 CONCLUSION AND RECOMMENDATION 93
5.1 Conclusion 93
5.2 Future recommendation 94

REFERENCES 95

Appendices A-C 113
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Dye class descriptions</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Application of dye class on natural and synthetic fibers (modified from Norris, 2009)</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Degree of fixation for different dyes on their substrate (modified from Easton, 1995)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Benefits and drawbacks of the current dye removal techniques</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Dye-degrading bacterial cultures (Pearce et al., 2003 and Forgacs et al., 2004)</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Characterizations of cell immobilization (Liu and Tay, 2002)</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Features of granular sludge and conventional activated sludge (Thanh, 2005)</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Average performance of SBR system (USEPA, 1992)</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Some advantages and disadvantages of SBR system</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of the TAE buffer (50 x)</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Reverse and forward of universal primers</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Constitution of PCR reaction solution</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameter of PCR cycle</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>A full cycle of SBR system</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.1</td>
<td>Cellular and colony morphology of ZK1, ZK2, ZB1 and ZB2</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Auto aggregation value of individual bacteria and mix culture</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Surface hydrophobicity of individual bacteria and mix culture</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Characterisation of seed sludge and granular sludge</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of azo dyes conversion to aromatic amines and simpler substances under anaerobic-aerobic sequential process (modified from Van Der Zee, 2002)</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Proposed SBR granulation mechanism with minimal settling time (Beun et al., 1999)</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of proposed internal layered structure of anaerobic granule</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>The CLSM image showed mesophilic granules with Cy-5-labeled bacterial-domain probe (EUB338) (green) and rhodamine-labeled archaeal-domain probe (ARC915) (red) at low magnification (A) and at higher magnification (B) (modified from Sekiguchi et al., 1999)</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Anaerobic granules formed in UASB reactor (Hulshoff Pol et al., 2004)</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>(a) Macrostructures of aerobic granules and (b) cellular morphology of microbial aerobic granules (Liu and Tay, 2004)</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Operation phases in one cycle of generic SBR process (Pavselj et al., 2001)</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of isolation and characterisation of textile wastewater decolourising bacteria</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of development of granules using selected decolourising bacteria</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Lab-scale sequencing batch reactor systems</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of characterisation of developed granules</td>
<td>59</td>
</tr>
</tbody>
</table>
4.1 Microscopic images of colony morphology of a) ZK1, b) ZK2, c) ZB1 and d) ZB2

4.2 Growth profile of individual bacteria and mix culture in sterile textile wastewater under combined facultative anaerobic and aerobic phase

4.3 pH profile of individual bacteria and mix culture in sterile textile wastewater under combined facultative anaerobic and aerobic phase

4.4 Removal of colour by individual bacteria and mix culture in sterile textile wastewater under combined facultative anaerobic and aerobic phase

4.5 COD removal by individual bacteria and mix culture in sterile textile wastewater under combined facultative anaerobic and aerobic phase

4.6 Agarose gel electrophoresis of genomic DNA extraction product
 Lane I : DNA ladder marker
 Lane II : ZK
 Lane III: ZK2

4.7 Agarose gel electrophoresis of purified PCR amplification product
 Lane I : DNA ladder marker
 Lane II : ZK1
 Lane III : ZK2

4.8 Phylogenetic tree of ZK1 (JQ773350) is done based on 16S rRNA gene sequence comparisons rooted with gene sequence from Crenarchaeote clone LP30MA63. The score bar (genetic gap) denotes distance values (0.02 signified 2 replacements over 1000 nucleotides) while values at nod symbolize percentage of 1000 bootstrap replicates

4.9 Phylogenetic tree of ZK2 (JQ773351) is done based on 16S rRNA gene sequence comparisons rooted with gene sequence from Crenarchaeote clone LP30MA63. The score bar (genetic gap) denotes distance values (0.05 signified 5 replacements over 1000 nucleotide) while values at nod symbolize percentage of 1000 bootstrap replicates
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10</td>
<td>Images of seed sludge at a) initial stage, b) after two weeks, c) after eight weeks and d) after sixteen weeks of granules development under stereo microscopic observation (6.3X magnification)</td>
<td>76</td>
</tr>
<tr>
<td>4.11</td>
<td>FESEM observations on surface of initial sludge (5000X magnification)</td>
<td>77</td>
</tr>
<tr>
<td>4.12</td>
<td>FESEM observations on a) cross section surface of granules after sixteen weeks and b) surface of granules after sixteen weeks (5000X magnification)</td>
<td>78</td>
</tr>
<tr>
<td>4.13</td>
<td>Settling velocity profile of the developed granules</td>
<td>79</td>
</tr>
<tr>
<td>4.14</td>
<td>SVI profile of the developed granules</td>
<td>80</td>
</tr>
<tr>
<td>4.15</td>
<td>Relationship between SVI values and settling velocity of the developed granules</td>
<td>81</td>
</tr>
<tr>
<td>4.16</td>
<td>Profile of biomass concentration in SBR</td>
<td>82</td>
</tr>
<tr>
<td>4.17</td>
<td>Integrity coefficient (IC) profile of the developed granules</td>
<td>84</td>
</tr>
<tr>
<td>4.18</td>
<td>Profile of colour removal during granules development in SBR system</td>
<td>86</td>
</tr>
<tr>
<td>4.19</td>
<td>Profile of COD removal during granules development in SBR system</td>
<td>88</td>
</tr>
<tr>
<td>4.20</td>
<td>(a) Initial inoculums ratio and (b) inoculums ratio on developed granules after 112 weeks</td>
<td>89</td>
</tr>
<tr>
<td>4.21</td>
<td>ADMI and COD removal profile of raw textile wastewater on different HRT</td>
<td>91</td>
</tr>
<tr>
<td>4.22</td>
<td>ADMI and COD removal profile of raw textile wastewater on different combination of anaerobic/aerobic phase. 1: 12 hours anaerobic, 12 hours aerobic; 2: 15 hours anaerobic, 9 hours aerobic; 3: 18 hours anaerobic, 6 hours aerobic; 4: 21 hours anaerobic, 3 hours aerobic</td>
<td>92</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA</td>
<td>16 subunit ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>ADMI</td>
<td>American Dye Manufacturing Index</td>
</tr>
<tr>
<td>Ag<sub>2</sub>SO<sub>4</sub></td>
<td>Silver Sulfate</td>
</tr>
<tr>
<td>AOP</td>
<td>Advanced Oxidation Processes</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>BLASTn</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>C<sub>6</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub></td>
<td>Xylene</td>
</tr>
<tr>
<td>CaCl</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>CAg</td>
<td>Co-aggregation</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen (mg/L)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>EPS</td>
<td>Extracellular polymeric substances</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field-Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>FISH</td>
<td>Hybridisation</td>
</tr>
<tr>
<td>H<sub>2</sub>O<sub>2</sub></td>
<td>Hydrogen Peroxide</td>
</tr>
<tr>
<td>HgSO<sub>4</sub></td>
<td>Mercury (II) Sulfate</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time</td>
</tr>
<tr>
<td>IC</td>
<td>Integrity Coefficient</td>
</tr>
<tr>
<td>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub></td>
<td>Potassium Dichromate</td>
</tr>
<tr>
<td>K<sub>2</sub>HPO<sub>4</sub></td>
<td>Dipotassium hydrogen phosphate</td>
</tr>
<tr>
<td>KH<sub>2</sub>PO<sub>4</sub></td>
<td>Potassium dihydrogen phosphate</td>
</tr>
<tr>
<td>MgSO<sub>4</sub></td>
<td>Magnesium Chloride</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed-Liquor Suspended Solid</td>
</tr>
<tr>
<td>MLVSS</td>
<td>Mixed-Liquor Volatile Suspended Solid</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient agar</td>
</tr>
<tr>
<td>NB</td>
<td>Nutrient broth</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center of Biotechnology Information</td>
</tr>
<tr>
<td>OLR</td>
<td>Organic loading rate (mg L⁻¹ day⁻¹/kg m⁻³ day⁻¹)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PLCs</td>
<td>Programmable Logic Controllers</td>
</tr>
<tr>
<td>PS</td>
<td>Polysaccharide</td>
</tr>
<tr>
<td>RG</td>
<td>Residual granules (mg)</td>
</tr>
<tr>
<td>SBR</td>
<td>Sequencing Batch Reactor</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecylsulfate</td>
</tr>
<tr>
<td>SG</td>
<td>Settled granules (mg)</td>
</tr>
<tr>
<td>SHb</td>
<td>Surface hydrophobicity</td>
</tr>
<tr>
<td>SRT</td>
<td>Sludge retention time (day)</td>
</tr>
<tr>
<td>SVI</td>
<td>Sludge Volume Index</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solid</td>
</tr>
<tr>
<td>UASB</td>
<td>Up flow Anaerobic Sludge Blanket</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>VER</td>
<td>Volumetric exchange rate</td>
</tr>
<tr>
<td>WWTPs</td>
<td>Wastewater Treatment Plants</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Data and examples of calculations</td>
<td>113</td>
</tr>
<tr>
<td>A-1</td>
<td>Organic loading rate</td>
<td>113</td>
</tr>
<tr>
<td>A-2</td>
<td>Superficial air velocity</td>
<td>113</td>
</tr>
<tr>
<td>A-3</td>
<td>Settling velocity</td>
<td>113</td>
</tr>
<tr>
<td>A-4</td>
<td>Sludge volume index</td>
<td>114</td>
</tr>
<tr>
<td>A-5</td>
<td>MLSS and MLVSS</td>
<td>115</td>
</tr>
<tr>
<td>A-6</td>
<td>Granular strength (IC)</td>
<td>115</td>
</tr>
<tr>
<td>A-7</td>
<td>Removal performance (COD and colour removal)</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>a) Screening of decolourising bacteria</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>b) During development process of granules</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>c) During non-sterile raw textile wastewater treatment</td>
<td>118</td>
</tr>
<tr>
<td>A-8</td>
<td>Biosorption (ADMI)</td>
<td>118</td>
</tr>
<tr>
<td>B</td>
<td>Morphology of bacteria</td>
<td>119</td>
</tr>
<tr>
<td>B-1</td>
<td>Morphology of Bacteria Colony</td>
<td>119</td>
</tr>
<tr>
<td>B-2</td>
<td>Morphology of Bacteria Cell</td>
<td>119</td>
</tr>
<tr>
<td>C</td>
<td>Molecular data analysis</td>
<td>120</td>
</tr>
<tr>
<td>C-1</td>
<td>BLASTn analysis result for the determination of the alignment scores of the full sequence of 16S rDNA for ZK1</td>
<td>120</td>
</tr>
<tr>
<td>C-2</td>
<td>BLASTn analysis result for the determination of the alignment scores of the full sequence of 16S rDNA for ZK2</td>
<td>123</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Textile industry is a major source of wastewater as it uses large amounts of water in its preparation and dyeing processes. It accounts for 22% of total industrial wastewater produced in Malaysia (Rakmi, 1993). A survey of the Malaysian textile industry has revealed that the volume of wastewater generated by dyeing and finishing operations ranged from 73 to 167 m3 per ton of product (Lin and Peng, 1996).

In general, textile wastewater is highly coloured due to persistent organics together with various pollutants such as chloride, ammonia, organic nitrogen, nitrate, sulphate, phosphate and heavy metals such as Fe, Zn, Cu and Pb. Synthetic dyes that have been extensively used in the textile dyeing industries are azo dyes due to its economical, stability and variations in colour compared to natural dyes (Griffiths, 1984). When textile is being processed, low efficiency in dyeing may cause huge volume of dyestuff to flow into the effluent, ending up in the environment (McMullan et al., 2001). The dyes are designed to be stable, thus are resistant to the microbial and physiochemical attack, and therefore, difficult to eliminate. The biological treatment process via the facultative anaerobic-aerobic treatment system that was developed from previous studies shows good potential application for the local textile industries as current treatment practice at most textile plants fail to meet the discharge limit while producing a lot of toxic sludge.
Over the years, the biological treatment of azo dyes has become increasingly important due to its eco friendly and economical features compared to the physical and/or chemical treatment processes. In biological treatment, bacterial decolourization of azo dyes involves azo reduction and/or desulphonation. The decolourisation was due to reductive cleavage of azo bond(s) catalysed by enzymes such as flavin reductase and quinone reductase (Russ et al., 2001). In addition, desulphonation that results in destabilization of benzene ring structure is responsible for azo bonds decolourisation (Kertesz and Wietek, 2001).

The biological treatment utilises bacterial culture is either in suspension or immobilized on support materials. Comparatively, immobilised cells or biofilms were reported to be more efficient than that of suspended cells (Pearce et al., 2003). Granules have regular and rounded surface with denser and more compact structure if compared to the fluffy, irregular and loose structure of conventional bioflocs. With hard and dense microbial constitutions that have been successfully developed in the past few years, granular compactness along with the settling velocity is greater compared to traditional bioflocs (Beun et al., 1999).

Granulation as one of current immobilisation mechanism can therefore retain higher density of biomasses in reactor with this excellent settling ability. These high levels of active biomass with broad microbial diversity within the granular system lead to improvement of the treatment capacity and efficiency (McHugh et al., 2003). Overall, granules are known with high settling velocity, COD removal, specific gravity, physical strength, integrity coefficient, hydrophobicity values and low sludge volume index (Guven, 2004). Besides, granules have also been proven to have the ability to treat high organic loading rate (OLR) wastewaters as the result of high concentration biomass retention within relatively miniature system that used up limited land area. Hence, this contributes to the establishment of small footprint and economical wastewater treatment plants (Hulshoff Pol et al., 2004 and Etterer, 2006).
Furthermore, the effectiveness of granulation treatment was further enhanced by the use of augmented mixed cultures in terms of biodegradation rates and mineralisation. Due to self complemented co-metabolic activities within a microbial community, microbial consortia are able to collectively carry out biodegradation tasks which are next to impossible for individual strains. In addition, these specialised bacteria that had been acclimatised in the textile wastewater are probably more capable of treating the raw textile wastewater in terms of colour and COD removal. Therefore, granulation using augmented and specially adapted mix culture in a combined facultative anaerobic-aerobic system used in sequencing batch reactor (SBR) would provide both reducing and oxidizing conditions to treat effluent variations common to textile mills.

1.2 Problem statement

Treatment of textile wastewater using biological way is environmental friendly as it produces minimal concentrated chemical sludge and toxic intermediates while requiring low operational and maintenance cost. In particular, treatment of textile wastewater using granules in sequencing batch reactor is becoming widely used. This is due to the system retaining high density of biomass that is able to withstand high organic loading along and has high tolerance towards the complex and toxic composition of textile wastewater. Moreover, the development of granules for wastewater treatment in local textile industry generally involved the use of synthetic wastewater containing single or several combinations of dyes. Granules development using real textile wastewater, where the composition is more complex and toxic, on the other hand, was less reported. Consequently, even though majority of textiles plants have set up the remediation facilities, the effluents discharged did not comply with the discharge limit set by local Department of Environment (DOE) (2009) especially on colour and COD removal. Since the granules developed using single or several combination of dyes were not efficient in real textile wastewater treatment, there is a need to develop granules using real textile wastewater. With these high levels of active biomass with broad
microbial diversity within the granular system, improvement on the treatment capacity and efficiency with higher bacterial tolerance can be achieved (McHugh et al., 2004). Therefore, a consortium of dye degrading bacteria from RAMATEX textile wastewater plant was used as inoculums to develop granules in sterile real textile wastewater effluent to meet the Standard B of Environmental Quality (Industry Effluents) Regulations 2009 (PU (A) 434) with colour less than 200 ADMI and COD less than 250 mg L\(^{-1}\). Moreover, the biological development using granules has also shown great potential in textile wastewater treatment as the construction of relatively small footprint treatment plant is beneficial for small to intermediate scale industries.

1.3 Objectives

In view of the above problems related to current textile wastewater treatment, research objectives were focused on granulation process implementing novel bacterial consortium and raw textile wastewater. The specific research objectives are given as follows:

i. To isolate, select and identify bacteria able to treat raw textile wastewater treatment.

ii. To develop and characterise the physical properties of granules developed from sterile raw textile wastewater using selected mix culture of bacteria able to treat raw textile wastewater in a sequencing batch reactor system.

iii. To determine the colour and COD removal of developed granules in raw textile wastewater treatment.
1.4 Scope of study

The study involves the development of granules using lab-scale sequencing batch reactor (SBR) system under intermittent facultative anaerobic and aerobic phase with hydraulic retention time (HRT) of 6 hours. A glass column reactor with working volume of 1.5 L was utilised for granulation. The seed sludge used was obtained from the textile wastewater treatment plant in Johor and sterilized before transferring into the column. For the development of biogranules, the inoculums were prepared by growing the selected decolourising bacteria as a mix culture in 1:1:1:1 ratio using sterilized textile wastewater under intermittent facultative anaerobic and aerobic phase. The selected decolourising bacteria consisted of four inoculums; two isolated from local textile wastewater plant while another two obtained from UTM microbiology lab stock cultures. The SBR reactor functions in sequential platform of ‘fill’, ‘react’, ‘settle’, and ‘decant’ with volumetric exchange ratio (VER) of 50% and aeration through reactor foundation. Acclimatized microbes with sterilized textile wastewater were added during the filling stage of every cycle. Granules were developed over a period of time during which samples of granules were collected and examined in terms of their morphology and physical characteristics such as mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), sludge volume index (SVI), settling velocity and physical strength test. Sequentially, the formed granules were tested for performances in real textile wastewater treatment in terms of colour and COD removal.
REFERENCES

on the stability of aerobically grown microbial granules. *Letters in Applied
Microbiology*, 38, 158-163.

dyes. *International Biodeterioration and Biodegradation*, 59, 73-84.

of dark fenton oxidation for the treatment of textile wastewater with high organic

Pasukphun, N. and Vinitnantharat, S. (2003). Degradation of organic substances and
reactive dye in an immobilized-cell sequencing batch reactor operation on
simulated textile wastewater. *Journal of Environmental Science and Health, Part
38(10), 2019-2028.

reactive black 5 dye by *Aspergillus foetidus*. *Bioresource Technology*, 99(1), 51-
58.

Pavselj, M., Havala, N., Kocijan, J., Ros, M., Subelj, M., Music, G., and Strmcnik, S.,
(2001). Experimental design of an optimal phase duration control strategy used
in batch biological wastewater treatment. *ISA Transactions*, (40), 41-56.

Pevsner, J. R., Gruneberg, R. N., Holton, J., Ridgeway, G.L., Scott, G. and Wilson, A. P.

Qin, L., Tay, J. H. and Liu, Y. (2004a). Selection pressure is a driving force of aerobic

and surface hydrophobicity of bifidobacteria. World Journal of Microbiology and Biotechnology, 24, 1593-1598.

Sekiguchi, Y., Kamagata, Y., Nakamura, K., Syutsubo, K., Ohashi, A., Harada, H., &

United States Environmental Protection Agency (2003). *Bacillus pumilus* strain GB 34 (006493) Fact Sheet. Washington, DC, USA.

