THE EFFECT OF HEAT TREATMENT AND CHROMIUM ADDITION ON
\(\gamma \)-TITANIUM ALUMINIDE RESISTANCE TO HYDROGEN ATTACK

KHAIRMEN SUARDI

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

MAY 2005
ACKNOWLEDGEMENT

Praise to Allah, the Most Gracious and Most Merciful, Who has created the mankind with knowledge, wisdom and power. Being the best creation of Allah, one still has to depend on others for many aspects directly and indirectly. This is, however, not an exception that during the course of study the author received so much of help, co-operation and encouragement that need to duly acknowledge.

First of all the author whishes to express profound gratitude to his research supervisor Assoc. Prof. Dr. Esah Hamzah for the noble guidance and valuable advice throughout the period of study. Her-ever-dynamic approach, love and dedication for promoting research and development have paved the way to attain a smooth finishing of the present study.

The author is also thankful to his Co-supervisor Assoc. Prof. Dr Ali Ourdjini, for his guidance during accomplishment of this thesis. Acknowledgements are due to Mr. Mo Zhiqiang from PSB Corporation Singapore for his assistance on TOF-SIMS analysis and Mr Liu Rong from Surface Science laboratory NUS for his assistance on MS-SIMS. The author would also like to thank the staff of Malaysian Institute Nuclear Technology (MINT) for their assistance in Galvanostatic corrosion tests. A word of gratitude is extended to the technical staffs of the Material Science Laboratory, Faculty of Mechanical Engineering University Technology Malaysia.

Special dedication to my family especially my mother for their support and encouragement. Special gratitude is reserved to all of my best friends in UTM, Rhino, Rival, Dadan, Fikri, Roni, Mr Nazori, Mr. Hadi Nur, Mr. Endra, Mr. Didik, Mr. Gigih, Maiieligan, Ong Wei Rex, Azmah Hanim, Tan Chu Li etc that I cannot mention all of them here.
ABSTRACT

The intermetallic alloys of γ-titanium aluminide are emerging as one of the most attractive alternative structural and machinery part materials for high and low temperature applications. One critical area of application is in hydrogen storage tank in chemical, oil and gas industries or in combustion engine when entail the use of hydrogen as a fuel. It has been widely reported by researchers that these materials exhibit environmental embrittlement in the presence of hydrogen, hence the diffusivity of hydrogen and the effect of hydrogen to the mechanical properties of γ-titanium aluminide is significant and technologically important. Therefore, in the present research, an investigation had been carried out to determine what causes the hydrogen attack and dealumination. Control microstructure and phases through heat treatment by heating to 1200°C for 30 minutes and cooled in three different ways (i.e. water-quenched, air-cooled and furnace-cooled), and addition of a third alloying element namely chromium become the focus of this research. Samples were subjected to corrosion attack under cathodically charged with galvanostatic mode for 6, 24 and 48 hours. Hydrogen diffusion coefficient (D) was calculated based on Fick’s second Law and these results were compared with that obtained from micro-Vickers hardness profiling data. The corroded and uncorroded samples were analyzed by using x-ray diffraction (XRD), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). It was found that α_2-Ti$_3$Al or lamellae phases are more prone to hydrogen attack than γ-TiAl phases but γ-TiAl is more susceptible to dealumination. Slowly cooled (furnace-cooled) Ti-Al exhibited the least hydrogen attack due to its low hydrogen diffusion coefficient. However the effect of heat treatment on dealumination is insignificant. When γ-titanium aluminides were alloyed with chromium, their resistance towards hydrogen attack and dealumination increased.
ABSTRAK

Aloi antara logam γ-titanium aluminida adalah salah satu bahan alternatif menarik yang membangun dengan pesat sebagai bahan struktur dan mesin pada suhu tinggi dan rendah. Aplikasi yang kritikal adalah pada tangki stor hidrogen bagi industri kimia, petrokimia dan sumber asli atau pada enjin pembakaran ketika penggunaan hidrogen sebagai sumber bahan api telah menyebabkan aloi titanium aluminida mengalami kerapuhan hidrogen. Oleh itu, keresapan hidrogen dan kesan hidrogen terhadap sifat mekanik γ-titanium aluminida adalah amat penting. Maka dalam penyelidikan ini, kajian telah dilakukan untuk menentukan kesan serangan hidrogen dan penyahalumin. Kawalan mikrostruktur dan fasa melalui rawatan haba dengan memanaskan sehingga 1200$^\circ$C selama 30 minit dan didinginkan dengan 3 kaedah yg berbeza (iaitu lindap kejut menggunakan air, pendinginan pada suhu udara dan pendinginan dalam relau), dan penambahan unsur aloian ketiga iatu kromium adalah menjadi tumpuan penyelidikan ini. Sampel dikakiskan dengan mencas katodik menggunakan mod Galvanostatik selama 6, 24 dan 48 jam. Pekali resapan hidrogen (D) dihitung melalui Hukum Kedua Fick’s dan hasilnya dibandingkan dengan pekali resapan yang diperolehi daripada profil kekerasan mikro Vickers. Sampel sebelum dan selepas kakisan telah dianalisis menggunakan pembelauan sinar-x (XRD), mikroskop elektron (SEM) dan spektroskopi jisim ion sekunder (SIMS). Hasil daripada kajian ini, didapati fasa lamela atau α_2-Ti$_3$Al lebih cenderung untuk mengalami serangan hidrogen jika dibandingkan dengan fasa γ-TiAl. Manakala fasa γ-TiAl lebih cenderung mengalami penyahalumin. Sampel titanium aluminida yang dirawat haba secara pendinginan perlahan (pendinginan dalam relau) menunjukkan paling sedikit serangan hidrogen disebabkan pekali resapan hidrogen yang rendah. Walau bagaimanapun rawatan haba tidak menunjukkan kesan ketara terhadap penyahalumin. Apabila γ-titanium aluminida dialoikan dengan kromium, ketahanannya terhadap serangan hidrogen dan penyahalumin meningkat.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Abstrak</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>List of Contents</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>Notations</td>
<td>xxii</td>
</tr>
<tr>
<td></td>
<td>List of Appendices</td>
<td>xxiv</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Background of The Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Objective of The Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Scope of The Research</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Titanium Alloys: Metallurgy and Application</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1 Titanium Alloys</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Titanium alloy, phase transition</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Titanium-Aluminum Alloy</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2.1 α-Titanium aluminium alloys</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.2 β-Titanium aluminium alloys</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2.3 α-β Titanium aluminium alloys</td>
<td>12</td>
</tr>
</tbody>
</table>
2.3. \(\gamma \)-Titanium Aluminide Alloys
2.3.1. Physical Properties of \(\gamma \)-Titanium Aluminide (\(\gamma \)-TiAl) Alloys
2.3.2. Phase diagram and Solid State Transformation. 14
2.3.3. Microstructure of as-cast \(\gamma \)-titanium aluminide 17
2.3.4. Microstructure of heat treated \(\gamma \)-titanium aluminide 19
2.3.5. Ternary Titanium Aluminide 20
2.3.6. Mechanical Properties of \(\gamma \)-Titanium Aluminide Alloys.

2.4. Titanium aluminide: engineering applications. 22
2.4.1. High temperature applications. 23
2.4.2. Low temperature applications. 27

3 CORROSION: MECHANISM AND KINETICS 30

3.1 Introduction 30
3.2. Hydrogen Damage 32
3.2.1. Hydrogen blistering 32
3.2.2. Hydrogen Embrittlement 33
3.2.3. Hydride formation 35
3.2.4. Hydrogen attack 35
3.3. Dealloying and dealuminification 36
3.4. Environmental Resistance of \(\gamma \)-Titanium Aluminide Alloys. 38
3.5. Corrosion Attack in The Form of Hydrogen Damage on \(\gamma \)-Titanium Aluminide. 38
3.6. Mechanism of Hydrogen Embrittlement on \(\gamma \)-titanium aluminide. 40
3.7. Sources of Hydrogen. 43
3.8. Mechanism of Diffusion 43
3.8.1. Nature of Diffusion Coefficient 43
3.8.2. Mechanism of Diffusion, Activation 45
3.8.3. Diffusion along Defects and on Surfaces 49
3.8.4. Kinetics Diffusion of Hydrogen into Metal 50
3.9. Determination of Kinetic Diffusion Coefficient of Hydrogen into γ-Titanium Aluminide using Electrochemical Galvanostatic Mode 51
3.10. Determination of Kinetic Diffusion Coefficient of Hydrogen into γ-Titanium Aluminide using micro-hardness test 54
3.11. Characterization of hydride film. 56
3.11.1. X-ray diffraction for micro-structural characterization 56
3.11.2. Secondary Ion Mass Spectroscopy (SIMS) micro-structural characterization. 59
3.11.2.1. Secondary Ion Mass Spectroscopy (SIMS)-Magnetic Sector SIMS 59
3.11.2.2. Separation of secondary ions (Conventional SIMS and TOF SIMS) 65
3.11.2.3. Static and dynamic SIMS 65
3.11.2.4. Time of Flight (TOF) SIMS 66
3.11.3. Scanning Electron Microscope (SEM) for Microstructure Characterization 68
3.12. Mechanical testing of hydrides formed at the top surface using Micro-hardness Vickers testing. 69

4 RESEARCH METHODOLOGY 71

4.1. Introduction. 71
4.2. Materials 74
4.3. Samples Preparation 74
4.4. Effect of heat treatment and chromium addition on the microstructure of γ-titanium aluminide.
4.4.1. Effect of heat treatment on microstructure of 75
titanium aluminide.

4.4.2. Effect of chromium addition on microstructures of \(\gamma \)-titanium aluminide.

4.5.1. Hydrogen Charged by Galvanostatic Corrosion Test

4.5.2. Galvanostatic Corrosion Test Procedure

4.5.3. Parameters Setup for Galvanostatic Corrosion Test

4.5.4. Determination Diffusion Coefficient of Hydrogen into \(\gamma \)-Titanium Aluminide Using Galvanostatic Corrosion Test Data

4.6. Phase and Microstructure Characterization.

4.6.2. Electron microscopy: scanning electron microscope (SEM).

4.6.3. X-Ray Diffraction (XRD) method.

4.6.4. Measuring Grain Size Microstructure

4.7. Hydrogen ion detection: secondary ion mass spectroscopy (SIMS) on selected samples.

4.7.1. Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS)

4.7.2. Magnetic Sector-Secondary Ion Mass Spectroscopy (MS-SIMS)

4.8. Determination Diffusion Coefficient of Hydrogen into \(\gamma \)-Titanium Aluminide Using Vickers Microhardness Test

5 RESULTS AND DISCUSSION

5.1. Introduction.

5.2. Microstructure Characterization of As-cast Materials

5.2.1. As-cast Ti-45%Al
5.2.2. As-cast Ti-48%Al
5.2.3. As-cast Ti-48%Al-2%Cr
5.2.4. As-cast Ti-48%Al-4%Cr
5.2.5. As-cast Ti-48%Al-8%Cr
5.2.6. X-Ray Diffraction Analysis of As-received samples

5.3. Microstructure Characterization and the Effect of Heat Treatment on the As-cast Ti-45%Al and Ti-48%Al

5.3.1. Heat Treated Ti-45%Al Samples
5.3.2. Heat Treated Ti-48%Al Samples

5.4. Kinetic Diffusion of Hydrogen Attack into γ-Titanium Aluminide

5.4.1. Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide
5.4.2. Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide using Electrochemical Data Calculation
5.4.2.1. Effect of Heat Treatment on the Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide by using Electrochemical Method
5.4.2.2. Effect of Chromium on the Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide by using Electrochemical Method
5.4.3. Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide by using Microhardness Test
5.4.3.1. Effect of Heat Treatment on the Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide using Microhardness Test
5.4.3.2. Effect of Chromium on the Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide using Microhardness Test Data Calculation
5.4.4. Comparison of Diffusivity Coefficient between Values Obtained from Electrochemical Method and by Microhardness Test.
5.4.5. Effect of Exposure Time on the Coefficient of Diffusivity of Hydrogen into γ-Titanium Aluminide.

5.5. Microstructure and Surface Morphology Analysis on effect of Heat Treatment to Corrosion Behavior

5.5.1. X-ray Diffraction Analysis

5.5.1.1. X-ray Diffraction Analysis on Heat Treated Ti-45%Al

5.5.1.2. X-ray Diffraction Analysis on Heat Treated Ti-48%Al

5.5.1.3. Comparison between α_2-Ti$_3$Al to γ-TiAl Volume Size Expansion

5.5.2. Optical and Electron Microscopy Analysis on As-received and Heat Treated γ-Titanium Aluminide After Hydrogen Attack

5.5.2.1. Optical and Scanning Electron Microscope (SEM) Analysis on As-received and Heat Treated Ti-45%Al After Hydrogen Attack

5.5.2.2. Optical and Scanning Electron Microscope (SEM) Analysis on As-received and Heat Treated Ti-48%Al After Hydrogen Attack

5.5.3. Secondary Ion Mass Spectroscopy (SIMS) Analysis by TOF SIMS

5.5.3.1. Hydrogen Mapping by TOF SIMS Analysis

5.6. Microstructure and Surface Morphology Analysis on Chromium Added γ-Titanium Aluminide After Hydrogen Attack

5.6.1. X-ray Diffraction Analysis on Chromium Content Variation in γ-Titanium Aluminide After Hydrogen Attack

5.6.2. Optical and Scanning Electron Microscopy (SEM) Analysis

5.6.3. Secondary Ion Mass Spectroscopy (SIMS) Analysis by TOF SIMS

5.6.3.1. Hydrogen Mapping by TOF SIMS Analysis
5.7. Magnetic Sector SIMS Analysis on Heat Treated Ti-45%Al in Comparison with Static TOF SIMS

6 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK

6.1 Conclusions 153
6.2 Recommendations for Future Work 154

REFERENCES 155

APPENDICES A-E 169-242
APPENDICES F-I In-CD
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Design tensile properties of unalloyed titanium sheets, strips and plates</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Minimum and average mechanical properties of selected Titanium alloy at room temperature</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanical properties and typical applications of α titanium alloys</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Properties of titanium aluminide alloys and superalloys</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison between the microstructures of as-cast γ-titanium aluminides</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Effect of microstructure on mechanical properties on Ti-48Al-2Cr-2Nb</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Chemical Composition of as-received and as-cast γ-TiAl samples</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Heat treated samples A and B</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Samples after corrosion test with exposure time variation</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Galvanostatic corrosion test parameters</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Parameters for X-Ray Diffraction (XRD) method</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Time of Flight-Secondary Ion Mass Spectroscopy (TOF-SIMS) parameters</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>Magnetic Sector Secondary Ion Mass Spectroscopy (MS-SIMS) parameters</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Phase compositions of as-received sample analysis by using Energy Dispersive X-ray System (EDX)</td>
<td>97</td>
</tr>
<tr>
<td>5.2(a)</td>
<td>Coefficient of diffusivity values of hydrogen into</td>
<td>105</td>
</tr>
</tbody>
</table>
γ-titanium aluminide for as-received Ti-45%Al and Ti-48%Al samples

5.2(b) Coefficient of diffusivity values of hydrogen into γ-titanium aluminide for heat-treated Ti-45%Al samples

5.2(c) Coefficient of diffusivity values of hydrogen into γ-titanium aluminide for heat-treated Ti-48%Al samples

5.2(d) Coefficient of diffusivity values of hydrogen into γ-titanium aluminide for Ti-48%Al-2%Cr, Ti-48%Al-4%Cr and Ti-48%Al-8%Cr samples

5.3 Comparison of d values from x-ray diffraction analysis on uncorroded and corroded samples of heat treated Ti-45%Al before and after hydrogen attack

5.4 Comparison of d values from x-ray diffraction analysis on uncorroded and corroded samples of heat treated Ti-48%Al before and after hydrogen attack

5.5 The d values from x-ray diffraction analysis on heat treated Ti-48%Al before and after hydrogen attack
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Effect of interstitial element content on the strength of titanium</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Phase diagram of TiAl Alloys</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Hexagonal closed packed (HCP) structure of α-titanium alloys</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Body centered cubic (BCC) of β-titanium alloys</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Central portion of binary T1-Al phase diagram showing the composition ranges for two-phase engineering materials</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Atomic arrangement (a). In ordered face-centered tetragonal (fct) L1₀ structure of γ(TiAl) and (b) in the ordered hexagonal DO₁₀ structure of α₂-Tᵢ₃Al</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Optical of as-cast γ-titanium aluminide, (a) equiaxed; (b) duplex; (c) nearly lamellae and (d) lamellae</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Fully lamellae structure of heat treated Ti-48%Al</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>(a) and (b) phase equilibria in the Ti-Al-Cr ternary system at 1200°C and 1000°C</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Engineering applications of γ-titanium aluminide, in hypersonic aircraft: (a) aerospace aircraft, X-30; (b) a military hypersonic aircraft, Aurora Mach 5; (c) civil transport aircraft, Concorde airplane. (d) applications in automotive industries</td>
<td>23</td>
</tr>
<tr>
<td>2.11</td>
<td>Cast Ti-48%Al-2%Cr-2%Nb, T-700 compressor case</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Investment cast γ-TiAl diffuser for demonstrator</td>
<td>25</td>
</tr>
</tbody>
</table>
2.13 Turbine wheel casting of γ-TiAl for automotive turbochargers

2.14 Cast γ-TiAl exhaust valves in testing for high-performance cars in US and in Europe

2.15 High-pressure compressor blades produced by ingot extrusion followed by closed-die forging for aircraft engine

2.16 Application of γ-titanium aluminide in highly hydrogen environment at hydrogen fuel storage tank in Concorde airplane

2.17 Application of γ-titanium aluminide expose in highly hydrogen environment: rendering of a city of fuel cell site

3.1 Cross section of a carbon steel plate removed from a petroleum process stream showing a large hydrogen blister. Exposure time: 2 years (taken from Imperial oil limited, Ontario, Canada)

3.2 Schematic diagram of hydrogen migration and blister formation

3.3 (a) a dezincification leaded brass bolt, 12 mm in diameter. (b) the corrosion penetrated to depth of 3 mm, causing severe porosity and embrittlement, and a remarkable layered microstructure within the corrosion product

3.4 Physical and Chemical Steps in Hydrogen embrittlement

3.5 Steady state Diffusion, Fick’s First Law

3.6 (a) schematic of movement of an interstitial solute from A to B through #, (b) activation energy, Q_i, required through #

3.7 Vacancy diffusion mechanism. (a) atom movement from A to B require site B to be vacant first, (b) activation energy, Q_v, is the sum of energy to create and to move vacancy

3.8 Illustration of x-ray beam path
3.9 Schematic of interaction between x-ray and atom in material

3.10 (a and b) the principle of secondary ion mass spectrometry: On the sample surface, an energy rich primary ion beam generates secondary ions, which are separated and detected within a mass spectrometer. (c) flowchart showing the principle of Secondary Ion Mass Spectroscopy (SIMS)

3.11 Schematic representation of an ion-solid interaction, leading to the emission of neutral, excited and ionized (+ or -) target atoms (X, Y) and molecules (X Y). In surface near regions of thickness d, processes may take place which change the state of particles as emitted

3.12 Distribution of the original depth of sputtered atoms versus depth

3.13 (a) positive secondary ion spectrum of aluminium target obtained under Ar⁺ bombardment, (b) negative secondary ion spectrum obtained under the same condition as figure (a)

3.14 Representative mass spectra for positive (the two upper spectra) and negative (the two lower spectra) secondary ions.

3.15 The principle of TOF SIMS

4.1 Flow Chart of Research Methodology

4.2 Schematic drawing of samples material subjected to corrosion attack

4.3 Schematic heat treatment temperature-time path used in heat treatment, T_α = Temperature transus α phase field, T_γ = Eutectoid temperature, T_t = Temperature treatment.

4.4 Furnace high temperature used for heat treatment γ-titanium aluminide

4.5 Schematic setup of the Galvanostatic corrosion test

4.6 Galvanostatic corrosion test experimental setup

4.7 Image analyzer

4.8 Scanning electron microscope (SEM)

4.9 X-ray diffraction system (XRD)

4.10 Time of Flight-Secondary Ion Mass Spectroscopy
(TOF-SIMS) machine in Laboratory Surface Analysis, PSB Corporation, Singapore

4.11 Magnetic sector secondary ion mass spectroscopy (MS-SIMS) machine in Laboratory Surface Science, Faculty Physics, NUS, Singapore

(b) cBN coated sample annealed at 427°C

4.12 Vickers microhardness machine

4.13 (a) Three points of indentation hardness for diffusion coefficient measurement; (b) Vickers microhardness profiling at cross-section area from the top surface into the bulk hardness.

5.1 Microstructures on as-received samples: (a) Ti-45%Al; (b) Ti-48%Al; (c) Ti-48%Al-2%Cr; (d) Ti-48%Al-4%Cr

5.2 X-ray Diffraction spectrums of as-received samples:

(a) Ti-45%Al; (b) Ti-48%Al; (c) Ti-48%Al-2%Cr; (d) Ti-48%Al-8%Cr; (e) Ti-48%Al-8%Cr

5.3 Classification of the α_2/γ phase equilibrium at 1000°C in the Ti-Al-Cr systems

5.4 Micrographs of heat treated Ti-45%Al; (a) water-quenched sample, (b) air-cooled sample and (c) furnace-cooled sample, respectively

5.5 Fragmented α_2 platelets in lamellae phases. Magnification 200x

5.6 X-ray Diffraction spectrums of heat treated Ti-45%Al samples; (a) water-quenched sample, (b) air-cooled sample and (c) furnace-cooled sample, respectively

5.7 Optical micrographs of heat treated Ti-48%Al; (a) water-quenched sample, (b) air-cooled sample, (c) furnace-cooled sample

5.8 X-ray Diffraction spectrums of heat treated Ti-48%Al samples; (a) water-quenched sample, (b) air-cooled sample and (c) furnace-cooled sample

5.9 Bar charts showing coefficient of diffusivity of
hydrogen into γ-titanium aluminide for all samples using electrochemical method

5.10 Bar charts coefficient of diffusivity of hydrogen into γ-titanium aluminide for as-received and heat-treated Ti-45%Al samples using electrochemical method

5.11 Bar charts coefficient of diffusivity of hydrogen into γ-titanium aluminide for as-received and heat-treated Ti-48%Al samples using electrochemical method

5.12 Bar charts coefficient of diffusivity of hydrogen into γ-titanium aluminide for different chromium content samples by using electrochemical data method

5.13 Bar charts coefficient of diffusivity of hydrogen into γ-titanium aluminide for all samples using microhardness test

5.14 Bar charts coefficient of diffusivity of hydrogen into γ-titanium aluminide for as-received and heat-treated Ti-45%Al samples using microhardness test

5.15 Bar charts coefficient of diffusivity of hydrogen into γ-titanium aluminide for as-received and heat-treated Ti-48%Al samples by using microhardness test

5.16 Bar charts coefficient of diffusivity of hydrogen in γ-titanium aluminide for different chromium content samples by using microhardness test

5.17 (a, e and i): x-ray diffraction spectrums of Ti-45%Al on water-quenched, air-cooled and furnace-cooled samples before corrosion (hydrogen attack), respectively

5.18 (a, e and i): x-ray diffraction spectrums of Ti-48%Al on water-quenched, air-cooled and furnace-cooled samples before corrosion (hydrogen attack), respectively

5.19 Optical micrographs of heat treated Ti-45%Al after hydrogen charged; (a) to (c) are as-received samples with exposure time 6, 24 and 48 hours, respectively

5.20 Scanning electron micrograph of as-received Ti-45%Al after hydrogen charged for 48 hours; (a) x500; (b) x2000;
5.21 Scanning electron micrographs of quenched Ti-45%Al after 48 hours hydrogen charged (a) x250; (b) x300 at different location; (c) x1000 from (b)

5.22 Scanning electron micrographs of furnace-cooled Ti-45%Al after 48 hours hydrogen charged (a) x250; (b) x500

5.23 Optical micrographs of heat treated Ti-48%Al after hydrogen charged; (a) to (c) are as-received samples with exposure time 6, 24 and 48 hours, respectively

5.24 Scanning electron micrograph of as-received Ti-48%Al after hydrogen charged for 48 hours; (a) x500; (b) x2000

5.25 Scanning electron micrographs of quenched Ti-48%Al after 48 hours hydrogen charged (a) x500; (b) corroded lamellae phase, x2000; (c) corroded γ phase, x1000; (d) corroded γ phase, x2000

5.26 Scanning electron micrographs of furnace-cooled Ti-48%Al after 48 hours hydrogen charged (a) x250; (b) corroded lamellae phase, x500; (c) corroded γ phase, x1000 (d) surface corroded at other location, x200

5.27 Mass spectra result by time of flight –secondary ion mass spectroscopy (TOF SIMS); (a) As –received Ti-45%Al; (b) quenched Ti-45%Al; (c) furnace-cooled Ti-45%Al; (d): as –received Ti-45%Al; (e) quenched Ti-45%Al; (f) furnace-cooled Ti-45%Al

5.28 Hydrogen mapping by time of flight-secondary ion mass spectroscopy (TOF-SIMS): (a to c): as –received Ti-45%Al, quenched Ti-45%Al and furnace-cooled Ti-45%Al, respectively; (d to f): as –received Ti-48%Al, quenched Ti-48%Al and furnace-cooled Ti-48%Al, respectively

5.29 (a and e): x-ray diffraction spectrums of Ti-48%Al-2%Cr and Ti-48%Al-4%Cr before corrosion, respectively

5.30 Optical micrographs of γ-titanium aluminate with different chromium content after hydrogen charged;
(a) to (c) are Ti-48%Al-2%Cr samples with exposure time 6, 24 and 48 hours, respectively; (d) to (f) are Ti-48%Al-4%Cr samples with exposure time 6, 24 and 48 hours, respectively; (g) to (i) are Ti-48%Al-8%Cr with exposure time 6, 24 and 48 hours, respectively.

5.31 Scanning electron micrographs of Ti-48%Al-2%Cr after hydrogen charged for 48 hours; (a) corroded γ phase, x2000; (b) corroded lamellar phase, x2000

5.32 Scanning electron micrographs of Ti-48%Al-4%Cr after hydrogen charged for 48 hours; (a) x250; (b) corroded lamellar phase, x2000; (c) corroded γ phase, x2000

5.33 Scanning electron micrographs of Ti-48%Al-8%Cr after hydrogen charged for 48 hours; (a) x125; (b) corroded β phase, x500; (c) corroded lamellae phase, x2000; (d) corroded γ phase, x125

5.34 Mass spectra result by time of flight –secondary ion mass spectroscopy (TOF SIMS); (a) as-received Ti-48%Al, (b) as-received Ti-48%A-2%Cr, (c) as-received Ti-48%Al-4%Cr and (d) as-received Ti-48%Al-8%Cr

5.35 Hydrogen mapping by time of flight-secondary ion mass spectroscopy (TOF-SIMS): (a) as-received Ti-48%Al, (b) as-received Ti-48%A-2%Cr, (c) as-received Ti-48%Al-4%Cr and (d) as-received Ti-48%Al-8%Cr

5.36 Secondary ion mass spectroscopy (SIMS) on water-quenched Ti-45%Al after hydrogen attack
NOTATIONS

γ - Gamma Phase/ tetragonal atomic structure
α - Alpha phase/ hexagonal atomic structure
α₂ - Alpha two phase/ hexagonal closed packed atomic structure
β - Betha phase/ cubic atomic structure
at.% - Atomic percentage
Γ - Average jump frequencies
C - Concentration of diffusing species (hydrogen)
Z - Charge number of electro-active diffusing species
F - Faraday constant
S - Sectional area common to both electrode and electrolyte
D - Kinetic diffusion coefficient
I - Constant current
L - Sample half thickness
Vm - Volume molar
E - Potential
dE/dδ - Potential variation of the electrode (γ-TiAl) with the change in hydrogen composition
Hv - Microhardness vickers
erf - Error function
λ - wave length
d - interplanar spacing
hkl - miller indices
θ - diffraction angle
a, b, c - lattice constant
Å - Amstrong constant
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>NA</td>
<td>Number of grain</td>
</tr>
<tr>
<td>f</td>
<td>Jeffries’s constant</td>
</tr>
<tr>
<td>SIMS</td>
<td>Secondary ion mass spectroscopy</td>
</tr>
<tr>
<td>TOF-SIMS</td>
<td>Time of flight-secondary ion mass spectroscopy</td>
</tr>
<tr>
<td>KeV</td>
<td>Kilo electron volt</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>169</td>
</tr>
<tr>
<td>B</td>
<td>Parameters Setup for Galvanostatic Corrosion Test</td>
<td>186</td>
</tr>
<tr>
<td>C</td>
<td>Diffusion Coefficient Calculation from Galvanostatic Corrosion Test Data</td>
<td>192</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion Coefficient Calculation from Microhardness Test Data</td>
<td>216</td>
</tr>
<tr>
<td>E</td>
<td>Details of X Ray Diffraction Spectrums</td>
<td>242</td>
</tr>
<tr>
<td>F</td>
<td>Details of Secondary Ion Mass Spectroscopy Spectrums By TOF-SIMS</td>
<td>In-CD</td>
</tr>
<tr>
<td>G</td>
<td>Details of Hydrogen Mapping Analysis by TOF-SIMS</td>
<td>In-CD</td>
</tr>
<tr>
<td>H</td>
<td>Details of Magnetic Sector SIMS Spectrums</td>
<td>In-CD</td>
</tr>
<tr>
<td>I</td>
<td>Details of Potential Data from Galvanostatic Electrochemical Test</td>
<td>In-CD</td>
</tr>
</tbody>
</table>
INTRODUCTION

1.1. Background of The Research

Since titanium was first discovered in 1790 and was mass-produced in the early 1950's [Mangonon, 1999], the development and research on titanium and its alloys have been well developed. Until now, scientists and engineers had discovered new advanced material: gamma titanium-aluminide, well known as “γ-TiAl”. γ-TiAl based alloys with compositions ranging from 45 to 50 at.\%Al, is an intermetallic compound consist of Ti₃Al (α₂-phase) and Ti-Al (γ-phase) with low density, high Young’s Moduli, good creep and oxidation resistance up to 900°C (creep limit) [ASM, 1994]. Due to their high properties, this γ-TiAl extent the capabilities of titanium-based alloys beyond that of conventional α-β titanium alloys and potentially viable to replace nickel-based super alloys in some application with a material having one-half the density [Zheng et al., 1995; Cheng et al., 1999; Nombela et al., 2000]. This γ-TiAl have been considered attractive candidates for applications in advanced fields such as in aerospace: blades, body frames, compressor cases, discs; in marine applications: turbocharger rotors, flywheel, turbine engine compressor component, and turbine engine exhaust system components; in automotive engine components and in chemicals and other applications: hydrogen storage tank,

The future of titanium aluminide intermetallics is bright and well developed deformation mechanisms theory can explain the relationship between mechanical properties and microstructure. The fundamental understanding of phase stabilities is enabling the optimization of microstructure and properties.

In normal air condition, γ-Titanium aluminide intermetallics are known to be highly resistant to atmospheric corrosion at room temperature. However, their tendency to oxidize to form Al_2O_3 preferentially to TiO_2 exits only up to 850°C, which is known as high temperature corrosion [Kim and Dimiduk, 1991]. However, at room temperature γ-titanium aluminide is often subjected to hydrogen-damage mechanisms, although the surface oxide film forms barrier to hydrogen atom entry to metal lattice. It is already known that titanium alloys are susceptible to hydrogen to form hydride on the surface. Hydrogen causes embrittlement leading to the deterioration of the properties of the alloys [Sha and Mckinven, 2002]. Much effort has been made to quantify the hydrogen susceptibility and its effect to properties of titanium alloys. Takasi et al. [1994] noted that for Gamma TiAl alloy, the yield strength increased with increasing amount of hydride but the ultimate tensile strength, ductility and fracture toughness decreased [Takasi et al., 1994]. Therefore the amount of hydrogen that a titanium alloy can absorb during service is a major measure of the ability of the alloy to retain good properties [Sha and Mckinven, 2002]. Also, some researchers found that hydride formed on the surface and the possibility that some hydrogen may occupy the interstitial sites in the alloy [Takasaki et al., 1994; Gao et al., 1993 and Sundaram et al., 2000].

It was found that hydrogen attack is more likely to occur in α_2 or lamellae phases rather than γ-TiAl phases. Control of microstructure and phases could be the
answer to this problem. Appropriate γ-titanium aluminide which is more resistant to environment embrittlement and has useful properties need to be investigated. The focus of this research is to investigate the influence of microstructure and an alloying element content in γ-titanium aluminide namely chromium to corrosion attack in the form of hydrogen attack or hydrogen embrittlement.

1.2. Objectives of the Research.

The objective of this research is to study the effect of microstructure variation by heat treatment process and chromium addition on γ-titanium aluminide resistance to hydrogen attack and dealuminification.

1.3. Scope of the Research.

The scope of the research include:
1. Investigation of the effect of microstructure of γ- titanium aluminide generated by heat treatment on corrosion attack in the form of hydrogen attack.
2. Investigation of the influence of an alloying element, namely chromium, added to γ-titanium aluminide on corrosion in the form of hydrogen attack.
3. Investigating the effect of microstructure and chromium content on corrosion kinetics; namely coefficient of diffusivity of hydrogen in γ-titanium aluminide
4. Investigating the hydride formed on the surface of titanium aluminides.
6.2 Recommendations for Future Work

Further research can be carried out to enhance the current research and the following are areas which are recommended for further investigation:

1. In-depth investigation on the mechanical properties namely; tensile, fatigue and creep strength of γ-titanium aluminide after it is subjected to hydrogen attack and dealuminification.

2. Metallurgical and microstructural study in other ternary titanium aluminides such as, Ti-48%Al-X%(Nb, V, Mo, Mn), and in-depth investigation on the effect of heat treatment to corrosion behavior of the ternary titanium aluminide. Understanding microstructural control through combination of heat treatment and addition of third alloying element which may produce better microstructures that more resistant to hydrogen attack and dealuminification.

3. Study on the heat treated alloyed γ-titanium aluminide and its effect on corrosion
REFERENCES

Web 1: http://www.aerospaceweb.org/design/waverider/examples.shtml

