SYNTHESIS OF ZEOLITE FERRIERITE FROM RICE HUSK ASH, CHARACTERIZATION AND ACTIVITY TOWARDS FRIEDEL-CRAFTS ACYLATION FOR THE FORMATION OF \(p \)-METHOXYPROPIOPHENONE

HASLIZA BAHRUJI

UNIVERSITI TEKNOLOGI MALAYSIA
SYNTHESIS OF ZEOLITE FERRIERITE FROM RICE HUSK ASH, CHARACTERIZATION AND ACTIVITY TOWARDS FRIEDEL-CRAFTS ACYLATION FOR THE FORMATION OF \(p \)-METHOXYPROPIOPHENONE

HASLIZA BAHRUJI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

JUNE 2005
Teristimewa buat:
mak, Amnah Mohd Nor, abah, Bahruji Abdullah dan keluarga,
suami tersayang, Muhammad Islahuddin,
dan cahaya mata ku, Afif Aizuddin

semoga usaha ini diredhaiNya
ACKNOWLEDGEMENT

In the name of Allah, the most Gracious, the most Merciful

Alhamdulillah, All praise be to Allah, The supreme Lord of the universe. Piece and blessing to Nabi Muhammad S.A.W, all the prophets, their families and all the Muslims.

Firstly, I wish to thank to my project supervisor, Assoc. Prof. Dr. Zainab Ramli for her guidance, encouragement and patience throughout this research. Her understanding and supervision is very much appreciated.

I would like to thank MARA and UTM under vote no: 74507 for scholarship and financial support. I would also like to express my gratitude to all lecturers and researchers of the Department of Chemistry, UTM and Institute Ibnu Sina, in particular, Prof Dr Halimaton Hamdan, Assoc. Prof Dr Salasiah Endud, Dr Hadi, Mr Didik and Mr Lim Kheng Wei, who have in many ways contributed to the success of my study.

Thanks to all the laboratory assistants in the Chemistry Department, En Kadir, Pn Mariam, Pn Asmah, Pn Mek Zum, En Rahim, En Azmi and others for their kindness and wonderful co-operation. To my friends, Marzita, Azmi, Wong Kah Man and others, thank you for your support and help. Thanks also to Hafiz (Apak), Hasmerya, Annie and Angela who helped me read this thesis.

Finally, I am grateful to my parents, husband and family for their love, understanding, encouragement and support.
ABSTRACT

Rice husk ash (RHA) consisting more than 90% of amorphous silica obtained under controlled burning of rice husk was directly used in the synthesis of ferrierite type-zeolite. The synthesis was performed under hydrothermal condition in the presence of different organic templates, oxide compositions and at various crystallization periods. Solid products obtained from the synthesis were characterized by XRD, FTIR, 29Si MAS NMR, N$_2$ (g) adsorption and SEM techniques. Results showed that pure ferrierite can be formed from the initial molar oxide ratios in the range of 1.31 – 1.5 Na$_2$O : Al$_2$O$_3$: 10 – 30 SiO$_2$: 4 – 10.0 template : 410 H$_2$O with only pyrrolidine (Py) as the organic template. In general, quartz was obtained at higher SiO$_2$/Al$_2$O$_3$ and lower Py/Al$_2$O$_3$ ratios. The crystal phase changes from ferrierite to analcime and lastly to quartz, with increasing SiO$_2$/Py ratios. RHA was directly transformed to ferrierite phase within one day and reached equilibrium after 4 days crystallization. The acidity study of the H-ferrierite samples at different SiO$_2$/Al$_2$O$_3$ ratios (12, 20 and 30) using IR-pyridine adsorption method showed the increase of acid sites with the decrease of SiO$_2$/Al$_2$O$_3$ ratios in ferrierite framework. In each case, the Brønsted acid site is higher than Lewis acid sites. The catalytic activity of ferrierite at different SiO$_2$/Al$_2$O$_3$ ratios towards Friedel-Crafts reaction between anisole and acid anhydrides was investigated. Results from the catalytic activity showed that only p-methoxypropiophenone and propionic acid was produced as the main product and side product respectively when propionic acid was used as acylating agent. The optimum temperature for the reaction was 120°C and ferrierite catalyst with SiO$_2$/Al$_2$O$_3$ ratio 12 gave the highest conversion of anisole (66 %) and the selectivity of the main product (80 %). When acetic anhydride was employed as acylating agent, the conversion of anisole (55 %) and the selectivity of desired product (98 %) showed a higher percentage as compared with propionic anhydride. In both cases, the main product obtained is in $para$ orientations with higher selectivity proved that H-ferrierite is a selective catalyst for the production of $para$ orientation products.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General Introduction 1
1.2 Research Background 2
1.3 Objectives of Research 3
1.4 Scope of the Research 4

2 LITERATURE REVIEW

2.1 Rice husk ash 5
2.2 Zeolites 7
2.2.1 Structure and properties 10
2.2.2 Synthesis of zeolite 15
2.3 Ferrierite 18
 2.3.1 Structure of Ferrierite 18
 2.3.2 Synthesis of Ferrierite 21
 2.3.3 Application of Ferrierite 22
2.4 Friedel-Crafts Acylation 23
2.5 Characterization Technique 26
 2.5.1 X-ray Powder Diffraction (XRD) 26
 2.5.2 Infrared Spectroscopy 28
 2.5.3 29Si Magic Angle Spinning Nuclear Magnetic Resonance 30
 2.5.4 N_2 adsorption 34

3 EXPERIMENTAL

3.1 Synthesis of Ferrierite 36
 3.1.1 Chemicals 36
 3.1.2 Synthesis of Ferrierite from Rice Husk Ash 37
 3.1.3 Optimization Synthesis of Ferrierite from Rice Husk Ash 39
 3.1.4 Method to study the Transformation of Rice Husk Ash to ferrierite 39
3.2 Characterizations of Solid Product 40
 3.2.1 X-Ray Diffraction (XRD) 40
 3.2.2 Fourier Transformed Infrared Spectroscopy 41
 3.2.3 29Si MAS NMR 41
 3.2.4 N_2 adsorption 42
 3.2.5 Scanning Electron Microscopy 42
3.3 Acidity Measurement
 3.3.1 Ammonium ion-exchange method
 3.3.2 Pyridine Adsorption
 3.3.3 Temperature-Programmed Desorption Ammonia

3.4 Catalyst Activity Testing
 3.4.1 Gas Chromatography
 3.4.2 Gas Chromatography-Mass Spectroscopy Detector

4 RESULTS AND DISCUSSION

4.1 Synthesis of Zeolite Ferrierite with Different Initial Oxides Compositions
 4.1.1 Effect of different Template
 4.1.1.1 X-ray Diffractogram
 4.1.1.2 Fourier Transform Infrared
 4.1.2 Effects of Different Molar Compositions of the Initial Gel

4.2 Transformation of Rice Husk Ash to Ferrierite Type Zeolite
 4.2.1 X-Ray Diffraction
 4.2.2 The Solid Weight
 4.2.3 Fourier Transform Infrared
 4.2.4 Nitrogen Adsorption
 4.2.5 29Si MAS NMR Spectroscopy
 4.2.6 Scanning Electron Microscopy (SEM)

4.3 Acidity Study
 4.3.1 29Si MAS NMR for H-ferrierite
 4.3.2 Infrared Spectroscopy of Pyridine Adsorption
 4.3.3 Temperature-Programmed Desorption
(TPD) of Ammonia

4.4 Friedel Crafts Acylation of Anisole and Acid Anhydrides

4.4.1 Effect of SiO$_2$/Al$_2$O$_3$ Ratios 93
4.4.2 Effect of Reaction Times 97
4.4.3 Effect of Reaction Temperature 99
4.4.4 Effects of the Size of Acylating Agent 102
4.4.5 Correlations Between the Reactivity of Catalysts with their Acidity 105

5 CONCLUSIONS AND RECOMMENDATION

5.1 Conclusions 106
5.2 Recommendation 109

REFERENCES 110

APPENDICES 124
LIST OF TABLES

<table>
<thead>
<tr>
<th>No. Table</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The oxides composition of rice husk ash</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Molar oxides composition for synthesis ferrierite using various type of templates</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>The oven-programmed setup for GCMS</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of lattice spacing, d between commercial ferrierite with Fer-12-Py and Fer-12-Py-FS samples</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Initial reaction mixtures for samples at different SiO$_2$/Al$_2$O$_3$ ratios</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Initial reaction mixture for modified samples with different SiO$_2$, Na$_2$O and Py ratio.</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>The influence of crystallization periods on the solid weight of the products for the formation of ferrierite</td>
<td>66</td>
</tr>
<tr>
<td>4.5</td>
<td>FTIR wavenumbers observed for each sample</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>The BET surface area, average pore diameter and pore volume of sample Fer-12 crystallized at different periods</td>
<td>75</td>
</tr>
<tr>
<td>4.7</td>
<td>The chemical shifting and Si/Al ratio of samples H-ferrierite</td>
<td>82</td>
</tr>
<tr>
<td>4.8</td>
<td>The amount of Bronsted and Lewis acid sites in catalysts</td>
<td>89</td>
</tr>
<tr>
<td>4.9</td>
<td>Quantitative results of H-Ferrierite at different SiO$_2$/Al$_2$O$_3$ ratios from the TPD analysis</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO. FIGURE</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Zeolite utilization demand in United State of America on 1995</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>The Secondary Building Units (SBU) in zeolite framework. The oxygen atoms between silicons and aluminums are omitted for simplicity</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Framework lattices: (a) α, (b) Zeolite A, (c) Y and (d) Faujasite</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Brønsted and Lewis acid sites in zeolite framework</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Framework structure of zeolite ferrierite</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Friedel-Crafts acylation between anisole and acid anhydride</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic representation of diffracted beams in crystal lattice</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Range of 29Si chemical shifts of Q^0 in solid silicate</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Range of 29Si chemical shifts of $Q^4(mAl)$ units in aluminosilicates</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Six types of adsorption isotherm and adsorption and desorption isotherm for mesoporous and microporous materials.</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>The α_s plot that determined the type of adsorption isotherms</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental setup for acidity measurement</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Heterogeneous batch reaction apparatus</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>X-Ray Diffractogram for sample Fer-STD, Fer-12-Py, Fer-12-Py(FS), Fer-1-Gly, Fer-2-En, Fer-7-Pn and Fer-8-PnGLy; Effect of different template and silica sources</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>FTIR spectra for sample Fer-12-Py, Fer-12-Py-FS, Fer-1-Gly, Fer-2-En, Fer-8-PnGly</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>XRD diffractogram of samples at different SiO$_2$/Al$_2$O$_3$ ratios</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>XRD patterns of ferrierite synthesized with different concentrations of pyrrolidine.</td>
<td>59</td>
</tr>
</tbody>
</table>
4.5 The distribution of formation of zeolite phase along the range of SiO2/Py ratios and Na2O/Al2O3 ratios
4.6 Phase diagram showing the ferrierite and quartz phase produced when the reaction mixture compositions of SiO2/Py/Na2O were varied within the range of 10-50 SiO2 : 2-10 Py : 1.31-6 Na2O
4.7 X-ray diffractogram pattern for sample Fer-12 under various crystallization periods
4.8 Crystallization curve for ferrierite from rice husk ash in sample Fer-12
4.9 The percentage of solid products obtained over the initial rice husk ash with time of crystallization
4.10 FTIR spectra for sample FER-12 at various crystallization period
4.11 The changes of asymmetric and symmetric stretching for TO4 bending with crystallization periods
4.12 N2 adsorption isotherm of calcined samples at various crystallization period
4.13 αs plot for sample at different crystallization period
4.14 Correlation between surface areas, pore diameter and pore volume of sample Fer-4-Py at different crystallization period
4.15 29Si MAS NMR spectrum for samples Fer-12 at various crystallization periods
4.16 Scanning electron micrograph for ferrierite at different crystallization period (a) 1 day (b) 5days (c) 9 days (d) 12 days
4.17 29Si MAS NMR spectra for sample H-ferrierite at different SiO2/Al2O3 ratios
4.18 Proposed mechanism of interaction between pyridine molecules with Brønsted acid sites in zeolite.
4.19 FTIR spectra of H-Fer 12 after (a) heated at 400°C, following thermal treatment of (b) pyridine desorbed at room temperature, (c) pyridine desorbed at 150°C and (d) pyridine desorbed at 400°C
4.20 Infrared spectra of pyridine absorbed at 150°C on H-ferrierite with various SiO2/Al2O3 ratios; (a) H-Fer 12, (b) H-Fer 20 and (c) H-Fer 30
4.21 TPD of ammonia thermogram of H-Ferrierite with various SiO$_2$/Al$_2$O$_3$ ratios denoted as (a) H-Fer 12, (b) H-Fer 20 and (c) H-Fer 30
4.22 Friedel-Crafts acylation between anisole and propionic anhydride
4.23 GC chromatogram of yield product over acylation of anisole (H-Fer 12)
4.24 GCMS spectra of yield product for acylation of anisole over H-ferrierite catalysts.
4.25 Quantitative calibration plot of anisole contain internal standard (IS) as analysed by Gas Chromatograph
4.26 Effect of SiO$_2$/Al$_2$O$_3$ ratios of H-ferrierite on the conversion and selectivity of product.
4.27 The reactivity of H-Fer 12 in Friedel-Crafts acylation of anisole with time
4.28 The percentage of concentrations for every compound in organic yield
4.29 Correlation between the concentrations of anisole and propionic acid with the concentrations of p-methoxypropiophenone
4.30 Effect of reaction temperature on the conversion of anisole as substrate with using H-Fer4
4.31 The percentage of conversion, selectivity and yield for reaction of anisole with acetic anhydride
4.32 Proposed mechanism of electrophile substitution of anisole using H-ferrierite as catalyst
LIST OF SYMBOL / ABRREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHA</td>
<td>rice husk ash</td>
</tr>
<tr>
<td>FER</td>
<td>Ferrierite</td>
</tr>
<tr>
<td>Py</td>
<td>pyrrolidine</td>
</tr>
<tr>
<td>Pn</td>
<td>piperidine</td>
</tr>
<tr>
<td>Gly</td>
<td>glycerol</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>H-Fer</td>
<td>ferrierite zeolite in hydrogen formed</td>
</tr>
<tr>
<td>H-Fer-12</td>
<td>ferrierite zeolite in hydrogen formed with SiO$_2$/Al$_2$O$_3$ ratio 12</td>
</tr>
<tr>
<td>Fer-12</td>
<td>ferrierite zeolite with SiO$_2$/Al$_2$O$_3$ ratio 12</td>
</tr>
<tr>
<td>Si-12</td>
<td>sample with SiO$_2$/Al$_2$O$_3$ ratio 12</td>
</tr>
<tr>
<td>N-5</td>
<td>sample with Na$_2$O/Al$_2$O$_3$ ratio 5</td>
</tr>
<tr>
<td>Py-10</td>
<td>sample with Py/Al$_2$O$_3$ ratio 10</td>
</tr>
<tr>
<td>Fer-12-0.25</td>
<td>sample Fer-12 with 0.25 day crystallization period</td>
</tr>
<tr>
<td>PBU</td>
<td>primary building unit</td>
</tr>
<tr>
<td>SBU</td>
<td>secondary building unit</td>
</tr>
<tr>
<td>TBU</td>
<td>tertiary building unit</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmett, Teller</td>
</tr>
<tr>
<td>FS</td>
<td>fume silica</td>
</tr>
<tr>
<td>JBW</td>
<td>NaJ (Barrer and White)</td>
</tr>
<tr>
<td>MTBE</td>
<td>methyl tert-butyl ether</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint-Committees on Powder Diffraction Standards</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDICES</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GC chromatogram for the reaction of propionic anhydride with anisole</td>
<td>123</td>
</tr>
<tr>
<td>B</td>
<td>Data obtained from GC-FID Chromatograms (Friedel-Crafts acylation of anisole and propionic acid)</td>
<td>125</td>
</tr>
<tr>
<td>C</td>
<td>GC chromatogram for the reaction of acetic anhydride and anisole using H-Fer 12 as catalyst</td>
<td>126</td>
</tr>
<tr>
<td>D</td>
<td>List of Publications</td>
<td>127</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

According to the Malaysian Budget 2005, Malaysia will focus on research and development activities, which can be divided into four main fields, including the finding of advanced materials. Zeolites that are classified under advanced materials show a higher demand in worldwide market, reaching around USD 2.15 billion per year in 2001 and is expected to increase to $2.52 billion by 2005 and 2.94 billion by 2010. The utilization of zeolite as catalysts in industrial processes occupies 40% followed by the oxides, complex oxides and ion-exchange resins [Tanabe et al. 1999]. The average utilization worldwide for zeolite in fine chemicals industries is thought to be around 60% of its uses worldwide, either as a parent form or after its modification. Nowadays, zeolites are employed as alternative heterogeneous catalysts to substitute homogenous catalysts in many organic processes such as in Friedel-Crafts reaction because of its more efficient and environmentally-friendly which can eventually reduce plant corrosion and eliminate environmental problems.

The synthetic zeolites give alternative sources for natural zeolites in which it is exists in minor quantity and always in the mixture of other constituents makes natural zeolites unfavorable and uneconomical to be used for specific applications such as catalysts. Ferrierite for example only can be found in three places in the world [Nadimi, 1993]. Based on these, the research in the synthesis of zeolites and other mesoporous materials has been widely explored by researchers all around the world. Studies including the choice of raw materials, optimization of experimental
condition for synthesis and the modifications of zeolites structure are the step to increase the potential of zeolite in order to fulfill the market demand.

1.2 Research Background

The main synthesis component for preparing zeolite is silica besides aluminium, mineralized reagent and water. It is known that the rice husk ash contains silica in which the white ash contains up to 96 % to 99 %. The abundant rice husk ash in Malaysia is giving alternative economical sources for synthesizing zeolites. Several types of zeolites such as zeolite Y [Ramli, 1995], zeolite ZSM-5 [Rawtani et al. 1989] and zeolite β [Didik, 2001] have been prepared by using rice husk ash as silica source. The silica was used either directly or by extracting the silica from the ash. The encouraging results from previous works have prompted us to synthesize another type of zeolite namely ferrierite which has great potential as catalysts in organic synthesis as well as in the reduction of nitrous oxides gaseous. In this research, rice husk ash was directly used for the first time in the synthesis of ferrierite.

Synthetic ferrierite is being commercialized either as it is or in the modified form as catalysts in skeletal isomerization of n-alkenes and for reduction of nitrous oxides gaseous. The great potential of ferrierite as catalysts has been widely explored by researchers. Ferrierite with the unique bidimensional pore systems shows the best performance in the isomerization of alkenes for petrochemicals industry compared to other types of catalysts [Yokomori et al. 2001]. Recent uses of ferrierite in the form of metal-exchange ferrierite (Ce and Ar) are efficient catalysts for nitrous oxide gaseous reduction. The high selectivity of ferrierite towards NOx reduction and the capability of Bronsted acid sites which promoted the activation of propene for the pairing with NO or NO2, make ferrierite as a good catalyst for NOx reduction [Seijger et al. 2003]. Nowadays, the capability of ferrierite as a hydrocarbon trap in automobile exhaust is still being explored by researchers in order to reduce the hydrocarbon emissions.
The great potential of ferrierite as catalysts whether in petrochemical industry or automobile and environment technology was encouraged in this study to prepare ferrierite in optimum conditions that can reduce the cost of ferrierite production. Usually, in the synthesis of ferrierite using commercial silica as silica sources requires high temperature and long crystallization period with the presence of certain amounts of template to ensure the formation of ferrierite. In this research, the use of rice husk ash as the substitute of commercial silica will lower the overall cost of ferrierite production in term of low cost of raw materials, short crystallization period than commercial silica and the low amount of template used. This study will focus in the optimization of ferrierite in order to find the optimum formulation for synthesizing ferrierite from rice husk ash. In order to cut down the cost of producing ferrierite, the small amount of template or free template system is needed. The template is the main component in the synthesis ferrierite that contributes almost 60% of the cost of zeolite production.

1.3 Objectives of research

The main objective of this research is to explore the capability of rice husk ash as raw material in the synthesis of ferrierite and also to obtain the optimum composition and synthesis conditions for ferrierite. As ferrierite is classified as a medium pore zeolite and having both Lewis and Bronsted acid sites, the potential of ferrierite for Friedel-Crafts acylation was also explored. The objectives of this research are listed as follows:

1. To synthesize ferrierite using rice husk ash as silica source
2. To optimize the metal oxides composition of the initial gel in ferrierite synthesis and the reaction conditions
3. To study the transformation of rice husk ash to ferrierite
4. To test the reactivity of the as-synthesized ferrierite as catalyst in the Friedel-Crafts acylations.
1.4 Scope of the Research

The work reported in this study focuses on the synthesis of ferrierite using amorphous rice husk ash which was obtained by controlled burning of rice husk, as silica sources. Several templates namely pyrrolidine, piperidine and ethylenediamine were used in the synthesis. The templates that gave the best ferrierite were chosen for the optimization study of preparing ferrierite from rice husk ash.

The initial oxides compositions were varied to obtain the ranges of oxides that can produce pure ferrierite. The transformation study of rice husk ash to ferrierite was performed at different crystallization period starting from 0 up to 12 days of crystallization. Characterization of each sample was carried out using Fourier Transform Infared (FTIR), X-ray Diffractogram (XRD), 29Si Magic Angle Spinning NMR (MAS NMR), Scanning Electron Microscopy (SEM), N_2 (g) adsorption and also the weight of the sample at the end of each crystallization time.

Modification of the as-synthesized ferrierite to the hydrogen form of ferrierite was carried out by ion exchanged with NH$_4$Cl solution followed by calcinations. The Si/Al ratio in ferrierite framework was measured using 29Si MAS NMR and the acid strength and the type of acid sites were measured using Temperature Programmed Desorption (TPD) of ammonia and Fourier Transform Infrared spectroscopy (FTIR) using pyridine as the probe base molecule.

The final part in this study is to test the catalytic capability of ferrierite in hydrogen form from rice husk ash towards Friedel-craft acylation of anisole with propionic and acetic anhydride as the acylating agents. The reaction was performed in a batch reactor and the products were separated and analyzed by gas chromatography (GC) and the identification of products were carried out using gas chromatography with mass spectrometry detector (GC-MSD).
The activity study of H-ferrierite as catalyst in Friedel-Crafts acylation of anisole and both acid anhydride shows that H-ferrierite has a potential to be a selective *para* catalyst for producing only product with *para* orientation. All the H-ferrierite catalysts used, produced only *p*-methoxypropiophenone as a main product with propionic acid as the side product reaction. The conversion increased relatively with the decreasing SiO₂/Al₂O₃ ratios due to the increase in Brønsted acid sites in the ferrierite framework. Reactions that have been carried out under various periods show that the optimum reaction time is in the first four hours. The effect of reaction temperature study reveals that H-ferrierite gives the optimum performance when the temperature is 120°C. From this study, it is suggested that the optimum reaction conditions for acylation of anisole with propionic anhydride is at 120°C and for 4 hours. The effect of different size of acylating agent (acetic anhydride as compared with propionic anhydride) in acylation of anisole shows that the product obtained is also in *para* orientation. However, the product selectivity and the anisole conversion were 98 % and 55 %, were higher as compared to propionic anhydride. From the product obtained, we proposed that the mechanism of this reaction involved electrophile aromatic substitution which included the formation of acylium ions from the Brønsted acid sites in the catalysts.
5.2 Recommendation

The successful formation of ferrierite from rice husk ash proved the reactivity of the rice husk ash as silica source in the synthesis of zeolite ferrierite. Therefore, the study can be extended to produce ferrierite using rice husk ash with higher SiO$_2$/Al$_2$O$_3$ ratios or siliceous ferrierite. These materials are important precursor for producing mesoporous materials which are highly researched now. The modification of ferrierite from rice husk ash to mesoporous solid also can be done in order to vary the function of ferrierite as catalyst particularly for synthesizing larger organic molecules. Besides that, the study can be extended to investigate the potential of ferrierite from rice husk ash as catalysts in other reactions such as for the reduction of nitrous oxides gaseous. The utilizations of ferrierite as catalysts in the reductions of nitrous oxides gaseous have a potential to solve the problems arise while ammonia used as reducing agents. The application of ammonia is impeded by concern over safety and ammonia distribution logistics. The use of ferrierite from rice husk ash as catalysts also can be extended in the skeletal isomerization of n-alkenes which is the main potential utilization of ferrierite in the future industries.
References

Food and Agriculture Organization, (1998), FAOstat Database.

TPD Results in the Light of Confinement Effects”, *Journal of Physical Chemistry, B.*, **106**, 3882-2889

