Evaluation of the Risk of Flood in Iskandar Malaysia Region, Using Fuzzy Logic and Weighted Linear Combination in Geographic Information System

NASIM YEGANEH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Urban and Regional Planning)

Faculty of Built Environment
Universiti Teknologi Malaysia

JUNE 2013
DEDICATION

To my beloved Mother and Father

with Regards ...
ACKNOWLEDGMENT

Many have contributed to the completion of this study, knowingly and unknowingly, for which I am highly indebted. First of all, I am greatly indebted to my supervisor, Dr. Soheil Sabri, for his knowledge, advice, patience and immense contribution in directing the framework of the study, and for putting up with my initial endless “waffling”. His time and effort is highly appreciated. I also would like to express my appreciation to Assoc. Prof. Dr. Foziah Johar for her comments and cooperation during conducting this study.

Further gratitude is extended to my friends especially Zhou wei. For their encouragement, support and presence helped. I’m also grateful to them for filling my academic days with joy and happiness.

Last but not the least, I would like to sincerely thank my family, brother Bizhan Yeganeh and sisters Maryam Abbasi and Negin Yeganeh, specially my parents Nezam Yeganeh and Shahin Shahbazi for their endless love, support and encouragement. I could not have done it without you!
ABSTRACT

Recently, Iskandar Malaysia region have been affected by flood events, which cause environmental, social and economic impacts. Severe rainfall, natural situation, new unplanned developments, and insufficient drainage systems make the situation more remarkable.

This research is an approach of flood hazard assessment at regional scale. The objectives of this study are to find out the criteria which contribute to the risk of flooding based on the characteristic of the region to develop a GIS-aided urban flood susceptibility map. Fuzzy logic and Weighted Linear Combination (WLC) methods in Geographic Information System (GIS) are used to achieve the objectives. Defined criteria are evaluated by means of complexity, uncertainty and sensitivity analysis. The methodology emphasizes on uncertainty criteria which contribute to the risk of flood and increase the risk. Distance from main stream, elevation, slope, land use type, distance from river and distance from discharge channel are recognized as effective criteria within the region. Each criterion is evaluated based on fuzzy membership type and generated map are combined using weighted linear combination to produce the final flood susceptibility map. Final susceptibility map indicates that around 6.586 square kilometers within the region face high level of risk. Pulai, Senai Kulai, Tebrau and Johor Bahru can be considered as areas which face the risk. Natural and man-made situation influence the level of risk in each area. Generally the southern part of the region has high level of risk as a consequence of conjunction of location of stream, lowland and land use type. The model is evaluated by sensitivity analysis to analysis the uncertainty and degree of importance of input criteria. Finally the situation in 2025 is investigated based on the proposed plan for 2025.
ABSTRAK

Baru-baru ini wilayah Iskandar, Malaysia telah terjejas dengan kejadian-kejadian banjir yang menyebabkan impak alam sekitar, sosial dan ekonomi. Hujan yang sangat lebat, keadaan semulajadi, pembangunan baru yang tidak dirancang, dan sistem perparitan yang tidak mencukupi menjadikan keadaan lebih parah lagi.

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUTHOR'S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 1

1. **INTRODUCTION**
 1.1 Introduction
 1.2 Background of the Study
 1.3 Problem Statement
 1.4 Research Questions
 1.5 Objectives of Study
 1.6 Significance of Study
 1.7 Research Methodology
 1.8 Research Organization

Chapter 2

2. **LITERATURE REVIEW**
 2.1 Introduction
 2.2 Natural Hazard
 2.3 Flood
 2.3.1 Definition of Flood

2.3.2 Causes of Flood

2.3.3 Flash Flood

2.4 Risk

2.5 Flood Risk Assessment

2.5.1 Different Methodologies for Flood Risk Assessment

2.6 Flood Effects on Built Environment

2.7 Effects of Urban Development on Flood

2.7.1 Urban Development Hydrologic Effect

2.7.2 Hydraulic Effects due to Stream Channels and Floodplains Changes

2.7.3 Urban Development Effects on Flood Frequency and Discharge

2.8 Indicators Which Contribute to the Risk of Flood

2.8.1 Distance to the Discharge Channels

2.8.2 Elevation

2.8.3 Slope

2.8.4 Land Use and Cover Type

2.8.5 Distance from Stream

2.9.6 Population Density

2.9 Flood in Malaysia

RESEARCH METHODOLOGY AND DATA PREPARATION

3.1 Introduction

3.2 Methodological Framework and Model

3.3 Methodology Approach

3.3.1 Phase One: Investigate the Main Criteria which are Associated with Flood Risk
3.3.2 Phase Two: Find out to what Extent do Criteria Associate with the Risk of Flooding

3.3.2.1 Justification for Suggested Method

3.3.2.2 Criterion Weighting

3.3.3 Phase Three: Generate Flood Susceptibility Map with Respect to Defined Criteria

3.4 Study Area

3.5 Data Collection and Data Preparation

3.5.1 Map Projection

3.5.2 Convert Vector Data to Raster Data

3.5.3 Data Reclassification

3.5.4 Fuzzy Membership Type Selection

3.5.5 Weighted Linear Combination

3.6 Modeling

3.6.1 Model Validation

3.6.2 Model Evaluation

3.6.3 Sensitivity Analysis

3.7 Summary

DATA ANALYSIS, RESULTS AND DISCUSSION

4.1 Introduction

4.2 Model validation

4.3 Model Evaluation

4.4 Investigate the condition and highlighting effective criteria in different Mukim

4.4.1 Tebrau

4.4.2 Senai Kulai

4.4.3 Pulai

4.4.4 Sungai Karang, Tanjong Kupang,
List of Figure

<table>
<thead>
<tr>
<th>FIGURE No.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Comparison between peak discharge and volume in urban and rural area</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Trend of changing in maximum annual discharge comparison between urban and green area in terms of long term annual rainfall 1965 – 2002</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Comparison of annual rainfall in urban and green area in Kuala Lumpur and Johor Bahru</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Criteria which contribute to the risk of flood</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Flood prone area in peninsular Malaysia</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Summary of literature review</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Research work flow</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Weighted Linear Combination concept</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Iskandar Malaysia region</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Flooded area within the study area</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Methodology framework</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Fuzzy Gaussian membership</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Fuzzy Large membership</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Fuzzy Linear membership</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Fuzzy MS Large membership</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Fuzzy Near membership</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Fuzzy Small membership</td>
<td>67</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Land use map preparation</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.12 Followed steps to achieve the final result</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Model validation based on “distance from main stream”</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Model validation based on “Land use”</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Flooded area and generated model</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Flood susceptibility map in Iskandar Malaysia</td>
<td>79</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Tebrau flood susceptibility map</td>
<td>80</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Flooded area in Northern part of Senai Kulai</td>
<td>83</td>
</tr>
</tbody>
</table>
Figure 4.7 Fuzzy membership map in terms of land use type in Senai Kulai 87
Figure 4.8 Senai Kulai flood susceptibility map 88
Figure 4.9 Flooded area in Northern part of Pulai 90
Figure 4.10 Pulai flood susceptibility map 91
Figure 4.11 Sungai Karang, Tanjong Kupang, Jelutong and Jeram Batu flood susceptibility map 93
Figure 4.12 Johor Bahru flood susceptibility map 95
Figure 4.13 Built up and non-built up area 97
Figure 4.14 Sensitivity analysis maps in Iskandar Malaysia 100
Figure 4.15 First step of sensitivity analysis 101
Figure 4.16 Second step of sensitivity analysis 102
Figure 4.17 Third step of sensitivity analysis 102
Figure 4.18 Fourth step of sensitivity analysis 103
Figure 4.19 Fifth step of sensitivity analysis 104
Figure 4.20 Sixth step of sensitivity analysis 104
Figure 4.21 Population density and area under the flood risk 106
Figure 4.22 Comparison between built up and non-built up area in 2011 and 2025 110
Figure 4.23 Flood susceptibility map for 2011 and 2025 108
Figure 4.24 Fuzzy membership maps in terms of land use for 2011 and 2025 108
<table>
<thead>
<tr>
<th>TABLE No.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Criteria and Indicators</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Distance from main stream, river and drainage system</td>
<td></td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Assigned rank for reclassify the indicators</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Type of fuzzy membership</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Weight of criteria</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Land use type in Tebrau</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Land use type in Senai Kulai</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Land use type in Pulai</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Land use type in Sungai Karang, Tanjung, Kupang, Jelutong and Jeram Batu</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Land use type in Johor Bahru</td>
<td>92</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Comparision between elevation and slope in Mukims</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Comparison between land use type in 2011 and 2025 in different Mukims</td>
<td>97</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Sensitivity analysis result</td>
<td>105</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Comparison between land use type in 2011 and 2025 in different Mukims</td>
<td>109</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Floodplains are recognized as desirable places for habitation and development due to the inherent advantages for water supply, irrigation system, power, food and defense (White, 2008). Also convenient navigation and transportation system for communication provide along coastal area and rivers (Tingsanchali, 2012). Despite the above mentioned advantages, this situation increases the risk of flooding and make flooding one of the most remarkable natural hazards (White, 2008).

During the last decade, flooding is recognized as the most common disaster in all over the world and causes nearly half of all victims of natural hazards. In addition to that, economic losses is estimated around US $185 billion (Alderman et al., 2012). More than 50 percent of global flood damages occur in Asian countries (Tingsanchali, 2012). Due to climate change and arising sea level flooding are expected to occur more frequent and intensive. In addition, more people will be put in jeopardy of flooding due to increasing levels of urbanization recently. Land use
change is associated with urban development and affects flooding in many ways (Alderman et al., 2012).

Natural hazards’ threat in urban areas is mostly inscribed via land-use zoning and building regulation (Khailani and Perera, 2013). Deforestation, removing soil and vegetation, grading land surface and improper drainage system implementation intensify runoff. Volume, vehemence and frequency of flood will be increased as a result of the peak discharge. Capacity of stream channels for transmitting floodwater are affected and decreased due to the urban development. Constructing roads and building in place which are located in flood prone areas increase the risk of flooding, inundation and erosion. Surface water flooding management is impeded due to the urban drainage characteristic (Kaźmierczak et al., 2011).

Basically, some attributes can provide inherent resilience within the city. Impermeable surface within the cities such as buildings, parking and roads increase the surface runoff. On the other hand presences of green space and city surface which have high capacity to observe water reduce runoff volume (Kaźmierczak et al., 2011).

Apparently, land use and evapotranspiring surfaces proportion have effects on water behavior and flooding. Housing type as one of the city features affects the risk of flooding. Housing units which are located at or below ground level or housing with low floor are more frequently exposed to flood (Kaźmierczak et al., 2011). Lightweight constructions are more affected by flooding than solid masonry building. In addition, risk of flooding is associated with natural feature, slope, topography and land use as well (Kaźmierczak et al., 2011). As a result, urban area where once seen as a safety place, nowadays face to different disasters and risks (White, 2008).
Based on the above argument it can be inferred that various criteria might increase the risk of flooding and flood vulnerability. Hence to find the criteria that contribute to the risk of flooding and appropriate method to evaluate the criteria seems necessary to mitigate the risk. Therefore, providing effective geospatial information by using information and communication technology can provide proper basis to improve the decisions which are made in planning system and development (Chandio et al., 2012).

1.2 Background of the Study

In Malaysia floods are known as the most common natural hazards due to the heavy rainfall that causes some destruction every year. During 1956–2007, the number of victims of flooding has estimated around 2.7 million people. In Malaysia 9% of total land that occupies an area of 29,000 km² which includes 23% of total urban area are located in flood prone areas. Due to the lack of appropriate measure for development control, the annual cost of flooding in the country is estimated RM100 million (Khailani and Perera, 2013). Flood as a common natural hazard within the country has effects on environmental, economic and social aspects of people’s life. Mitigating the effects of flood on different aspects of society can ensure more sustainable development.

Therefore, emphasis on physical adaptations and effective criteria to reduce the risk of flood in built environment and vulnerability of settlements through planning and development interventions for making the human settlement more sustainable during natural hazards is an essential term (Khailani and Perera, 2013).

Morphology, natural situation and artificial element must be considered in risk assessment and future development. Recognizing built and natural elements
which are affected the risk of flooding within the area can be considered as an important part of evaluating flood hazard. In addition, the risk of flooding is higher in more urbanized area (Morelli et al., 2012). Therefore, to find out the reasons and criteria that increase the risk of flood exposure must be considered.

Furthermore during last decade Malaysia accelerate urbanization trend and also deforestation can be observed within the country (Malaysia National Physical Plan, 2010). Due to this situation more area expose to the risk of flooding. Different urban features that can increase the amount of runoff and the risk of flooding can be observed within the urbanized area. Percentage of impervious surface is remarkably high in cities. This character can affect the rainfall infiltration, inundation and flood damages (Tingsanchali, 2012). Hence identifying all the criteria which are associated with the risk of flood can lead the planners toward sustainable development.

Besides the destructive environmental effect flood hazard also has economic and social effect especially in urban area that affect the development in direct and indirect ways (Tingsanchali, 2012). Hence, evaluating the data about stream flow and the effects of land use can help us to reduce loss of social capital and property.

1.3 Problem Statement

Iskandar Malaysia is situated on the South of Peninsular Malaysia and it is considered as a very special and strategic location. Because of its location, it became the most popular gateway from South. Based on National Physical Plan rapid urban growth can be observed in the area.
In terms of weather, study area is under tropical weather with the different daily temperature from 24°C until 32°C. Overall, the topographic condition is up to 640 meters above sea level and the lowest is about 2 meters from sea level. Average annual rainfall is 1778 mm with average temperature of between 25.5 °C (78 °F) and 27.8 °C (82 °F). Humidity is between 82% and 86% (www.mbjb.gov.my). Basically, in recent years due to the heavy rainfall the region faced several damages because of flood. Therefore, to find the character within the study area which are increased the risk of flooding can be helpful to reduce the number of victims and property loss.

In addition, rapid urban growth and deforestation within the region make the situation more remarkable. Flood hazard recognizes as environmental phenomenon but it can affect other components of sustainability including social and economic aspects as well. One of the main goals of Malaysia National Physical Plan is promote the current situation toward the sustainable development (Malaysia National Physical Plan, 2010). Therefore, going through sustainability strategy and following the National Physical Plan framework needs to find out effective criteria which are associated with sustainability and risk of flooding. Evaluating the identified criteria can provide an appropriate basis for future development especially in developing area and mitigate the risk in current and future situation.

1.4 Research Questions

This research is conducted to find out the appropriate answer for questions below:

- Which criteria contribute to the risk of flooding?
- To what extent do criteria associate with the risk of flooding?
- Which place within the study area face higher risk of flooding?
• How to mitigate the flood vulnerability with respect to flood susceptibility map?

1.5 Objectives of Study

This study aims to evaluate the effect of urban form on the flood vulnerability in urban areas. Objectives of the study are mentioned below:

• To investigate the main criteria which are associated with flood risk
• To evaluate degree of importance for criteria that increase the risk of flooding
• To generate flood susceptibility map with respect to defined criteria
• To examine the impact of significant criteria which contribute to the flood vulnerability for evaluating future development

1.6 Significance of Study

Flood is identified as the most common type of natural disaster and has occurred more intensive and recurrent in recent year (Alderman et al., 2012). Different conditions such as climate change, global warming, heavy rainfall, rising level of sea, high tides and manmade factors including more urbanized area, inappropriate land use, deforestation, aggravation of drainage channels and etc. increase the risk of flood occurrence (Tingsanchali, 2012). Environmental devastation, social and economic loss can be observed obviously as an outcome of
this phenomenon. Actually different environmental, social and economic aspects of society are affected by flooding. Therefore, addressing the measures that can mitigate the effects of the flood seems necessary.

This study carries out in the Southern Malaysia where flood is a dominant natural disaster. Also rapid urbanization and deforestation can be observed within the area clearly. Furthermore, this area is coastal area in which the risk of flooding is high due to the low lying level (Tingsanchali, 2012). Moreover urbanized area experience more social and property loss when the flood hazard occurs. Due to the many changes which are happened during urbanization trend such as green space devastation and generating more impervious surfaces, risk of flooding has been increased in urban area (Tingsanchali, 2012). Hence, it can be concluded that natural and manmade situation affect the risk of flooding in the study area. Therefore investigating the criteria which contribute to the risk of flooding is necessary to find out the appropriate direction for future development and measures for mitigating the risk of flooding and its effect.

1.7 Research Methodology

Methodology is a systematic process of collecting, organizing and analyzing data which is selected based on the research objective. Methods that will be used through conducting the research are described below. Research methodology to conduct the research will be elaborated in chapter 3.

I. To investigate the main urban form criteria which are associated with flood risk in urban area, different sources is reviewed to find out relevant criteria which contribute to the risk of flood.
II. To evaluate degree of importance for criteria, Fuzzy logic can be operated to analyze the criteria and alternatives which are extracted through literature review.

III. To examine the impact of significant criteria combination between Geographical Information Systems (GIS) and Fuzzy Logic by using Weighted Linear Combination (WLC) can be carried out to create flood susceptibility map. GIS provide basis for criteria computation and can be used in spatial analysis and modeling while a Fuzzy logic provide basis for categorizing and ranking the criteria.

1.8 Research Design and Organization

A research design can be recognized as blueprint or framework for shedding light into the procedure and provide bases for conducting the research. It can be defined as a tool to gain the research questions. Six factors which are mentioned below identified by Sekaran (1992) as research design elements:

i. Type of investigation: Type of investigation includes experimental, descriptive or comparative research.

ii. Purpose of the study: Purpose of study indicates the goal of research that can be descriptive, exploratory or hypothesis testing.

iii. Research limitation: each research has its own limitation in terms of researcher and specific field of science where the research will be carried out; a research design defines all limitation.

iv. Setting the goals of the study: Goals of the study must be adjusted before beginning the research. Study goals give the researcher clear direction and also it is necessary part of research design.
v. Measures that are related to analysis: Each research includes various indicators as input or output to be measured. These indicators must be defined clearly in research design.

vi. Research scheduling regards to time: The final part of research design is recognized as time scheduling. In some experimental research different factors such as production life span or perishable material can be affected by timing. All the research must follow the scheduling which can be used as helpful tools to get output from the process by regarding to the time.

Chapter 1

Chapter 1 includes an introduction to the research and its significance. Research question and objectives are introduced in this chapter as well, followed by research methodology to conduct the research.

Chapter 2

Chapter 2 discusses about relevant terms to provide clear understanding about the subject. Causes and effects of flooding are investigated. Relevant researches are revised to find out the criteria which are associated with the risk of flooding to be the source of criteria and indicators selection.

Chapter 3

Chapter 3 presents the research structure and main method that are used to conduct the research. Data preparation trend by using Fuzzy method and Weighted Linear Combination in Geographic Information system environment discusses as well.
Chapter 4

Chapter 4 elaborates the data analysis, result and finding of the research. The main aim of this chapter is to indicate the area with high level of risk and find out the significant criteria which contribute to the risk and compare the different situation.

Chapter 5

Chapter 5 sums up the research finding, also presents some potential for uses of the outcome of the research and recommend suggestions regarding the current and future situation.

REFERENCE

Youssef, A.M., Pradhan, B. and Tarabees, E. (2010). Integrated evaluation of urban development suitability based on remote sensing and GIS techniques:
