DEVELOPMENT OF DATABASE MANAGEMENT SYSTEM (DBMS)
BASED ON ELEMENTAL COST ANALYSIS (ECA) METHODOLOGY

SITI KHAIRIZAN BINTI BERAHIM @ IBRAHIM

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
University of Technology, Malaysia

May, 2006
ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my project supervisor PM Dr. Mohamad Ibrahim Mohamad for his effort, encouragement and guidance.

In preparing this project report, I was in contact with many industry practitioners. They have given me tips and useful information in order for me to complete the data sourcing. I am very thankful to them.

Last but not least, I am grateful to my beloved, Nasabandi, all my family members and friends for their everlasting support and encouragement to complete the course of studies.
ABSTRACT

For 30 years, major Quantity Surveying (QS) consultants from the developed country have started to produce the Database Management System (DBMS) for estimating process. Development and installation of the software required high expenses. These conditions encourage the development of estimating software in the market. Currently, there are few estimating software in the market. These systems are difficult to use because they are not developed by the practicing QS themselves and not comprehensive enough. Therefore, this study aims to develop a software based estimating system using Elemental Cost Analysis (ECA) method. Extensive study was performed at the initial stage of this study using various methodologies such as interviews, questionnaire survey, and case studies in order to identify the viability of the developed system. This study found that the developed systems which integrate the application of DBMS system and ECA method increases efficiency and speed of estimating system. The developed system has been tested on real project and verified by a panel of experts. The results of the validation process encourage the recommendation of the developed system for practical implementation in the industry.
ABSTRAK

CONTENTS

CHAPTER TITLE PAGE

TITLE ii
DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENTS v
ABSTRACT vi
ABSTRAK vii
TABLE OF CONTENT viii
LIST OF TABLE xiii
LIST OF FIGURES xiv
LIST OF APPENDICES xvi

1 INTRODUCTION
1.1 Introduction 1
1.2 Problem Statement 1
1.3 Aim and Objective 3
1.4 Scope of Study 3
1.5 Brief Methodology 4
1.6 Report Outline 6

2 REVIEW OF THE CURRENT PRACTICE IN
PREPARATION OF ESTIMATING PROCESS
2.1 Introduction 7
2.2 Current Estimating Methods 7
2.2.1 Unit Method
2.2.2 Cube Method
2.2.3 Superficial of Floor Area Method
2.2.4 Storey-Enclosure Method
 2.2.4.1 Objective
 2.2.4.2 Rules of Measurement
 2.2.4.3 Comparison with other Single Price-Rate Method
2.2.5 Approximate Estimate
2.2.6 Elemental Cost Analysis (ECA)
 2.2.6.1 Benefits of Elemental Cost Analysis (ECA)
2.3 Basic Rules of Measurement/Taking-Off and Build Up Rate (BUR)

3 DEVELOPMENT OF DATABASE MANAGEMENT SYSTEM (DBMS) FOR ELEMENTAL COST ANALYSIS (ECA) METHODOLOGY
3.1 Introduction
3.2 Conceptual of Database Design
3.3 Development of Database Management System
 3.3.1 Active Server Pages (ASP)
 3.3.1.1 ASP Language Application
 3.3.1.2 Accessing Data with ASP Components
 3.3.1.2.1 RDO and DAO: Earlier Data Access Techniques
 3.3.1.2.2 Universal Data Access
 3.3.1.3 Re-architecting the application around ASP Web Service
 3.3.2 Structured Query Language (SQL)
 3.3.2.1 Introduction
 3.3.2.2 SQL Activity Application
 3.3.3 ActiveX Data Objects (ADO)
3.3.3.1 Introduction 31
3.3.3.2 ADO Connection Application 32
 3.3.3.2.1 Data Providers 33
 3.3.3.2.2 DataSets 33
3.4 Conceptual Model 34
3.5 Up-grade the Database Management System (DBMS) 36

4 RESEARCH METHODOLOGY
4.1 Introduction 37
4.2 Literature Review 37
4.3 Questionnaire 38
 4.3.1 Preparation of Questionnaire 38
 4.3.2 Response of Questionnaire Survey 39
 4.3.3 Relative Index (RI) 39
4.4 Interview 40

5 DATA COLLECTION AND ANALYSIS
5.1 Introduction 41
5.2 Respondent Background 41
5.3 Current Practice in Preparation of Estimating Process Using the Existing Method 44
5.4 Development of Database Management System (DBMS) 48

6 DATA COLLECTION AND ANALYSIS
6.1 Introduction 53
6.2 Results and Discussion 53
 6.2.1 Review of the Current Method of Existing Process 53
 6.2.2 Need of the Standardize Database Management System (DBMS) in Preparation of Estimate 55
6.3 Case Study – Construction and completion of three (3) and four (4) storey shop/office (KP87) at Parcel C2, Danga Bay, Mukim Pulai, Daerah Johor Bahru, Johor Darul Takzim for
Messrs Danga Bay Sdn Bhd

6.3.1 Project Brief
6.3.2 Project Specification
6.3.3 Measurement/Taking-Off Elements and Items
6.3.4 Methods/Technique of Working
 6.3.4.1 Main page to ECA
 6.3.4.2 Main page to List of Projects
 6.3.4.3 Main page to Standard Item & Description List
 6.3.4.4 Determine the Sub or Sub-sub for Item Type (to create the ID)
 6.3.4.5 Adding the number of Sub or Sub-sub for Item Type (create the ID code)
 6.3.4.6 Adding the code of Sub or Sub-sub for Item Type (create the ID code)
 6.3.4.7 Adding the code, description and the unit for Sub or Sub-sub for Item Type (create the ID code, description and the unit)
 6.3.4.8 Adding the project title, number of preliminary estimate & cost plan, location/specific level and date
 6.3.4.9 Summary page of ECA
 6.3.4.10 Details page of ECA
 6.3.4.11 Measurement page of ECA
 6.3.4.12 Build Up Rate (BUR) page of ECA
 6.3.4.13 Gross Floor Area (GFA) page of ECA
 6.3.4.14 Completed Summary Page of ECA
6.3.5 Evaluation

7 CONCLUSION AND RECOMMENDATION
7.1 Introduction
7.2 Conclusions
7.2.1 Review the Current Methods in Preparation of Estimates
7.2.2 Development of Database Management System (DBMS)

7.3 Recommendation
7.3.1 Taking off System
7.3.2 BOQ Scanning System
7.3.3 BOQ Production System
7.3.4 Analysis System
7.3.5 Tender Evaluations
7.3.6 Valuation and Interim Payments
7.3.7 Digitisers
7.3.8 Up-grading of ECA DBMS Estimating System

REFERENCES

APPENDICES
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Gathered data for year experience of the respondents</td>
<td>42</td>
</tr>
<tr>
<td>5.2</td>
<td>Registered respondents with Institution of Surveyor Malaysia (ISM)</td>
<td>43</td>
</tr>
<tr>
<td>5.3</td>
<td>Appointment of the Quantity Surveyor</td>
<td>44</td>
</tr>
<tr>
<td>5.4</td>
<td>Preference of current methods in preparation of estimate</td>
<td>45</td>
</tr>
<tr>
<td>5.5</td>
<td>Range of accuracy percentage in preparation of preliminary estimate</td>
<td>46</td>
</tr>
<tr>
<td>5.6</td>
<td>Preference of suitability to apply preliminary estimate in the form of ECA based on different type of building construction</td>
<td>47</td>
</tr>
<tr>
<td>5.7</td>
<td>Causes ECA not prepared after project completed</td>
<td>47</td>
</tr>
<tr>
<td>5.8</td>
<td>Comparison between the companies using the DBMS against the company without the DBMS</td>
<td>49</td>
</tr>
<tr>
<td>5.9</td>
<td>Reason why they not using DBMS in company</td>
<td>50</td>
</tr>
<tr>
<td>5.10</td>
<td>Problems/Effectiveness occurred to the company without DBMS</td>
<td>51</td>
</tr>
<tr>
<td>5.11</td>
<td>Types of DBMS</td>
<td>51</td>
</tr>
<tr>
<td>5.12</td>
<td>Advantages/Effectiveness by using the DBMS</td>
<td>52</td>
</tr>
<tr>
<td>6.1</td>
<td>Project Specification</td>
<td>57</td>
</tr>
<tr>
<td>6.2</td>
<td>Completed summary page of ECA</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Study of flow chart</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>ASP application with the server</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Conceptual Model</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage breakdown of respondents base on years of practice</td>
<td>42</td>
</tr>
<tr>
<td>5.2</td>
<td>Percentage breakdown of registered respondents with Institution of Surveyor Malaysia (ISM)</td>
<td>43</td>
</tr>
<tr>
<td>5.3</td>
<td>Percentage breakdown appointment of the Quantity Surveyor</td>
<td>44</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage breakdown of range of accuracy</td>
<td>46</td>
</tr>
<tr>
<td>5.5</td>
<td>Percentage breakdown of causes ECA not prepared after project completed</td>
<td>48</td>
</tr>
<tr>
<td>5.6</td>
<td>Percentage breakdown of companies using the DBMS against the company without the DBMS</td>
<td>49</td>
</tr>
<tr>
<td>5.7</td>
<td>Percentage breakdown of the reason for not using DBMS in company</td>
<td>50</td>
</tr>
<tr>
<td>5.8</td>
<td>Percentage breakdown types of DBMS used</td>
<td>52</td>
</tr>
<tr>
<td>6.1</td>
<td>Main page to ECA</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>Main page to List of Projects</td>
<td>60</td>
</tr>
<tr>
<td>6.3</td>
<td>Main page to Standard Item & Description List</td>
<td>61</td>
</tr>
<tr>
<td>6.4</td>
<td>Determine the Sub or Sub-sub for Item Type (to create the ID)</td>
<td>62</td>
</tr>
<tr>
<td>6.5</td>
<td>Adding the number of Sub or Sub-sub for Item Type (create the ID code)</td>
<td>62</td>
</tr>
<tr>
<td>6.6</td>
<td>Adding the code of Sub or Sub-sub for Item Type (create the ID code)</td>
<td>63</td>
</tr>
<tr>
<td>6.7</td>
<td>Adding the code, description and the unit for Sub or Sub-sub for Item Type (create the ID code, description and the unit)</td>
<td>64</td>
</tr>
<tr>
<td>6.8</td>
<td>Adding the project title, number of preliminary estimate & cost plan, location/specific level and date</td>
<td>65</td>
</tr>
<tr>
<td>6.9</td>
<td>Summary page of ECA</td>
<td>66</td>
</tr>
<tr>
<td>6.10</td>
<td>Details page of ECA</td>
<td>67</td>
</tr>
<tr>
<td>6.11</td>
<td>Measurement page of ECA</td>
<td>68</td>
</tr>
<tr>
<td>6.12</td>
<td>Build Up Rate (BUR) page of ECA</td>
<td>69</td>
</tr>
<tr>
<td>6.13</td>
<td>Gross Floor Area (GFA) page of ECA</td>
<td>70</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Questionnaire Survey</td>
</tr>
<tr>
<td></td>
<td>Site Layout</td>
</tr>
<tr>
<td></td>
<td>Measurement/taking-off lists</td>
</tr>
<tr>
<td>4</td>
<td>Architectural Drawing : Pelan Tingkat Bawah Aras 7.500m</td>
</tr>
<tr>
<td>5</td>
<td>Architectural Drawing : Pelan Tingkat Bawah Aras 10.800m</td>
</tr>
<tr>
<td>6</td>
<td>Architectural Drawing : Pelan Tingkat Satu</td>
</tr>
<tr>
<td>7</td>
<td>Architectural Drawing : Pelan Tingkat Dua</td>
</tr>
<tr>
<td>8</td>
<td>Architectural Drawing : Pelan Tingkat Bumbung</td>
</tr>
<tr>
<td>9</td>
<td>Architectural Drawing : Pandangan 1 & 2</td>
</tr>
<tr>
<td>10</td>
<td>Architectural Drawing : Pandangan 3 & 4</td>
</tr>
<tr>
<td>11</td>
<td>Architectural Drawing : Keratan A-A & B-B</td>
</tr>
<tr>
<td>12</td>
<td>Structural Drawing : Foundation Layout Plan</td>
</tr>
<tr>
<td>13</td>
<td>Structural Drawing : Lower Ground Floor Plan</td>
</tr>
<tr>
<td>14</td>
<td>Structural Drawing : Ground Floor Plan</td>
</tr>
<tr>
<td>15</td>
<td>Structural Drawing : First Floor Plan</td>
</tr>
<tr>
<td>16</td>
<td>Structural Drawing : 2nd Floor Plan</td>
</tr>
<tr>
<td>17</td>
<td>Structural Drawing : Roof Plan</td>
</tr>
<tr>
<td>18</td>
<td>Structural Drawing : Upper Roof Plan</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter will present an overview of the study in respect of its background; determining its aims, specifying the problems in the problem statement, mapping the study process, selection of the correct methodology, setting the report outline and identify the limitation of the study scope.

1.2 Problem Statement

Anyone with an interest on cost advice will be aware that the subject can involve the use of a number of mathematical formulae. At the heart of nearly all building evaluation programmes of any size is a database, which is an organised pool of shareable data usually consisting of regularly updated files. These files are related and permit direct retrieval of information for a wide range of purpose.

The function of approximate or preliminary estimate is to produce forecast of the cost of any future project before it is designed in details. This preliminary estimate will inform the client about their commitments (as the project owner) before the design works is undertaken. The choice of method employed will be
influenced by the information and time available, the experience of the Surveyor and the amount and form of the cost data available to him.

The entry of Quantity Surveyor with adequate technique into the estimating field was of considerable significance in the early development of professional role. To extent this role into that, the building economics required the development of understandings and techniques of a kind that deal. Not just with the items which go into the accountancy of a particular building, but with the economic and other forces, which have determined the nature and relationship of those quantities and costs, and which determine the trends they show. Indeed, economics is the study of all the forces which determine the present functioning and probable future trends of a whole industrial or financial system.

The Quantity Surveyor performs an extremely important role in cost assessment, giving advices as to the probable cost of a particular design proposal and variation to it. However, be emphasized at the outset that no approximately estimate can be any better than the information on which it is based. Indeed, realistic approximately estimating can be achieve only when there is full co-operation and communication between all the consultants to gather the information. The information also can be taken from the supplier, contractors and also from the past project. The estimate which based on inadequate information cannot be precise, and in such a situation he would be well advised to give a range of prices, as an indication of the lack of precision that is obtainable. Here the important of the Database Management System (DBMS) for estimating process in collecting the information.

Using computer based tools to generate an estimate will only take few minutes. However, the Quantity Surveyor needs better techniques, parametric models, and tools in case of changes during the design development process. The greatest challenge for the Quantity Surveyor is deciding where to start when faced with a blank sheet of paper to start the first preliminary estimate or to up-grade the existing or previous preliminary estimate if changes are happen. For example, during a proposal Quantity Surveyor must quickly gain an understanding of the
building’s requirements, the structure of the solution, and the process needed to
design, build, and deliver that solution in computer base. Hence, the development
of Database Management System (DBMS) in respect of Elemental Cost Analysis
(ECA) form should become the best solution to make sure the information gathered
are in systematic ways and easy to understand.

Therefore, the needs of computer generated in preparation of estimating
process are a must to produce accurate, fast and lower overhead cost to enhance the
clients need in order to achieve clients target such as total construction cost,
duration of construction period, and forecast their profit or loss.

1.3 Aim and Objective

The aim of this study is to identify how to improve the efficiency in
preliminary estimate through the use of computers to cope with increasing
challenges of tight budgets, strict deadline and limitation of staff (resources) in
preparing the approximate quantity. These will include modelling and utilizing of
construction information database to support estimating operations.

To achieve the above aims, the following objectives are set:

a) To review the current practice in preparation of estimating process
b) To develop a new computer generated approach in DBMS to
support the estimating process based on ECA methodology

1.4 Scope of Study

The scope of study will be focusing on current practice of Quantity
Surveying Firms in preparation of estimating process. After the interview with
senior quantity surveyor and also through the early literature review, the current estimating process can be classified into six (6) types as follows:

 a) Unit Method
 b) Cube Method
 c) Superficial of Floor Area Method
 d) Storey-Enclosure Method
 e) Approximate Estimate
 f) Elemental Cost Analysis (ECA).

The study will also focus on the development of a new computer generated approach in Database Management System (DBMS) to support the estimating process base in Elemental Cost Analysis (ECA) methodology. Evaluation of this computer generated approach on the Elemental Cost Analysis (ECA) Database Management System (DBMS) estimating system will be using real project setting as follows:

- Construction and completion of three (3) and for (4) storey shop/office lot (KP87) at Parcel C2, Danga Bay, Mukim Bandaran, Daerah Johor Bahru, Johor Darul Takzim for Messrs Danga Bay Sdn. Bhd.

1.5 Brief Methodology

The study was conducted mainly through three (3) methods, namely:

 i) A literature review was conducted in all the various way which are relevant such as books, articles, journals, magazines, reports, and examination paper for the Professional Practice by Institution of Surveyor Malaysia (ISM).
ii) Questionnaire was passed to the qualified Quantity Surveyor (registered with Board of Quantity Surveyor Malaysia - BQSM, Institution of Surveyor Malaysia (ISM) or both). The questionnaire are divided into three (3) section and structured as follow:
- Section A : Respondents background
- Section B : Current estimating method
- Section C : Usage of Database Management System (DBMS)

iii) Interview was conducted with the same qualified quantity surveyors (respondent in (ii)). The respondents give a very good feedback from the face-to-face interview because they can refer to the questionnaire as guidance in answering the interview.
The study can be summarized by the flow chart shown in Figure 1.1

Figure 1.1 : Study of flow chart

1.6 **Report Outline**

The report can be divided into seven (7) main chapters. The first chapter introduced the report aims and objectives, scope of study, and selected method used in conducting the study.
The second chapter is a review on the current estimating methods (Unit Method, Cube Method, Superficial of Floor Area Method, Storey-Enclosure Method, Approximate Estimate, and Elemental Cost Analysis (ECA)). This chapter will also describe how to do the measurement/taking-off in order of Standard Method of Measurement (SMM), and rate the element by Build Up Rate (BUR).

Chapter three will discuss the development of the Database Management System (DBMS). The implementation of Active Server Pages (ASP), Structured Query Language (SQL), and ActiveX Data Objects (ADO) are shown on the connection, language and communication between these three (3) elements to develop the estimating system.

Chapter four described the selected methodology used in this study together with the structure and description on the questionnaire.

Chapter five showed the collected data from the questionnaire survey in form of tables, figures and also the analysis of these data.

Chapter six focus on the results and the findings of the studies.

The last chapter which is chapter seven will present the conclusion and recommendation for further study.
REFERENCES

Institution of Surveyor Malaysia (2002). *General*. Kuala Lumpur, Section A

Britain, Section B