A Suitable Development Trend in Linear City Based On Smart Growth
A Case Study in Lanzhou Urban Area

ZHOU WEI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Urban and Regional Planning)

Faculty of Built Environment
Universiti Teknologi Malaysia

JUNE 2013
DEDICATION

To my beloved mother and father
ACKNOWLEDGMENT

Firstly, I would like to express my special thanks of gratitude to my supervisor Dr. Soheil Sabri who gave me the golden opportunity to go through this wonderful study. For his guidance, encouragement and enthusiasm, any merit in this research reported here has much to do with his help and advice.

Secondly, I would also like to thank Assoc. Prof. Dr. Foziah Johar, for her help, caring and support when I was in troubles.

Further gratitude is extended to all the staffs in Build Environment Faculty for their hard work in every day, and all well-wishers. For their encouragement, support and presence helped.

Furthermore, I would like to thank the respondents who spent their time answering this study’s questionnaire.

Finally, I am really thankful to my parents Mr. Zhou He and Mrs. Ma Lanxin who place great love and hope on me, and Li Wenjie as an important person in my life for filling my academic days with joy and happiness. I am also grateful to all my friends who helped me, Especially Nasim Yeganeh and Cindy Hu they encourage and support me a lot.
ABSTRACT

“Smart growth” strategy as a new urban development theory originated from United States as a way against urban sprawl. However, urban sprawl also threatens China’s urban spatial expansion process on certain extent. In this research, the issues come from spatial layout, and construction land structure is irrational in Lanzhou City, so the main purpose is to find an appropriate development trend for future development. The result should push forward an influence on introducing Smart growth theory into China’s planning system as well as assist Lanzhou city get a better development direction.

A survey of developing urban growth model with raster analysis function under GIS software based on smart growth strategy to simulate several visual scenarios. Noteworthy, a simple questionnaire contributes to ranking the relative principles in Smart growth for measure the weight in each scenario, and those scenarios emphasize economic efficiency, environmental preservation and social equity respectively. After a series of evaluation between different scenarios and general plan in 2020, the final output should select a scenario which either involves the implication of smart growth in urban spatial development or suitable to the actuality of Lanzhou city.

Satu kajian dibuat untuk membangunkan model pertumbuhan bandar dengan fungsi analisis raster dalam perisian GIS berdasarkan strategi pertumbuhan pintar untuk mensimulasikan beberapa senario visual. Perlu diberi perhatian bahawa soal selidik mudah menyumbang kepada penarafan prinsip-prinsip relatif dalam Pertumbuhan Pintar untuk mengukur berat dalam dalam setiap senario, dan senario-senario tersebut menekankan kepada kecekapan ekonomi, pemeliharaan alam sekitar, dan ekuiti sosial. Selepas beberapa penilaian antara senario-senario yang berbeza dan pelan umum pada tahun 2020, output akhir harus memilih sama ada melibatkan implikasi Pertumbuhan Pintar dalam pembangunan ruang bandar atau bersesuaian dengan keadaan sebenar Bandar Lanzhou.
TABLE OF CONTENT

DECLARATION ii
DEDICATION iii
ACKNOWLEDGMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENT vii
LIST OF TABLES x
LIST OF FIGURES xii
LIST OF APPENDIX xv

1 INTRODUCTION
1.1 Introduction 16
1.2 Background of Study 2
1.3 Problem Statement 4
1.3.1 Urban Area is suffering from An Uncontrolled Growth 5
1.3.2 The Current Urban Layout is Less Local Integrity 7
1.4 Research Question 8
1.5 Research Objective 9
1.6 Research Framework 9
1.7 Significance of Study 10
1.8 Research Organization 11

2 LITERATURE REVIEW
2.1 Introduction 13
2.2 Urban Growth Processes in the United States and China 14
2.2.1 Historical Perspective from Growth to Sprawl 14
2.2.2 Policy Orientation 19
2.2.3 Social Factors 20
2.2.4 Humanistic Concern 21

2.3 The Thinking of Smart Growth in United States and China 22

2.4 GIS-based Urban Growth Model 26

2.5 Simulated Smart Growth Scenario Implementation Examples
 By GIS-based Model 27
 2.5.1 Best Location Analysis Model 27
 2.5.2 SLEUTH Model (Chesapeake Bay) 29
 2.5.3 Uplan Model (San Joaquin Valley, California) 31

2.6 Summary 35

3 METHODOLOGY

3.1 Introduction 37
3.2 Methodological Framework 38
3.3 Discussion and Rationale for Choice of Methods 40
 3.3.1 Justification for Raster Analysis 40
 3.3.2 Justification for Questionnaire 42
3.4 Research Workflow 44
3.5 Study Area 45
3.6 Data Collection and Preparation 46
3.7 Data Analysis 47
3.8 Methodological Approach 49
 3.8.1 Vector and Raster Conversion 49
 3.8.2 Suitability Analysis and Scenario Simulation 50
 3.8.3 Attractor, Discouragement and Mask 51
 3.8.4 Raster Distance Model 55
 3.8.4.1 Distance (Buffer) Standard: 56
 3.8.5 Reclassify distance model 58
3.8.6 Weight overlay
3.8.7 Extraction
3.8.8 Raster Logical Operation
3.9 Scenario Evaluation
3.10 Result
3.11 Summary

4 Research Finding and Discussion
4.1 Introduction
4.2 Scenario evaluation
 4.2.1 Numerical Evaluation
 4.2.1.1 Residential Land Evaluation and Measurement
 4.2.1.2 Commercial Land Evaluation and Measurement
 4.2.1.3 Industrial Land Evaluation and Measurement
 4.2.1.4 Mix Land Use Evaluation and Measurement
 4.2.2 Spatial Pattern Evaluation
4.3 Result Self-Appraisal
4.4 Self-Appraisal Judgment and Justification
4.5 Suitable and Appropriate Scenario Discussion
4.6 Summary

5 Conclusion and Recommendation
5.1 Summary of Finding
5.2 Conclusion
5.3 Research limitation
5.4 Recommendation

REFERENCE
APPENDIX A
APPENDIX B
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>The Main Function of Each Zoning</td>
<td>7</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>The Unites States Urbanization Process</td>
<td>15</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>United States City Number and Urban Population (1940-1990)</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>United States Urban, Suburban and Employment Change (1950-1990)</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Migrant Workers Number from 2000 to 2005 in Urban Area</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Smart Growth Principles</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Smart Growth Superiority</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Case Study Summary</td>
<td>35</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>The Advantages and Disadvantages in Vector Data And Raster Data</td>
<td>40</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>The Advantages and Disadvantages of Questionnaire</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Attractor, Discouragement and Mask Definition in Three Scenarios</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Large City and Medium City Road Network Standard for Road Width in China</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Construction Setback Distance to Red Line Standard in China</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Minimum Agriculture/Timberland Buffer Zone Width</td>
<td>57</td>
</tr>
</tbody>
</table>
Table 3.7: Green Area Service Radius 58
Table 4.1: Final Decision-making Theory 72
Table 4.2: Districts Land Use Characteristics in Each Scenario and General Plan 91
Table 4.3: Self-Appraisal Scenarios Result Achievement 92
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1:</td>
<td>The urban expansion in Las Vegas, Nevada, the United States, from 1990 to 2010</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2:</td>
<td>Change of the Yellow River from 1949 to 2000</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Illustration of Four Districts (1)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Illustration of Four Districts (1)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.4:</td>
<td>Lanzhou City’s Master Plan (2001-2010)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.5:</td>
<td>Research Framework Structure</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2. 1:</td>
<td>Urbanization Rate in China 1950-1994</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Best Location Analysis Result</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.3:</td>
<td>SLEUTH Model (Chesapeake Bay) Result</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.4:</td>
<td>Forecasted Impacts on Resource Land for Three Scenarios for Southeast Pennsylvania</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2. 5:</td>
<td>Scenario A for San Joaquin Valley</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2. 6:</td>
<td>Scenario B for San Joaquin Valley</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2. 7:</td>
<td>Scenario B+ for San Joaquin Valley</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2. 8:</td>
<td>Scenario C for San Joaquin Valley</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3. 1:</td>
<td>A General Framework for Methodology</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3. 2:</td>
<td>Research Workflow</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3. 3:</td>
<td>Administrative Structure of Lanzhou City</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.4:</td>
<td>Research Questionnaire Structure</td>
<td>46</td>
</tr>
</tbody>
</table>
Figure 3.5: Lanzhou city current land use map and master plan (2010-2020) 47
Figure 3.6: Economic Efficiency Scenario Ranking 47
Figure 3.7: Environmental Preservation Scenario Ranking 48
Figure 3.8: Social Equity Scenario Ranking 48
Figure 3.9: Current Land Use from Raster Data to Vector Data 50
Figure 3.10: Current Land Use from Vector Data to Raster Data 50
Figure 3.11: An Example of Reclassification on Vacant Land Feature 59
Figure 3.12: A Sample of Weighted Overlay 60
Figure 3.13: Final Extraction Result 62
Figure 3.14: Basic Logical Relations Presentation 63
Figure 3.15: An Example of Raster Logical Operation Example 64
Figure 4.1: Economic Efficiency Scenario Land Use Suitability Models 69
Figure 4.2: Environmental Preservation Scenario Land Use Suitability Models 70
Figure 4.3: Social Equity Scenario Land Use Suitability Models 71
Figure 4.4: Economic Efficiency Scenario 73
Figure 4.5: Environmental Preservation Scenario 73
Figure 4.6: Social Equity Scenario 74
Figure 4.7: Residential Land in General Plan 75
Figure 4.8: Commercial Land in General Plan 75
Figure 4.9: Industrial Land in General Plan 76
Figure 4.10: Residential Land Use Comparison between Scenarios and General Plan 77
Figure 4.11: Commercial Land Use Comparison between Scenarios and General Plan 78
Figure 4.12: Industrial Land Use Comparison between Scenarios and General Plan 79
| Figure 4.13: | Mix Land Use in Scenarios and General Plan | 80 |
| Figure 4.14: | Illustration of Four Districts in Lanzhou City (2) | 81 |
| Figure 4.15: | Scenarios and General Plan Land Use in Chengguan District | 82 |
| Figure 4.16: | Scenarios and General Plan Land Use in Qilihe District | 84 |
| Figure 4.17: | Scenarios and General Plan Land Use in Anning District | 86 |
| Figure 4.18: | Scenarios and General Plan Land Use in Xigu District | 88 |
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Smart Growth Principles Ranking</td>
<td>112</td>
</tr>
<tr>
<td>Appendix B</td>
<td>River Band Line Width</td>
<td>116</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

In the past century, many parts of our physical environment were getting a gradual outward migration from urban area to rural area and becoming metropolis eventually. In 2008, it was the first time the number of urban population exceeded the rural areas. The United Nations predicts that by 2050, the number of urban dwellers will reach 70% of the global population. (http://www.godeyes.cn)

With the progress of human civilization, subsequently, it is an unstoppable process that most of cities are involved in growth with different type and extent. However, if we know the connection between urban growth and smart growth concept, to face up to urban growth can be a challenge, an opportunity rather than a disaster for human beings, and this research tries to evaluate the trend of urban
development based on smart growth concept. Furthermore, the research formulates a development scenario with regards to finding a sustainable mode for future development.

1.2 Background of Study

Recalling the past few years, the view of the Earth has been constantly changing as human beings’ development, some images which were shot in different time periods can reveal the impact of cities around the world due to the large population migration and intensive urbanization.

![Figure 1.1: The urban expansion in Las Vegas, Nevada, the United States, from 1990 to 2010 (Source: Made by U.S. National Aeronautics and Space Administration's Earth Resources Satellite, 2012)](image)

Figure 1.1 demonstrates that Las Vegas has already extended to the desert under the pressures of increasing population. The construction and operation is a challenge for humans, such as to meet the water needs from residents.
The global population explosion accelerates urbanization and urban sprawl, as a result, a lot of urban areas are already expanding into the surrounding countryside, and urban sprawl is often directly linked with serious environmental consequences (Bo, 2008). Because the expansion of the city inevitably destroys wildlife habitat, aggravates energy inefficiency, and increases the dependence on motorized transport, many urban issues emerge into people’s view (Freudenberg, et al., 2005).

Undoubtedly, urbanization as a key process is in progress in most of the developing countries. China is a typical country which has experienced a very drastic urbanization since 1987, and all the cities are full of enthusiasm to be a mega city which means consuming more resources and bringing more power into play (Yue, 2012). So, under the authorities and citizens’ great ambition, every city goes into a competition mechanism with each other and is becoming increasingly intense. As a result, urban sprawl comes to our view, for pursuing GDP growth and depending on car very much, outward spreading of a city and its suburbs forms a high segregation between residential and other uses growth. It brings a series of serious drawbacks which make many negative impacts on urban development.

We can discuss those existing and potential issues into three aspects. Firstly, from economic efficiency aspect, for government, urban sprawl leads to a large number of land resource wastes by the inefficient urban land utilization rate. For citizens, they suffer from an increment of tax imposition due to increased investments in infrastructure and utilities. Secondly, from the view of ecological protection aspect, urban sprawl increases vehicle-dependency and leads to air pollution and traffic congestion which damage public health and decrease people’s life quality. Moreover, over-exploitation and unreasonable develop natural resource will lose a lot of agricultural land and open space. Thirdly, in the social equity aspect, the wealth gap between the rich and the poor become more and more wide,
community lose its vitality by crime and poverty (Freudenberg, et al., 2005).

All in all, those cities are facing up to an ordeal from fast development, how to solve the problems become more and more urgent. The linear city under a unique urban form which if suffer from urban sprawl will be heavier than other urban forms (Yang, 2009). Because the distribution of the city may create more distance in the travel, people need to spend more time and energy with vehicles to reach their destination in daily life. This study takes Lanzhou city as an example, to explore a way of making the city’s development more sustainable in the future.

Any research cannot be in progress without concept to support. Since this study focuses its efforts on finding a useful way for urban growth, the main considered concept is “smart growth” which idea was introduced in the U.S. against urban sprawl specifically. Smart growth concept was mentioned by environmentalists and planners in early phase, compared with new urbanism, and it is more concerned with overall environment. This research not only shows respect to traditional planning ideal, but also to integrate urban development into the ecosystem, human life quality and society equity accomplishing a harmonious and sustainable development. What is more, in different manage level and field, smart growth also shows a good example to build mutual connection. So this concept may lay a scientific foundation for the future development of Lanzhou city.

1.3 Problem Statement

This section presents issues of this study, it is the reason why this study should be conducted, and there are two issues exist in Lanzhou city as below:
1.3.1 Urban Area is suffering from An Uncontrolled Growth

According to the statistic data from Lanzhou city statistic department on built-up area (2010), Lanzhou City is almost going to finish the existing 1670 square kilometers of urban land. Figure 1.2 shows that one of the most significant phenomenon is the floodplain and the river park which planned in the first version of the master plan was substituted in the second edition to agricultural land and cultivation base, and keep changing to construction land in the third Edition. Obviously, reserved green corridor and ecological construction land have being gradually eroded while ecological space is undermined. On the other hand, Figure 1.3 shows that Lanzhou city has oriented itself into 4 functional districts at the beginning. However, as time gone, some districts had been already contiguous with each other and will form an entirety result of the physical isolation was destroyed eventually.
Lanzhou city is a typical linear valley city, to imagine the city is around 50 kilometers long only 1.8 kilometers in the narrowest area. Linear city has always distributed and extended in a strip shape. Naturally, the urban spatial shape is narrow and small with a weak sense of integrity. It means that once the city has unlimited expansion from east to west where along the direction of the Yellow River, this situation will be heavier and difficult to control than common urban sprawl, because people will waste more time and energy in such a long distance reaching to their destination in their daily life. Thus, how to develop in a rational way in the insufficient space for urban development become more and more crucial.

Nowadays, in Lanzhou city, the development is suffering from an unprecedented land shortage. With the rapidly economic increase year after year, the urban space, natural resources, ecology and different class industries are all involved in huge mountain, deep valley and small basin inevitably. Consequently, a high density population occupies limited land and traffic congestion has frequently
happened. Since the city has no way to grow, to find a way relieve the inner growth pressure is necessary.

1.3.2 The Current Urban Layout is Less Local Integrity

This issue is the reason which makes this kind of urban sprawl intensive and aggravated. In the four districts, each of them has distinctive characteristics which are so strong that neglect the development of other land use. Table 1.1 shows the basic land use in each zoning and highlight the main function.

<table>
<thead>
<tr>
<th>Cluster name</th>
<th>Main function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng guan</td>
<td>Lanzhou city’s political, economic, commercial and cultural center and main residential zoning.</td>
</tr>
<tr>
<td>Qi lihe</td>
<td>Lanzhou city’s railway hub, some light industries like machinery industry and textile industry and residential area</td>
</tr>
<tr>
<td>An ning</td>
<td>Education zoning, several universities distributed there, mixing some electronic industry, building material processing and some new residential area</td>
</tr>
<tr>
<td>Xi gu</td>
<td>Heavy industry zoning, a spot of residential area</td>
</tr>
</tbody>
</table>

Figure 1.4 shows the current master plan of Lanzhou city, we can easily find that the land use in the four districts are not comprehensive and unbalanced. For example, the yellow area stands for residential land use, and most of them concentrate on the urban center while few of them distribute on other districts separately. Moreover, except Chengan district land use is relatively comprehensive while other districts are single and simple. Based on smart growth principles, mix land use should combine of residential, commercial, cultural, institutional, or industrial uses, where those functions are physically and functionally integrated, and that provides pedestrian connections. However, here does not reach to the goal which make use of land intensively and reasonably while has a strong need of land and spatial expansion.
1.4 Research Question

In general, this research starts with the purpose which tries to find the answers about these questions below:

I. To what extent is Lanzhou city’s urban area spatial expansion sustainable?

II. How can the smart growth concept contribute to create an optimal development scenario in Lanzhou city?

III. Which kind of urban growth type is suitable for Lanzhou city to consider in the future?
1.5 Research Objective

Since urban sprawl has a heavy and undeniable effect to linear city, to know the current situation and changed tendency about Lanzhou city is very important. According to Lanzhou city’s comprehensive plan in which four districts which were decided previously, the general research aim follows the existing situation to go through and find an appropriate development trend for Lanzhou city and make the city more sustainable. In order to answer the research question and reach to the main aim, three research objectives are necessary.

I. To build scenarios for urban growth representing economic efficiency, environmental protection and social equity by questionnaire result.

II. To build on models for land use allocation that explains the urban growth by using several land uses as necessary inputs.

III. To evaluate the processed data based on smart growth principles.

1.6 Research Framework

This research follows four main steps to explain the structure which is shown in Figure 5.1. It stats from inputting defined issues and basic data and information, by using GIS software as processing tools and combine with other techniques to analyze the input. After that, the analysis result is evaluated with the help of conceptual and theoretical basis as well as both quantitative and qualitative view. At the end, the outcome is an optimal scenario in alternatives with justification.
1.7 Significance of Study

"Smart growth" strategy was thrown up with in the early 1990s in the United States in order to solve urban problems brought from spatial structure extension after suburbanization (Daniels, 2001).

In the United States, suburbanization was derived from the high income level had escaped from urban diseases, under the premise of improving the traffic conditions, as a result, suburban transferred from single residential function to multi-functions area.

However, the suburbanization in China is mainly created by the proliferation of urban fringe and where have backward infrastructures and utilities, as a result, the
unreasonable transportation flow leads to constructed area sprawl little by little.

Obviously, there is a remarkable difference between the United State and China in suburbanization which happened in a distinct way, motivation, as well as mechanically.

Despite all this, smart growth concept has advocated compact development, land use intensification, stressed on public transportation and set reasonable growth boundary as core principles. It is according with the development direction and goal in China. Thus, this study uses smart growth concept as a source of reference for formulation the scientific and rational strategy of urban spatial development in Lanzhou city, and it will bring a certain sense of inspiration and a good sample for future.

1.8 Research Organization

This study is divided to 6 chapters, each of these chapters will cover an aspect of the study; the deviation is as follow:

For chapter 1, the discussion is focus on overall view of this study, to address general issue and research objective and mention research question as well. At the end, a short description talks about study significance.

For chapter 2, a brief background covers the difference and similarity between the United States and China urbanization process. After that, to make a connection with smart growth strategy by reviewing its definition and application. Meanwhile, some case study reviews also contribute to the understanding of the methodology.

For chapter 3, it is more toward the research structure and methodology that
binding the thesis, this chapter also contains the tools and research methods used in data processing in this study. As a result, three intended scenarios will be built with the explanation in each step.

For chapter 4, is considering the solution of raised research question, it concentrates on support finding of the analysis with related literature review. The purpose of this chapter is to find the best scenario for Lanzhou city from alternatives.

For chapter 5, sums up the research finding and makes a conclusion to describe this study. In addition, come up with some recommendations regarding the research limitation and propose some potential possibility of this study in future research works.
REFERENCE

Chang, K. Introduction to Geographic Information Systems, sixth edition, Chapter 12, Ryan Blankenship, 2012

Growth with GIS : An Application to the City of Los Angeles, 1–27.

David W. Allen. GIS Tutorial 2: Spatial Analysis Workbook, Chapter 5, ESRI press,
2009.

Daniels, T. Smart Growth: A New American Approach to Regional Planning,
Planning Practice and Research, Volume 16, Issue 3-4, 2001

Sprawl: Back to Living Conditions as the Focus of Urban Health. Journal of
Community Health, 30(1), 1–11.

Land-Cover Changes on the Istanbul Metropolitan Area. Environmental

Suspicious Allies, (February).

Gu, C. Economic Globalization and Urban Development in China, the Commercial

Haeuber, R. (2000). Sprawl tales : Maryland ’ s Smart Growth Initiative and the
Evolution of Growth Management, 131–147.

Herbert J. Gans (1967) “Levittown and America” from the levittowners.

Margaret H. Carr, Paul Dean Zwick, Smart Land Use Analysis: The LUCIS Model
Land-use Conflict Identification Strategy, illustrated, ESRI, Inc., 2007

Oriented Development for Specific Areas with the City of Minneapolis,
Minnesota, 12.

Natural Resources Defense Council, Solving Sprawl: Models of Smart Growth in
Communities across America, illustrated, Island Press, 2003

al. (n.d.). Getting to Smart Growth II:

Patterns on Vehicle Travel and Pollutant Emissions. Journal of Transport and

Paul A. Longley, Michael Batty, Spatial Analysis: Modeling in a GIS Environment,
illustrated, John Wiley and Sons, 1996

Piper Rae Gaubatz, Beyond the Great Wall: Urban Form and Transformation on the
Chinese Frontiers, illustrated, Stanford University Press, 1996

Urban Spaces or Live in Them? David Pullar and Jonathan Corcoran, 2026(Seq
2005).

Racine, P., Cumming, S., and Denver, F. (2011). Intcing PostGIS Raster • Support
for Rasters in the PostGIS Spatial Database, (September).

Planning B: Planning and Design, 31(2), 297–309.

Riefler, R. (1979). Nineteenth-Century Urbanization Patterns in the United States

Ethiopia: Urban Growth Analysis Using GIS.

Sturm, B. C., and Heater, N. (2012). Preserving Land through Compact Growth:
Case Studies of Noncontiguous Clustering in New Jersey, (April).

USEPA (2003), Smart Growth Index (SGI) Model, US Environmental Protection Agency from www.epa.gov/smartgrowth/sgipilot.htm

