CHARACTERISATION OF AZOREDUCTASE PRODUCED BY *BREVIBACILLUS PANACIHUMI* DURING THE DECOLOURISATION OF REACTIVE BLACK 5

MASYITHAH AALIA BINTI MOHD RAMLAN

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of
Master of Science (Biotechnology)

Faculty of Bioscience and Bioengineering
Universiti Teknologi Malaysia

March 2012
Specially dedicated to

My beloved parents, Mohd Ramlan bin Ramle and Azmah binti Yahya,

and family members,

My supportive supervisor and co-supervisor, Assoc. Prof. Dr. Zaharah Ibrahim and

Dr. Haryati Jamaluddin, lecturers and all my friends.
ACKNOWLEDGEMENT

My utmost Alhamdulillah to the Almighty and Merciful, with His blessings, and after going through such invaluable experience, I finally managed to present my Masters thesis. For this, I would like to extend my sincere gratitude to my supervisor, Assoc. Prof. Dr. Zaharah bte Ibrahim, for her kind guidance, precious advice and encouragement in making my research project possible. My special thanks also goes to my co-supervisor, Dr. Haryati binti Jamaluddin, whom, without her share of expertise and guidance will not make my effort into what it is today.

To PhD students in the Biochemistry Laboratory, Miss Ivy, Mr. Lim and Mr. Neoh, staff members, Encik Yusnizam and Encik Mohamad Rozaini, your kind gestures in forever lending me a hand with my research will always have a sweet memorable spot in my heart.

To my friends and colleagues, I wish I could thank you all enough for your understanding, patience and support throughout this project. The times we shared together will be cherished forever.

Last but not least, to my parents, brothers and sister, thanks beyond measure for your never ending love and encouragement and being my pillar of strength.

I sincerely hope this project will be of benefit and serves as future reference to those keen on doing research in decolourisation of textile effluents and enzymatic studies on azo dye-degrading enzyme.
ABSTRACT

Azoreductase plays an important role in the decolourisation of azo dyes by cleaving the azo bonds in azo dye structure. In view of this, *Brevibacillus panacihumi*, azo dye-degrading bacteria, was used for decolourisation of Reactive Black 5 (RB5) dye. Decolourisation of RB5 was carried out by growing the bacteria culture in RB5 dye solution (100 mg/L) at pH 9, supplemented with glucose 0.4 % (v/v) and yeast extract 1.2 % (v/v) and incubated at 37 °C under sequential anaerobic-aerobic condition. Azoreductase was produced during which the enzyme with the highest activity obtained during the end of log phase. Since the azoreductase activity related to the decolourisation of RB5 in anaerobic condition, the cells were harvested during this condition. Then, to determine whether the enzyme produced is found intracellular or extracellular, the cells was collected via centrifugation and the cell pellet was disrupted using sonication technique, and Lowry assay was used to determine the protein concentration. Azoreductase was found to be produced intracellularly as the cell free extract has the highest specific activity of 0.334 U/mg compared to the culture supernatant (extracellular), resting cell and cell debris which has significantly lower enzyme activity of 0.034 U/mg, 0.010 U/mg and 0.200 U/mg, respectively. The optimum assay conditions for the maximum azoreductase activity were at 37 °C, RB5 dye concentration of 100 mg/L and NADH concentration of 0.2 mM. In addition, the optimum pH and Ionic liquids [emim][EtSO₄] concentration was pH 7 and 70 %, respectively. Phosphate buffer, pH 7 showed a higher enzyme activity compared to the Ionic liquids as a stabiliser in azoreductase assay. Decolourisation of RB5 by azoreductase under the optimum assay conditions occured up to 93 % at 8th hour of incubation was successfully achieved.
Enzim azoreduktase memainkan peranan yang penting dalam proses penyahwarnaan pewarna azo dengan memutuskan ikatan azo dalam struktur pewarna azo. Oleh yang demikian, *Brevibacillus panacihumi*, bakteria yang berfungsi untuk mendegradasi pewarna azo telah diperkenalkan bagi tujuan penyahwarnaan Reactive Black 5 (RB5). Proses penyahwarnaan RB5 telah dijalankan dengan mengembangbiakkan kultur bakteria di dalam medium yang terdiri daripada pewarna azo RB5 (100 mg/L) pada pH 9, glukosa 0.4 % (v/v) dan ekstrak yis 1.2 % (v/v) and dieramkan pada suhu 37 °C di dalam perekitaran anaerobik-aerobik. Enzim azoreduktase telah dihasilkan ketika enzim mempunyai aktiviti yang paling tinggi iaitu yang telah terhasil pada penghujung fasa log. Oleh kerana aktiviti enzim azoreduktase berkait rapat dengan proses penyahwarnaan RB5 di dalam perekitaran anaerobik, sel telah diekstrak pada waktu tersebut. Kemudian, untuk mengenalpasti sama ada enzim ini telah dihasilkan secara intrasel atau ekstrasel, sel telah dikumpulkan melalui proses pengemparan dan sel pelet telah dipecahkan melalui teknik pemecahan sel dan analisis Lowry telah digunakan bagi menentukan jumlah protein. Enzim azoreduktase telah dikenalpasti dihasilkan secara intrasel kerana sel ekstrak mempunyai spesifik aktiviti enzim yang paling tinggi iaitu 0.334 U/mg berbanding dengan cecair kultur (ekstrasel), sel rehat dan serpihan sel yang mempunyai aktiviti enzim yang rendah iaitu 0.034 U/mg, 0.010 U/mg dan 0.200 U/mg. Aktiviti analisis yang optimum bagi menghasilkan aktiviti enzim azoreduktase yang maksimum telah dikenalpasti pada 37 °C, pewarna azo RB5 100 mg/L dan kepekatan NADH 0.2 mM. Di samping itu, pH dan kepekatan cecair ion [emim][EtSO₄] yang optimum ialah pH 7 dan 70 %. Penimbal fosfat, pH 7 telah menunjukkan aktiviti enzim dua kali ganda lebih tinggi daripada cecair ion sebagai penstabil di dalam analisis enzim azoreduktase. Penyahwarnaan RB5 dengan menggunakan enzim azoreduktase di dalam perekitaran analisis yang optimum yang terhasil sehingga 93 % penyahwarnaan pada jam kelapan inkubasi telah berjaya dijalankan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Research Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem of Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Scopes of Research</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Research Significance</td>
<td>4</td>
</tr>
</tbody>
</table>
CHAPTER 2 LITERATURE REVIEW

2.1 Azo Dyes 5
2.1.1 General Introduction of Azo Dyes 5
2.1.2 Reactive Black 5 6
2.2 Ionic Liquids 7
2.2.1 General Introduction of Ionic Liquids 7
2.2.2 Application of Ionic Liquids 8
2.3 Biological Treatment of Textile Effluents 10
2.3.1 Anaerobic and Aerobic Treatment of Textile Effluents 12
2.4 Sources of Azoreductase 15
2.5 Characteristics of Brevibacillus panacihumi 17

CHAPTER 3 MATERIALS AND METHODS

3.1 Source of Microorganism 18
3.2 Preparation of Growth Medium 18
3.2.1 Nutrient Agar 18
3.2.2 Nutrient Broth 19
3.2.3 Reactive Black 5 Stock Solution 19
3.2.4 Glucose Stock Solution 19
3.2.5 Yeast Extract Stock Solution 19
3.3 Preparation of Inoculum 20
3.4 The Growth of Brevibacillus panacihumi 20
3.5 Azo dye decolourisation 20
3.6 Protein Concentration Determination 21
3.6.1 Lowry Assay Solutions 21
3.6.2 Lowry Assay 22
3.7 Determination of Azoreductase Activity

3.7.1 Preparation of Azoreductase Assay Components
- 3.7.1.1 Phosphate Buffer
- 3.7.1.2 Reactive Black 5 Solution
- 3.7.1.3 NADH Solution

3.7.2 Azoreductase Assay

3.8 Determination of Azoreductase Localisation

3.9 Characterisation of Azoreductase

3.9.1 Effect of pH on Azoreductase Activity

3.9.2 Effect of pH on Azoreductase Stability

3.9.3 Effect of Temperature on Azoreductase Activity

3.9.4 Effect of Temperature on Azoreductase Stability

3.9.5 Effect of Substrate Concentration on Azoreductase Activity

3.9.6 Effect of Substrate Concentration on Azoreductase Stability

3.9.7 Effect of NADH Concentration on Azoreductase Activity

3.9.8 Effect of NADH Concentration on Azoreductase Stability

3.9.9 Effect of Ionic Liquids Concentration on Azoreductase Activity

3.9.10 Effect of Ionic Liquids Concentration on Azoreductase Stability
CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 The Growth Profile of *Brevibacillus panacihumi* and The Decolourisation of Reactive Black 5
4.2 The Effect of Concentration of Carbon and Nitrogen Source on the Decolourisation of Reactive Black 5
4.3 Determination of Azoreductase Localisation
4.4 Characterisation of Azoreductase
 4.4.1 The Effect of pH on Enzyme Activity and Stability
 4.4.2 The Effect of Temperature on Enzyme Activity and Stability
 4.4.3 The Effect of Substrate Concentration on Enzyme Activity and Stability
 4.4.4 The Effect of NADH Concentration on Enzyme Activity and Stability
 4.4.5 The Effect of Ionic Liquids Concentration on Enzyme Activity and Stability

CHAPTER 5 CONCLUSION

5.1 Conclusion
5.2 Future Work
REFERENCES

APPENDICES A - E
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Examples of the application of enzymes in ionic liquids</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The conditions used for decolourisation of textile effluents by different species of microorganisms</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Properties of Azoreductase</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparation of Lowry assay solutions</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Standard concentration of Bovine Serum Albumin (BSA) solutions for Lowry assay</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Decolourisation of Reactive Black 5 under various concentrations of carbon and nitrogen source</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Decolourisation of Reactive Black 5 supplemented with either carbon or nitrogen source</td>
<td>33</td>
</tr>
</tbody>
</table>
LISTS OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of azo dye Reactive Black 5</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Autooxidation process of Reactive Black 5; a) chemical structure of Reactive Black 5, (\text{b) 1,2,7-triamino-8-hydroxynaphthalene-3,6-disulfonate, c) 7-amino-8-hydroxy-1,2-naphthoquinone-3,6-disulfonate-1,2-diimine, d) dihydroxynaphthoquinone-3,6-disulfonatediimine. (The compounds shown in brackets and the positions of the hydrolysed amino groups in c) and d) are hypothetical)}</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>The metabolic pathway for the degradation of Mordant Yellow 3 under sequential anaerobic-aerobic treatment.</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Growth profile of Brevibacillus panacihumi and the percentage of Reactive Black 5 decolourised under sequential anaerobic-aerobic system.</td>
<td>30</td>
</tr>
</tbody>
</table>
4.2 The colour changes of Reactive Black 5 dye before and after the decolourisation by azoreductase; a) Reactive Black 5 dye solution before decolourisation appeared as a dark blue solution and (b) Reactive Black 5 dye solution after decolourisation appeared as a clear solution.

4.3 Analysis of azoreductase activity in different fractions

4.4 The effect of pH on azoreductase activity and stability

4.5 The effect of temperature on enzyme activity and stability

4.6 The effect of substrate concentration on enzyme activity

4.7 The effect of NADH concentration on enzyme activity

4.8 The effect of Ionic liquids concentration on enzyme activity
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CBB</td>
<td>Coomasie brilliant blue</td>
</tr>
<tr>
<td>[emim][EtSO₄]</td>
<td>1-Ethyl-3-methylimidazolium ethylsulfate</td>
</tr>
<tr>
<td>et al.</td>
<td>and others</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NB</td>
<td>Nutrient Broth</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>pH</td>
<td>Logarithm of the hydrogen ion concentration</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>Tris-HCL</td>
<td>Tris Hydrochloric acid</td>
</tr>
<tr>
<td>Units/mg</td>
<td>Units per milligram</td>
</tr>
<tr>
<td>U/ml</td>
<td>Units per millilitre</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume over volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight over volume</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>
LISTS OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Azoreductase assay standard curve</td>
<td>57</td>
</tr>
<tr>
<td>B</td>
<td>Standard curve for Protein concentration (Lowry Assay)</td>
<td>58</td>
</tr>
<tr>
<td>C</td>
<td>Preparation of 0.1 M Acetate Buffer</td>
<td>59</td>
</tr>
<tr>
<td>D</td>
<td>Preparation of 0.1 M Tris-HCL Buffer</td>
<td>60</td>
</tr>
<tr>
<td>E</td>
<td>Preparation of 0.1 M Phosphate Buffer</td>
<td>61</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Water pollution has become a major concern to the society since the past few decades. Approximately 280,000 tonnes of dyes has been discarded to the environment annually (Jin et al., 2007). The major concern of wastewater containing azo dyes is the pollution of toxic heavy metals such as Fe, Zn, Cu, Pb, and toxic compounds such as biocides (Jadhav et al., 2010). One of the advantages of using azo dye-degrading microorganisms to decolourise azo dyes is that it requires a lower processing cost. It also reduces the amount of toxic compounds contained in wastewater effluent through the mineralisation process (Forgacs et al., 2004). Azoreductase enzyme is the enzyme that is responsible in catalyzing the reductive cleavage of azo bond and led to the colour removal of azo dyes. Therefore, it is important to study the possible azo dye-degrading enzymes, the microorganisms that are responsible in producing such enzymes and the factors that may affect the activity of the enzymes.

All azo-dye degrading microorganisms are producing azoreductase enzyme that has the ability to cleave the azo bond of synthetic azo dyes. The biodegradation of wastewater containing azo dyes involves either anaerobic system, aerobic system or sequential anaerobic-aerobic system. The reduction of azo dyes produces aromatic amine products that are harmful to the human and aquatic life than the parent compound. Therefore, sequential anaerobic-aerobic or two-stage system has been of great interest as it has the capability of decolourising the azo dyes into colourless aromatic amines and
further oxidizes it into less toxic and more stable compounds. Azo dye reduction occurs preferentially under anaerobic condition. Ramalho et al. (2004) has observed a faster decolourisation rate of azo dyes at low oxygen concentration.

Azoreductase enzyme has been isolated and identified from various species of microorganisms. These enzymes are either oxygen insensitive or sensitive in the environment. Azoreductase from different sources of microorganisms would have different enzyme properties such as they can be categorised as flavin-dependent, flavin-independent and many others (Ghosh et al., 1992). Therefore, several studies have been done on microorganisms which have the ability to produce azoreductase enzyme to determine their specific characterisitics such as Pseudomonas KF46 (Zimmermann et al., 1982), Enterobacter agglomerans (Moutaouakkil et al., 2003), Staphylococcus aureus (Chen et al., 2005), Micrococcus strain (Olukanni et al., 2009). Fungi also has the ability to produce azoreductase, one such example is using Issatchenka occidentalis which is used for decolourisation of methyl orange and orange II (Ramalho et al., 2004). In some studies, mixed bacterial culture is more preferable than the pure bacterial culture as it has higher co-metabolic activities within a microbial community. However, the ability of pure bacterial culture in biodegradation of azo dyes producing azoreductase is much easier to be observed and studied in terms of its specific activity.
1.2 Problem of Statement

Azoreductase is responsible for reducing the azo double bond in azo dyes structures by enzymatic biotransformation step to produce colourless amine products and reduce them to a more stable product (Zimmermann et al., 1982). However, azoreductase isolated from different microorganisms varies in their enzymatic activities (Nakanishi et al., 2001). Therefore, there is a need to study the characteristics of azoreductase-mediated biodegradation in terms of various environmental effects. Therefore, further studies on the characterisation of azoreductase in terms of its activity and stability should be done in order to obtain the maximum production and enzyme activity of azoreductase for the purpose of biological textile wastewater treatment. A higher specific enzyme activity of azoreductase was expected in azo dyes decolourisation with the used of pure bacterial culture. This is because the results may not be affected by other properties of unknown microorganisms or mixed bacterial cultures.

1.3 Research Objectives

There are 2 main objectives of this study:-

1. To optimise the decolourisation of Reactive Black 5 using azoreductase produced by Brevibacillus panacihumi under sequential anaerobic-aerobic condition.

2. To optimise the azoreductase assay conditions; pH, temperature, substrate concentration, NADH concentration and Ionic liquids concentration.
1.4 Scopes of Research

This project is mainly focused on the localisation and characterisation of crude azoreductase produced by azo dye-degrading bacteria using pure culture of *Brevibacillus panacihumi*. The localisation of azoreductase was first determined in order to obtain the crude enzyme extracts with the highest azoreductase activity. Lowry method was used to determine the protein concentration. The effects of pH, temperature, substrate concentration, NADH concentration and Ionic liquids concentration on crude azoreductase activity and stability were determined using azoreductase assay.

1.5 Research Significance

Textile industries have contributed about 73 to 167 m³ of the wastewater per tonne of product and accounted for 22% of the total volume of industrial wastewater produced in Malaysia (Idris et al., 2007). Thus, the biological method has been introduced to overcome the problems of conventional method that produces high sludge contents (Lucas and Peres, 2009). The enzyme involved in the biodegradation of azo dyes is mainly azoreductase. Azoreductase enzyme has been proven to have highly stable physiochemical properties. Therefore, azoreductase has been widely investigated and characterised in order to obtain the highest enzyme activity with a higher capability of azo dyes removal. Some aerobic bacteria have the ability to reduce the azo bond of synthetic azo dye by oxygen-insensitive or using aerobic azoreductase (Mazumdar et al., 1999). In addition, some anaerobic bacteria also have the ability to produce different forms of azoreductase (Horikoshi, 1999). This may contribute to a better biodegradation of azo dyes to be used for biological treatment of industrial wastewater containing azo dyes (Ooi et al., 2007).
REFERENCES

