THE EXTRACTION OF ESSENTIAL OIL FROM *Quercus infectoria*
(MANJAKANI) GALLS USING SUPERCritical CARBON DIOXIDE
PRESSURE SWING TECHNIQUE

STASHIA ELEANESS ROSLAND ABEL

UNIVERSITI TEKNOLOGI MALAYSIA
THE EXTRACTION OF ESSENTIAL OIL FROM Quercus infectoria
(MANJAKANI) GALLS USING SUPERCRITICAL CARBON DIOXIDE
PRESSURE SWING TECHNIQUE

STASHIA ELEANESS ROSLAND ABEL

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Master of Engineering (Bioprocess)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JUNE 2013
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. This thesis would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study. First and foremost, I would like to express my sincere gratitude to my supervisor Dr. Liza Md. Salleh, with her enthusiasm, her inspiration and her great efforts to explain things clearly and simply. Throughout my thesis writing, she provided encouragement, good teaching, good company and lots of good ideas, without her, this thesis would not have been completed or written.

I am obliged to many of my colleagues who supported me, their friendship and assistance has meant more to me than I could ever express. Their guidance has served me well and I owe them my heartfelt appreciation. Special thanks to Madam Siti Zalita for her friendly assistance in practical analysis of this thesis. Thank you very much.

Last but not least, I owe sincere and earnest thankfulness to my beloved family. To my father, Mr. Rosland Abel Richard Lee, my mother, Mrs. Jumatiah Sagulu, my dear husband, Mohd Azmi Pang Thien Soong, my dearest sisters, Sabrina, Stasha Eleanor, Synthia Attilah and Sylvia Viviena for helping me get through the difficult times and for all the emotional support, I owe them everything and wish I could show them how much I love and appreciate them. To them I dedicate this thesis.
ABSTRACT

The study of essential oil of *Quercus infectoria* (Manjakani) was carried out using supercritical carbon dioxide (SC-CO$_2$) extraction. Two techniques were tested: Soxhlet extraction and SC-CO$_2$ extraction with pressure swing technique. The experiments of SC-CO$_2$ extraction investigated the effect of pressure and temperature on extraction yields and solubility of galls oil. The extraction were performed at pressures range of 35 to 48 MPa, temperatures between 40 and 60°C with extraction time of 30 to 60 minutes. The experiments were designed using Response Surface Methodology (RSM) to determine the optimum conditions. In this study, SC-CO$_2$ extraction combined with the pressure swing technique produced higher oil extracted compared to the continuous SC-CO$_2$ extraction with 2.58 % and 1.12 % yield, respectively. The analysis of RSM indicated that the extraction temperature has a major linear effect on the galls oil extraction with 17.92 % yield. The optimum extraction process parameters were for pressure of 38 MPa, temperature of 75°C and extraction time of 54 minutes with 1.12 % yield. The experimental solubility data was successfully correlated using Chrastil model with the coefficient of determination (R^2) value of 0.95. SC-CO$_2$ extraction combined with the pressure swing technique proved of potential to produce greater yield by using much lower SC-CO$_2$ compared to the continuous SC-CO$_2$ extraction. The identification of bioactive compounds from essential oil was analyzed using High Performance Liquid Chromatography (HPLC) analysis, and it was observed that *Quercus infectoria* galls oil contained gallic acid as the major component at the retention time of 2.79 min.
Kajian pengekstrakan minyak galls dari *Quercus infectoria* (Manjakani) dijalankan menggunakan kaedah pengekstrakan karbon dioksida bendalir lampau genting (SC-CO₂). Pengekstrakan cecair ini diuji menggunakan pengekstrakan Soxhlet dan SC-CO₂ dengan teknik ayunan tekanan. Eksperimen melibatkan penyiasatan tentang kesan tekanan dan suhu pada hasil pengekstrakan dan kebolehlarutan minyak galls menggunakan pengekstrakan SC-CO₂. Keadaan proses pengekstrakan yang digunakan pada tekanan 35 hingga 48 MPa, suhu diantara 40 dan 60 °C manakala masa pengekstrakan adalah diantara 30 dan 60 minit. Eksperimen telah direka menggunakan Kaedah Tindakbalas Permukaan (RSM) bagi menentukan keadaan proses yang optimum. Pengekstrakan menggunakan SC-CO₂ yang digabungkan dengan teknik ayunan tekanan menghasilkan produk ekstrak minyak yang lebih tinggi (2.58 % hasil ekstrak) berbanding pengekstrakan berterusan SC-CO₂ (1.12 % hasil ekstrak). Analisis menunjukkan bahawa suhu pengekstrakan mempunyai kesan utama pada hasil ekstrak minyak galls dengan peratus hasil ekstrak 17.92 %. Keadaan proses yang optimum bagi proses perahan minyak galls adalah pada tekanan 48 MPa, suhu 75 °C dengan masa pengekstrakan 54 minit bagi menghasilkan ekstrak minyak galls 1.12 %. Data kelarutan dari eksperimen telah berjaya dikaitkan menggunakan model Chrastil dengan pekali penentuan, R^2 bernilai 0.95. Pengekstrakan SC-CO₂ yang digabungkan dengan teknik ayunan tekanan berpotensi tinggi mengeluarkan hasil ekstrak minyak galls yang lebih tinggi dengan penggunaan SC-CO₂ yang lebih rendah berbanding pengekstrakan berterusan SC-CO₂. Pengenalpastian sebatian bioaktif dari minyak galls dianalisis menggunakan analisis Kromatografi Cecair Prestasi Tinggi (HPLC) dengan minyak *Quercus infectoria* galls mengandungi asid gallic sebagai komponen utama telah dikesan, manakala masa tahanan dikesan pada 2.79 minit.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION | 1 |

1.1 Background of the Problem | 3 |
1.2 Problem Statement | 4 |
1.3 Research Objectives | 4 |
1.4 Scopes of Work | 4 |
1.5 Research Contributions | 5 |
2 LITERATURE REVIEW

2.1 Essential Oil as the Therapeutic Agents
 2.1.1 Potential Usage of Essential Oil in Industry
 2.1.2 Chemical Structure and Properties of Essential Oil

2.2 Facts about Quercus infectoria (Manjakani)

2.3 Extraction Method
 2.3.1 Soxhlet Extraction
 2.3.2 Supercritical Fluid Extraction (SFE)
 2.3.2.1 Properties of Supercritical Fluids
 2.3.2.2 Choice of Solvent for SFE
 2.3.2.3 Principles and Mechanisms of SFE

2.4 Pressure Swing Technique

2.5 Response Surface Methodology (RSM)
 2.5.1 Design of Experiment (DOE)
 2.5.2 Analysis of Variance (ANOVA)
 2.5.3 Optimization of Process Parameter using RSM

2.6 Solubility of Solutes in Supercritical Fluid
 2.6.1 Solubility of Plant Seed Oils in SC-CO₂
 2.6.2 Measurement of Solubility
 2.6.3 Correlations for Solubility using Chrastil Model

2.7 Application of SC-CO₂ Extraction
 2.7.1 Advantages of SFE

3 METHODOLOGY

3.1 Chemicals

3.2 Raw Material Preparation

3.3 Physical Properties of Quercus infectoria Galls
 3.3.1 Moisture Content Analysis
 3.3.2 Density Measurement

3.4 Soxhlet Extraction
3.4.1 Extraction Yield Calculation 43

3.5 Supercritical Fluid Extraction Method 43

3.5.1 Supercritical Carbon Dioxide Continuous Extraction 43

3.5.1.1 Extraction Yield Calculation 45

3.5.2 Supercritical Carbon Dioxide Extraction with Pressure Swing Technique 45

3.6 High Performance Liquid Chromatography (HPLC) Analysis 46

3.7 Experimental Design for RSM 47

3.8 Solubility Measurement 49

4 RESULTS AND DISCUSSIONS 51

4.1 Physical Properties Analysis of Quercus infectoria Galls 51

4.2 Soxhlet Extraction 51

4.3 Supercritical Carbon Dioxide Extraction 52

4.3.1 Extraction Yield of Galls Oil 52

4.3.1.1 Effect of Pressure 52

4.3.1.2 Effect of Temperature 57

4.3.2 Optimization by Response Surface Methodology 62

4.3.3 Model Fitting and Statistical Analysis 64

4.3.3.1 Regression Model 64

4.3.3.2 Analysis of variance (ANOVA) 66

4.3.3.3 Observed vs. Predicted Values 67

4.3.3.4 Pareto Chart of Standardized Effect 69

4.3.4 Response Surface and Contour Plot Analysis 71

4.3.5 High Performance Liquid Chromatography (HPLC) Analysis 75

4.4 Pressure Swing Extraction (PSE) 76

4.4.1 Analysis of Extraction Yield 76

4.5 Comparison of Extraction Yield between SC-CO₂ Extraction and PS Extraction 80
4.6 Solubility of *Quercus infectoria* Galls Oil in SC-CO$_2$ 81
4.6.1 Effect of Pressure on the Solubility of Galls Oil 83
4.6.2 Effect of Temperature on the Solubility of Galls Oil 85
4.6.3 Correlation of Solubility using Chastil Model 87

5 CONCLUSIONS AND RECOMMENDATIONS 92

5.1 Conclusions 92
5.2 Recommendations for Future Work 94

REFERENCES 95

Appendices A – B 110-111
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>List of essential oils used in the industry (Dorie, 2001)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Functional group and medicinal properties of essential oils compound (Sue, 2009)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of physical properties of gases, liquids and supercritical fluid (Sivasankar, 2005)</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Critical properties of selected fluids in supercritical processes</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>The ANOVA table for simple linear regression</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Commercial processes of supercritical carbon dioxide in seed extraction</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Uncoded and coded levels of independent variables used in RSM design</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Three level Box-Behnken Design with three independent variables</td>
<td>48</td>
</tr>
</tbody>
</table>
4.1 Experimental and predicted data for the oil yields obtained from Box-Behnken experimental design

4.2 Regression coefficients of the second order polynomial model of *Quercus infectoria* oil yield extract

4.3 Analysis of variance (ANOVA) of the response surface model of *Quercus infectoria* oil yield

4.4 Observed and predicted values of the oil yield (%)

4.5 Comparison of extraction yield between PSE and continuous extraction at pressure 34.47, 41.37 and 48.26 MPa and constant temperature of 50 °C

4.6 Mass of CO₂ used for both PSE and continuous extraction at various time intervals up to total extraction times of 60 min

4.7 Comparison of extraction yield between SC-CO₂ and PS extraction

4.8 Solubility data of *Quercus infectoria* galls oil in SC-CO₂ extraction

4.9 Linear regression parameters of the solubility data correlation by the Chrastil model
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Picture of Quercus infectoria galls</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Two-dimensional pressure-temperature PT phase diagram for pure component</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic diagram of SFE system (Machmudah et al., 2008)</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Graphical representation of three-factor Box-Behnken Design</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart on extraction process of Soxhlet extraction and SC-CO$_2$ extraction</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow diagram of supercritical carbon dioxide (SC-CO$_2$) extraction</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental process of combined pressure swing extraction</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>P: pressurization; D: depressurization; C: continuous extraction</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of pressure on the extraction of oil yield as a function of extraction time at constant temperature of 40 °C</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of pressure on the extraction of oil yield as a function of extraction time at constant temperature of 50 °C</td>
<td>55</td>
</tr>
</tbody>
</table>
4.3 Effect of pressure on the extraction of oil yield as a function of extraction time at constant temperature of 60 °C 56

4.4 Effect of temperature on the extraction of oil yield as a function of extraction time at constant pressure of 34.47 MPa 59

4.5 Effect of temperature on the extraction of oil yield as a function of extraction time at constant pressure of 41.37 MPa 60

4.6 Effect of temperature on the extraction of oil yield as a function of extraction time at constant pressure of 48.26 MPa 61

4.7 Graph of observed versus predicted values of the oil yield 69

4.8 Pareto chart of standardized effects of the oil yield (3 3-level factors, 1 Blocks, 17 Runs; MS Residual = 0.00043) 70

4.9 3D response surface plots showing effects of pressure and temperature on the oil yield and their interactions. The extraction time was constant at 45 min 71

4.10 3D response surface plots showing effects of pressure and extraction time on the oil yield and their interactions. The temperature was constant at 50°C 73

4.11 3D response surface plots showing effects of temperature and extraction time on the oil yield and their interactions. The pressure was constant at 6000 psi 74

4.12 Cumulative yields from pressure swing extraction of galls oil versus cumulative amount of CO2 at three different pressures; ♦ 34.47 MPa, ■ 41.37 MPa and ▲ 48.26 MPa at 323 K for a total of 60 min extraction time 79
4.13 Cumulative yields from continuous extraction of galls oil versus cumulative amount of CO2 at three different pressures; ♦ 34.47 MPa, ■ 41.37 MPa and ▲ 48.26 MPa at 323 K for a total of 60 min extraction time

4.14 Solubility of Quercus infectoria galls oil on supercritical CO2 extraction as a function of pressure. ♦, experimental data at 40 °C; ■, experimental data at 50 °C; ▲, experimental data at 60 °C

4.15 Solubility of Quercus infectoria galls oil on supercritical CO2 extraction as a function of temperature. ♦, experimental data at 5000 Psi; ■, experimental data at 6000 Psi; ▲, experimental data at 7000 Psi

4.16 Experimental data of Quercus infectoria galls oil solubility in SC-CO2. (♦) Model, (■) 40 °C. The continuous lines represent the solubility isotherms calculated with the Chrastil equation

4.17 Experimental data of Quercus infectoria galls oil solubility in SC-CO2. (♦) Model, (■) 50 °C. The continuous lines represent the solubility isotherms calculated with the Chrastil equation

4.18 Experimental data of Quercus infectoria galls oil solubility in SC-CO2. (♦) Model, (■) 60 °C. The continuous lines represent the solubility isotherms calculated with the Chrastil equation
A.1 Soxhlet extraction apparatus (Wang and Weller, 2006) 110

B.1 HPLC chromatogram of standard curve gallic acid 111

B.2 HPLC chromatogram of gallic acid in *Quercus infectoria* galls oil extracted using Soxhlet extraction 112

B.3 HPLC chromatogram of gallic acid in *Quercus infectoria* galls oil extracted using SC-CO₂ extraction at minimum conditions; Pressure, 34.47 MPa, temperature, 40 °C, time, 30 min 113

B.4 HPLC chromatogram of gallic acid in *Quercus infectoria* galls oil extracted using SC-CO₂ extraction at optimum conditions; Pressure, 38.29 MPa, temperature, 75 °C, time, 54 min 114

B.5 HPLC chromatogram of gallic acid in *Quercus infectoria* galls oil extracted using SC-CO₂ extraction at optimum conditions; Pressure, 48.26 MPa, temperature, 60 °C, time, 60 min 115
LIST OF ABBREVIATIONS

AARD - Average absolute relative deviation
ACE - Angiotensin converting enzyme
BBD - Box-Behnken Design
CNSL - Cashew nut shell liquid
CO₂ - Carbon dioxide
HPLC - High performance liquid chromatography
MOX - Malaysian Oxygen
\(P_c \) - Critical pressure
PT - Pressure-Temperature
RSM - Response Surface Methodology
SCF - Supercritical fluid
SC-CO₂ - Supercritical carbon dioxide
SEM - Scanning electronic microscope
SFE - Supercritical fluid extraction
\(T_c \) - Critical Temperature
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>μ</td>
<td>Dipole moment</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>ε</td>
<td>Porosity</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>k</td>
<td>Association number</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Soxhlet extraction apparatus</td>
<td>110</td>
</tr>
<tr>
<td>B</td>
<td>HPLC chromatograms of galls oil for soxhlet extraction and</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>supercritical fluid extraction</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Essential oils are aromatic liquids derived from various parts of different plants (Dorie, 2001). Depending on the plants, essential oils are located in the bark, leaves, flowers, seeds and roots. There are different methods of extracting essential oils, based on the plant parts from which the individual oils are derived. The extraction process, which separates oils from their sources, has been employed for more than 40 centuries. The extraction methods include cold press, steam distillation, microwave extraction and solvent extraction. Nevertheless, a fairly new modern technology supercritical fluid extraction (SFE) with carbon dioxide (CO₂) may increase the production efficiency and contributes to preservation of the environment by reducing the use of solvents and the generation of hazardous substances (Masayoshi, 2010).

Over the last decade, the extraction of essential oil by supercritical fluids technology has re-emerged, mainly due to the dramatic increased in the research and development activities focusing on innovative and new trends approaches. SFE technology is growing at rapid pace because it can overcomes many disadvantages associated with conventional technologies and meet the consumer demand for natural products. In addition, large amounts of organic solvents used, particularly in the pharmaceutical, food and chemical industries can cause toxicity and generate
hazardous wastes to the environment. Therefore, in the search for environmentally friendly solvents, supercritical fluid extraction has been given high attention in variety of applications (Jose et al., 2007).

Quercus infectoria or locally known as Manjakani in Malaysia is a small tree native of Greece and Asia Minor, with four to six feet in height. The stems are crooked, shrubby looking with smooth and bright-green leaves borne on short petioles of 1 to 1.5 inches long. The leaves is bluntly mucronate, rounded, smooth, unequal at the base and shiny on the upper side, as shown in Figure 1.1a. Meanwhile, *Quercus infectoria* (Figure 1.1b) galls are corrugated and can be used as a thickener in stews or mixed with cereals for making bread.

![Figure 1.1](image1.png)
(a) Oak gall tree leaves
(b) *Quercus infectoria* galls

In India, it is known as Majuphal and is widely used as Indian traditional medicine for treatment of toothache and gingivitis. Compared with other plant seeds, Manjakani is relatively less known. This plant is also efficacious for women health. Manjakani is also known as "herbal magic" which are rich with tannins, calcium, protein, vitamins A and C (Rina et al., 2011). Additionally, the galls contain elements of astringent which can help to inhibit bacterial growth in urinary tract of women. Galls are mainly imported from Syria and Turkey, with some high grades are brought in smaller quantity from other countries namely China and Japan. Galls
are purely effective astringent and scarcely stimulant. They can be used as an injection in bad leucorrhrea where they arrest putrefactive tendencies, and can be combined with suitable stimulants (Hwang et al., 2010).

1.1 Background of the Problem

In the past few years, a published article highlighted the potential of antioxidant activity from *Quercus infectoria* galls with an addition of ethno botanical that can act as a stimulant and also can be used in treating skin disorders (Umachig et al., 2008). In addition to medicinal properties for all parts of plants, the galls can live for more than 10 years before undergo the seedling process. In Indonesia, few researches have been carried out in the extraction of *Quercus infectoria* galls by using solvent extraction. The most important components extracted from these techniques were gallotannin, gallic acid and ellagic acid (Ikram and Nowshad, 1977). Nevertheless, the study on extraction of essential oils from *Quercus infectoria* galls using SFE has never been reported before. Therefore, this research will be conducted to emphasize the investigation on the extraction of essential oils from *Quercus infectoria* by using supercritical carbon dioxide (SC-CO$_2$) method coupled with pressure swing technique.

Supercritical fluid extraction has been documented as an effective method for extraction of essential oils from plant materials (Modey et al., 1996). In Malaysia, the use of supercritical fluid extraction is still unpopular even though several local researchers have studied the feasibility of this technique especially in the herbs industry such as *Strobilanthes crispus* (Pecah Kaca) (Azizi et al., 2007, Norulaini et al., 2009 and Liza 2010). Therefore, the result from this research is important to be revealed and documented in order to evaluate the therapeutic properties of essential oils and their potentials in pharmaceutical or food industries.
1.2 Problem Statement

Generally, it is feasible to obtain quality results by using the SC-CO₂ extraction process, as well as selective extraction results. As the galls are usually coated by a hard shell, there is a limitation on the efficiency of the extraction system. The pressure swing technique approach is considered as an improvement of SC-CO₂ process, where the quantity and quality of extraction can be improved, particularly for hard grains, which is influenced the botanical structure of the material used. The pressure swing method of SC-CO₂ is considered as an economical process as it only consumes a small amount of CO₂ gas for the extraction process.

1.3 Research Objectives

The objectives of this research are to study the effects of process parameters on the yield of *Quercus infectoria* (Manjakani) galls oil and also the ability of SC-CO₂ with pressure swing technique for extraction of galls oil.

1.4 Scopes of Work

The extraction of *Quercus infectoria* galls was performed at selected range of conditions by using both conventional SC-CO₂ and SC-CO₂ pressure swing techniques. Therefore, the scopes of the work are as follows:

a) Conducting experiments to determine the effects of process parameters which include pressure, temperature and extraction time on the extraction yield at
selected range of conditions and analysis of crude yield composition was carried out using High Performance Liquid Chromatography (HPLC) analysis.

b) Optimization of variable condition (pressure, temperature and extraction time) by using Response Surface Model, with Box-behnken design (BBD) was used in the design of the experiment.

c) Investigation on the correlation of the solubility behaviour by using Chrastil model.

d) Comparison of extraction yield between conventional SC-CO$_2$ and SC-CO$_2$ with pressure swing techniques.

1.5 Research Contributions

Supercritical fluid extraction techniques are widely investigated in many industrial areas, and most of the published materials are concerned with the extraction of analytes from solid or semi-solid materials matrices. Several extraction techniques available over the past decades such as steam distillation extraction, ultrasound-assisted extraction, Soxhlet extraction and water steam distillation have been used to extract various natural compounds and essential oils from plant materials (seed, galls or leaves). Unfortunately, the oldest methods of extractions are very time consuming and require large quantities of solvents. Recently, the industry comes out with new observations, where dissolution of solutes in supercritical fluid (SCF) media has introduced the possibility of a new solvent medium. Consequently, SFE using CO$_2$ as a solvent is known as an efficient extraction technique for solid materials and it is extensively studied for separation of active compounds from herbs and other plants. The findings of this study, together with the pressure swing technique, will be viewed as a new approach for comparison with the current SC-
CO₂ continuous extraction process. In addition, there is lack of information on pressure swing extraction reported on SFE study. Thus, the information obtained from this study may provide a new approach to disclose the essential oils obtained from *Quercus infectoria* galls extraction and also as a reference to the SFE industry involving extraction of essential oils from seed plants.
REFERENCES

Gomez, A.M., Lopez, C.P. and De La Martinez, O.E. (1996). Recovery of Grape Seed Oil by Liquid and Supercritical Carbon Dioxide Extraction:

Mohamed R.S. and G.A. Mansoori. (2002). The Use of Supercritical Fluid Extraction Technology in Food Processing. *Food Technology*.

Artemisia annua. North-West University: Degree Thesis.

Constituents and Antioxidant Activities of Teas from Thailand. Food
Chemistry. 125: 797-802.

Pathumthip, T., Chuaprasert, S., Douglas, P. and Luewisutthichat, W.
(2001). Supercritical CO2 Extraction of Nimbin from Neem Seeds-An
Experimental Study. Journal of Food Engineering. 47: 289-293.

Supercritical Fluid Extraction of Daphnoretin, 7-methoxy-daphnoretin and 1,5-
diphenyl-1-pentanone from Stellerachamaejasme L. and Subsequent Isolation
by High-speed Counter-current Chromatography. Journal of Chromatography.

Germ Oil Yield by Supercritical Carbon Dioxide Extraction. Journal of Food
and Bioproducts Processing. 86: 227-231.

in Plant Essential and Volatile Oil Analysis. Journal of Chromatography. 1163:
2-24.

Cashew (Anacardium occidentale) Nut Shell Liquid using Supercritical

Renata, M.S.C., Janete, H.Y.V. and Fernando, M.L. (2001). Extraction and
Quantitative HPLC Analysis of Coumarin in Hydroalcoholic Extracts of
Mikaniaglomerata Spreng. (“guaco”) Leaves. Journal of the Brazilian Chemical
Society. 12: 706-709.

