THE FORENSIC ANALYSIS OF HUMAN CANINE TEETH FOR GENDER DETERMINATION

NURUL HAZLEENA BINTI ABU BAKAR

UNIVERSITI TEKNOLOGI MALAYSIA
THE FORENSIC ANALYSIS OF HUMAN CANINE TEETH FOR GENDER DETERMINATION

NURUL HAZLEENA BINTI ABU BAKAR

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Forensic Science)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2014
This dissertation specially dedicated to…
My beloved parents, Abu Bakar Bin Bachik and Fatimah Binti Ngah Ahmad, and my family.
ACKNOWLEDGEMENT

First and foremost I would like to show my gratitude and say thank you Allah because He had given me the strength and opportunity to complete my dissertation on “The forensic analysis of human teeth for gender determination”. This dissertation would not have been possible without the blessing from my lovely parents.

There are so many people that I would like to express my gratitude. I am grateful to have Dr. Hajah Roswanira Binti Abdul Wahab as my supervisor. She had sacrificed her time and lots of her ideas and also gave me advices as well as encouragement throughout the whole journey till completion of the project. She also had given insightful and thorough comments on this writing project. I am also thankful to my co-supervisor, Dr. Nor’ashikin Binti Sharif and her assistant, Dr. Norannieza Binti Muzlan for their guidance, suggestions and advices. I really appreciate and it is an honor for me to work with these experienced dentists.

It is a pleasure to thank medical officer and nurse from University Health Centre of Universiti Teknologi Malaysia (UTM) and forensic laboratory assistants of UTM, Mr. Mohd Nazri Zainal and Mrs. Siti Rafezah Mat Emi who willingly help me with their knowledge. I am indebted to many of my colleagues especially Nur Syafiqah Amira who has been supportive and generously shared many of their ideas and experiences leading toward the improvement of my project.
ABSTRACT

Identification of the deceased is an important aspect in forensic dentistry, particularly in cases of unusual circumstances. Gender determination on the deceased may be achieved by analysis on teeth due to identify differential sexual dimorphism corresponding to a specific gender. The study focused on measuring the width of canine teeth between Malaysian male and female human subjects using a divider caliper the mandibular canine index (MCI) method according to the MCI method. The MCI method calculates the ratio value of maximum crown over the width at mesio-distal (MD) and inter-canine width. Random sampling was performed in several dentistry clinics in Pontian, Skudai and Senai, whereby measurements on intraoral and dental casting on 100 males and 100 females were performed. Statistical analysis of one-sample t-test and descriptive analysis found patients both male and female gave higher significant differences of the MCI value. Male demonstrated larger volume of RMCI and LMCI than standard MCI as compared to the female. It was noted that the percentage of sexual dimorphism was significantly different in male, as much as 4.88% but only 1.52% in female. Interestingly, the size of the right mandibular canine showed greater variety between both genders as compared to the one on the left for both methods. The study discovered that male and female subjects were distinguishable by the width of their mandibular canine. The male exhibited width of > 0.7 cm, whereas the female was < 0.7 cm. Age factor had a relatively insignificant effect on the MCI while the size of canine teeth was inconclusive. Hence, it can be concluded that the MCI method is applicable for gender determination.
ABSTRAK

Pengecaman mayat adalah sesuatu aspek yang penting dalam bidang forensik pergigian terutamanya di dalam kes-kes luar biasa. Penentuan jantina pada si mati boleh dijalankan melalui analisis gigi kerana terdapat perbezaan dimorfisme seksual mengikut jantina tertentu. Kajian ini bertumpu pada pengukuran lebar gigi taring antara subjek lelaki warganegara Malaysia dan perempuan dengan menggunakan angkup pembahagi. Kaedah MCI mengira kadar nilai terbesar mahkota kepada lebar di bahagian mesio-distal (MD) dan jarak antara dua gigi taring. Kaedah pensampelan secara rawak dijalankan di beberapa klinik gigi di sekitar daerah Pontian, Skudai dan Senai, dimana ukuran pada intraoral dan model gigi terhadap 100 orang lelaki dan 100 orang perempuan telah dijalankan. Analisis secara statistik mendapati kedua-dua jantina iaitu lelaki dan perempuan mempunyai variasi yang signifikan terhadap nilai MCI. Lelaki menunjukkan nilai yang besar terhadap RMCI dan LMCI berbanding nilai standard MCI dan perempuan mempunyai nilai RMCI dan LMCI yang rendah daripada standard MCI. Peratusan dimorfisme seksual bagi lelaki telah menunjukkan nilai perbezaan yang signifikan sebanyak 4.88% dan hanya 1.52% bagi perempuan. Menariknya, saiz gigi taring kanan menunjukkan kepelbagaian di antara kedua – dua jantina jika dibandingkan dengan bahagian kiri bagi kedua-dua kaedah. Kajian ini mendapati subjek lelaki dan perempuan dibezakan melalui kelebaran gigi taring bahagian bawah mereka. Lelaki mempunyai lebar > 0.7 cm, manakala perempuan telah menunjukkan lebar < 0.7 cm. Dalam kajian ini, faktor umur tidak mempengaruhi indeks gigi taring kerana saiz taring tidak meyakinkan. Oleh itu, ia dapat dirumuskan bahwa kaedah MCI ini boleh digunakan bagi penentuan jantina.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
<td></td>
</tr>
</tbody>
</table>

1 **INTRODUCTION** 1
1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Aim of Research 3
1.4 Objectives 4

2 **LITERATURE REVIEW** 5
2.1 Sexual Dimorphism 5
2.2 Characteristics to Distinguish Gender for Sexual Dimorphism 6
 2.2.1 Bone 6
2.2.2 Genetic and Hormone
2.2.3 Deoxyribonucleic Acid (DNA)
 2.2.3.1 Drawback of DNA for Teeth Analysis
2.2.4 Teeth
 2.2.4.1 Tooth Numbering System
 2.2.4.2 Significance of Using Teeth in Forensic Analysis
 2.2.4.3 Significance of Using Mandibular Canine
 2.2.4.4 Methods for Gender Identification Using Teeth
2.3 Factors Affecting Size of Teeth
 2.3.1 Age
 2.3.2 Eruption
 2.3.3 Geographic / Environmental
2.4 Case Study Using Teeth for Gender Determination
 2.4.1 Differences between Left Canine and Right Canine
 2.4.2 Differences on Teeth Between Male and Female
 2.4.3 Disaster Victim Identification

3 METHODOLOGY
3.1 Materials and Method
3.2 Statistical Analysis

4 RESULTS AND DISCUSSIONS
4.1 Frequency
 4.1.1 Based on Gender
 4.1.2 Aged Group
4.2 Size of canine teeth
 4.2.1 Based on Gender
 4.2.2 Based on Age
4.3 Sexual Dimorphism
 4.3.1 Mandibular Canine Index
 4.3.2 Percentage of Sexual Dimorphism

5 CONCLUSIONS AND RECOMMENDATIONS
 5.1 Conclusions
 5.2 Limitations
 5.3 Recommendations

REFERENCES
APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The numbering system to denote the position of teeth (a) Universal System (b) Palmer System (c) Federal Dentaire Internationale (FDI) System.</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Dentition development in human (a) deciduous dentition (b) mixed dentition (c) permanent dentition.</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency of patients for the measurement using the intraoral method according to gender.</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Frequency of patients for the measurement using the cast method according to gender.</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Frequency of patients for the measurement using the intraoral method according to age group.</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Frequency of subject for casting measurement according to age group.</td>
<td>31</td>
</tr>
<tr>
<td>4.5</td>
<td>One-sample t-test for the intraoral method to determine relation between the size of teeth and gender.</td>
<td>33</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>The range of sizes of the canine teeth for the intraoral method according to gender.</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>One-sample t-test for the casting method to determine relation between the size of teeth and gender.</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>The range of sizes of the canine teeth for the casting method according to gender.</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>The size of the right canine teeth using intraoral method according to age group.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>The size of the left canine teeth using intraoral method according to age group.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>The size of the right canine teeth according to respective age group.</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>The size of the left canine teeth according to respective age group.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>The standard MCI value for the casting method.</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>The standard MCI value for the intraoral method.</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>The percentage of sexual dimorphism of the right and left canine teeth.</td>
<td></td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>The anatomy of tooth.</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Photograph showing the intraoral measurement of (a) the width measurement of canine and (b) the inter-canine measurement.</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Photograph showing the casts measurement of (a) the width measurement of canine and (b) the inter-canine measurement.</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Histogram of patients for the measurement using intraoral method according to gender.</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Histogram of patients for the measurement using casting method according to gender.</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Histogram of patients for the measurement using intraoral method according to age.</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Histogram of patients for the measurement using casting method according to age.</td>
<td>32</td>
</tr>
</tbody>
</table>
4.5 Model of standard residual versus observed plot for the intraoral method performed for the right canine teeth.

4.6 The Normal Q-Q Plot of standardized residual for RCW for the intraoral method of measurement performed on the right canine teeth.

4.7 Model of standard residual versus observed plot for the intraoral method performed for the left canine teeth.

4.8 The Normal Q-Q Plot of standardized residual for LCW for the intraoral method of measurement performed on the left canine teeth.

4.9 Model of standard residual versus observed plot for the casting method performed for the right canine teeth.

4.10 The Normal Q-Q Plot of standardized residual for RCW for the casting method of measurement performed on the right canine teeth.

4.11 Model of standard residual versus observed plot for the casting method performed for the left canine teeth.

4.12 The Normal Q-Q Plot of standardized residual for LCW for the casting method of measurement performed on the left canine teeth.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DOSM</td>
<td>Department of Statistic Malaysia</td>
</tr>
<tr>
<td>DVI</td>
<td>Disaster Victim Identification</td>
</tr>
<tr>
<td>FDI</td>
<td>Federal Dentaire Internationale</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-wide association study</td>
</tr>
<tr>
<td>MCI</td>
<td>Mandibular canine index</td>
</tr>
<tr>
<td>MD</td>
<td>Mesia-distal</td>
</tr>
<tr>
<td>TTVI-MC</td>
<td>Thai tsunami victim identification-information management center</td>
</tr>
<tr>
<td>Xf</td>
<td>Mean value for female</td>
</tr>
<tr>
<td>Xm</td>
<td>Mean value for male</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE OF APPENDIX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Consent letter</td>
<td>59</td>
</tr>
<tr>
<td>B</td>
<td>Abstract for The 11th Indo Pacific Association of Law, Medicine and Science (INPALMS) Congress 2013</td>
<td>58</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

In this contemporary situation, the world faces massive and fresh challenges, both from natural and also mankind. Less often, disaster happens without any sign and missing individuals from disasters need to be found and identified. In lieu of this, we rely on a lot of clues and signs that will lead to human identification. The condition of the evidence found and the importance of the clues will help complete the puzzle. Likewise, the existence of crime, violent and accidents are also occurrences that cannot be avoided. In fact, the rates of occurring crimes are increasing not only by day but then might be even in seconds. The forensic investigator needs to react and find the solution one step ahead from the criminal’s mind. In order to solve a crime investigation, it takes many people with different jobs to give an answer of the crime. There are the experts from pathology, anthropology, toxicology and many more (Nelson and Ash, 2010). Forensic dentistry is also one of the many fields involved in forensic investigations. It is a field that relates knowledge in dental with the combination of legal aspects (Scheid and Weiss, 2012). This medico legal profession plays a vital role in human being, animals and also to nature.
The most important role for a forensic dentist is to identify the deceased in which the crucial part of identification involves sex identification (Kovacevic and Gruengold, 2010). Sex identification is part archeological and medico legal, and is achieved using two information. First, the details of dental information are obtained from the dental record of the decease before death (ante mortem). Second, the information to identify the decease can also be obtained after death (post mortem) by examining the characteristic of the individual (Pretty and Sweet, 2001). Gender determination can be performed using teeth as the teeth possess different sexual dimorphism according to gender. Sexual dimorphism can be explained in terms of the differences of the teeth based on size, appearance, color, and stature (Ashok et al., 2007). The dimorphism of teeth is unique between male and female, and for every individual there are no two mouths are alike (Kaushal et al., 2003; Boaz and Gupta, 2009 and Madhavi et al., 2012).

In the forensic field, the clues and evidence that are strong enough to be tendered usually involve DNA. This is attributed to the fact that the DNA between individuals is unique and will not be the same as others. However, the uniqueness of a person is not only restricted to just DNA but also dimorphism of a fingerprint. Teeth and bones are the part of the body that can resist destruction as opposed to the skin. It is because the teeth have high resistance towards extreme trauma and extreme temperature. Thus, the morphology of teeth will not easily change or destroyed. Normally, in cases involving fire and body damaged due to natural disaster, the age and gender of a person could be determine according to the size of the teeth (Omar and Azam, 2009). A tooth has various features such as crown size, root length and morphology. Based on these features, the forensic odontologist can identify the gender of the victim by analyzing the tooth found and also the skull patterns. In human life, there are two sets of teeth known as primary (deciduous) teeth and permanent (succedaneous) teeth. The primary teeth are developed during prenatal phase while the permanent teeth starts to form since 6 years old. At this age, this is when the permanent teeth replaces the primary in sequence of eruption throughout the growing phase (Nelson et al., 2010).
1.2 Problem Statement

The purpose of this study is to aid clarification in forensic cases by putting together a gender-mandibular canine teeth profile that could be used for the identification of the body of victim or suspect found at crime scene or during disaster. In many cases, only the tooth is available for analysis when no flesh on the dead body or no blood was found at crime scene. In addition, the correlation between person’s gender and the dimorphism of their mandibular canine is not very well studied and properly understood.

1.3 Aim of Research

This study is focused on the measurement of the dimorphism of teeth to profile the differences in size between males and females. In previous study, it was found that the left canine gave highly significant difference rather than the right canine (Kaushal et al., 2003; Kapila et al., 2011; Rajbir et al., 2011 and Dhara et al., 2012). This study aims to obtain at least 200 patients for the measurement of the mandibular canine in order to accurately profile the differences of the teeth between the two genders. The findings of the study could be use in the development of standard database for forensic in sex determination in Malaysia.
1.4 Objectives

In order to achieve the goal of this study, the objectives were focused on:

i. Measurement of the size of teeth using mandibular canine index.

ii. Correlate the mandibular canine index to the gender of patient.

iii. To demonstrate the differences in the dimorphism of teeth between males and females.
REFERENCES

