Use Cascade Analysis to Optimize Water Networks

This numerical technique for identifying fresh water and wastewater targets eliminates the tedious and time-consuming steps of graphical targeting approaches. Use it to complement the graphical techniques in the design and retrofit of water networks.

The drive toward environmental sustainability and the rising costs of fresh water and effluent treatment have encouraged the process industries to find new ways to reduce fresh water and wastewater flowrates. At the same time, the development of systematic techniques for water reduction, reuse and recycling within a process plant has advanced. The introduction of water pinch analysis (WPA) as a tool for the design of optimal water networks has been one of the most significant advances in the area of water conservation over the last decade (1–13).

Water pinch analysis is a systematic technique for implementing strategies to maximize water reuse and recycling through integration of water-using activities or processes. In the context of WPA, *reuse* means that the effluent from one unit is used in another unit and does not re-enter the unit where it has been previously used, whereas *recycle* allows the effluent to re-enter the unit where it has been used (1). WPA involves two steps:

1. Setting the minimum fresh water and wastewater flowrates (i.e., the baseline water targets)
2. Network design to achieve the baseline targets.

In setting the baseline targets and locating the pinch points, graphical techniques (such as composite curves) and numerical techniques (such as problem tables) have been used in heat (14)
Environmental Management

Figure 1. Many types of processes consume water (as sink) or produce it (as source): as a mass-separating agent (a), as a reactant (b), as a byproduct (c), as a cooling medium (d), or as feedwater for steam generation and wastewater from blowdown (e).

Figure 2. Water cascading reuses a spent water source to meet a lower-quality water sink.

and mass (15) pinch analysis. These methods are usually used together because they play complementary roles. Although composite curves provide vital insights into the overall heat and mass transfer potentials in a process, they are tedious and time-consuming to draw, and their ability to yield quick and accurate minimum water targets is limited. On the other hand, numerical targeting tools offer accuracy and speed, and thus are more amenable to computer programming.

It is essential to have a good targeting tool to determine the baseline water targets numerically. Such a tool should:

- be capable of handling all types of water using-operations, including water used as a solvent or raw material, withdrawn as a product or byproduct in a chemical reaction, or utilized as heating or cooling media (Figure 1)
- consider both the flowrate and contaminant mass load for water reuse/recycle
- be non-iterative and able to quickly yield the exact baseline targets.

This article presents a numerical technique known as water cascade analysis (WCA) for establishing the minimum water and wastewater targets in a maximum-water-recovery (MWR) network (12). The term water cascade refers to the reuse of a spent water source to satisfy a lower-quality water sink.

Figure 2 illustrates the concept of water cascading. In Figure 2a, a source produces 100 ton/h of wastewater with a concentration of 100 ppm, while 50 kg/s of water at 200
ppm is needed to meet a water sink. Without water reuse, the entire 100 ton/h of wastewater must be treated and 50 ton/h of fresh water must be purchased. However, Figure 2b shows that reusing 100 ton/h of the cleaner 100-ppm water source to satisfy the 50-ton/h 200-ppm water sink avoids sending part of the water source directly to effluent. Doing so reduces both wastewater and fresh water flows by 50 ton/h.

A water-intensive paper mill process illustrates how WCA can be effectively used to set the baseline targets and optimize a water network that achieves zero discharge.

The paper mill example

A preliminary water network for a paper mill process (Figure 3) was not designed using WPA. The feedstocks, old newspapers and magazines, are blended with dilution water and chemicals to form pulp slurry called stock. The stock is sent to the forming section of the paper machine to form paper sheet. In the forming and pressing sections, fresh water (water sink) is fed to remove debris, while wastewater (water source) is removed from the stock during paper sheet formation. Some of the wastewater is sent to a water storage tank for reuse in other processes.

To remove printing ink from the main stock, the de-inking pulper (DIP) and its associated processes (denoted "DIP-Others") receive fresh water as well as spent water from the storage tank. The effluent from the DIP main process is mixed with fresh water to dilute the stock being pumped to the vacuum dehydrator in the approach flow system (AF), which doses and uniformly mixes the components of the final suspension to be delivered to the paper machine. The effluent from DIP-Others is sent to the water storage tank. The chemical preparation (CP) unit (where the de-inking chemicals are prepared) also consumes fresh water to dilute the de-inking chemicals for use during ink removal in the DIP unit. Portions of the wastewater from the forming section and the DIP unit are sent for effluent treatment before being discharged to the environment. The total fresh water consumption for this network is 1,989 ton/h and the total wastewater generation is 1,680 ton/h.

At first glance, this paper mill seems to have been designed with an extensive water recycling scheme. However, there may be room for improvement, and this is to be identified by WPA.

Table 1 summarizes the limiting data for this example — i.e., the maximum permissible inlet (C) and outlet (C) concentrations for the water sinks and the water sources, respectively. The most significant water-quality factor, total suspended solids (TSS), is used for the analysis.

The water cascade analysis technique

The main objective of WCA is to identify the baseline water targets — i.e., the minimum fresh water and wastewater flows for a process after using available water sources within the process to meet its water sinks. To achieve this, one has to fulfill both the flowrate and mass load requirements for all water-using processes under consideration.

The first step in WCA is to set up the interval water balance table (Table 2) to determine the net water source or net water sink at each concentration level. The first column of Table 2 contains the contaminant concentration levels (C) arranged in ascending order. Next, the water concentration difference (ΔC), the difference between concentrations at intervals k and k+1, is calculated:

\[
\Delta C = C_{k+1} - C_k
\]

The next columns contain the total flowrates for the water sinks (ΣF_j) and water sources (ΣF_i) at their corresponding
cumulative water flowrate \(F_C \) and the concentration difference \(\Delta C \) across two concentration levels (Figure 4b). A mass load surplus (+) means that the load available from the water sources exceeds what is required, whereas a load deficit (−) means that there is still sufficient capacity to absorb the mass load in this concentration range. Cascading the mass load surpluses/deficits down the concentration intervals yields the cumulative mass load in Figure 4b.

Note that in Figure 4b, cumulative mass load deficits exist at all concentration levels. This indicates mass load infeasibility, which is the result of assuming zero fresh water flowrate \(F_{FW} = 0 \text{ ton/h} \) during water cascading (Figure 4a). Thus, additional fresh water should be supplied to remove all flowrate and mass load deficits and yield a feasible water cascade.

Fresh water is to be supplied at the highest quality level (0 ppm). To minimize fresh water consumption, it is necessary to determine the minimum flowrate of fresh water, or the interval fresh water demand \(F_{FWi} \) at each concentration level, \(C_i \) (Figure 4c). The interval fresh water demand will restore a feasible water cascade throughout the entire water network.

At each concentration level \(k \), \(F_{FWi} \) is obtained by dividing the cumulative mass load \(\Delta m_i \) by the difference between the concentration level \(C_k \) of interest and that of the fresh water supply \(C_{FW} \) as follows:

\[
F_{FWi} = \frac{\Delta m_i}{(C_k - C_{FW})}
\]

In Figure 4c, a negative value for \(F_{FWi} \) means that there is insufficient fresh water, whereas a positive \(F_{FWi} \) means that there is excess fresh water at the concentration level \(k \).

To ensure that there is sufficient fresh water at all points in the network, a fresh water flowrate, \(F_{FW} \), of exactly the same magnitude as the absolute value of the largest negative \(F_{FWi} \) should be supplied. This corresponds to the \(F_{FWi} \) value of −848 ton/h found at \(C_7 = 230 \) ppm in Figure 4c. Hence, a fresh water flowrate of \(F_{FW} = 848 \text{ ton/h} \) is added at the highest-quality level \(C_0 = 0 \text{ ppm} \) of the feasible water cascade in Figure 5. This in turn generates the minimum wastewater flowrate target of \(F_{W} = 539 \text{ ton/h} \).

Note that a feasible water cascade is the one that results in a positive (or zero) value for the cumulative mass load cas-

<table>
<thead>
<tr>
<th>Contaminant Concentration Level ((C_i)), ppm</th>
<th>Fresh Water Flowrate (F_{FW}) = 0 ton/h</th>
<th>Cumulative Water Flowrate ((F_C)), ton/h</th>
<th>Mass Load ((\Delta m_i)) Surplus/Deficit, g/h</th>
<th>Cumulative Mass Load ((\Delta m_C)), g/h</th>
<th>Interval Fresh Water Demand (F_{FWi}), ton/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_0 = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_2 = 20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_3 = 80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_4 = 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_5 = 170)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_6 = 200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_7 = 230)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_8 = 250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_9 = 990,750)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{FW} = 1,000,000)</td>
<td>(F_{FW}) = −309 ton/h</td>
<td>(F_{W}) = −308,993,449</td>
<td>(F_{FWi}) = −308</td>
<td>(F_{FWi}) = −308</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. The water cascade diagram (a) is constructed with an assumed fresh water flowrate of 0 kg/s. The pure water cascade (b) is used to check the feasibility of the water cascade, and the interval fresh water demand, \(F_{FWi} \) (c) is used to determine the amount of fresh water needed in each purity range.
Figure 5. A feasible water cascade for the paper mill example consumes 848 ton/h of fresh water and generates 539 ton/h of wastewater.

cade in Figure 5b. This means a 57% reduction in fresh water and 70% reduction in wastewater flowrates compared to the preliminary water network in Figure 3.

At the C₁ = 230 ppm level in Figure 5, where there is zero cumulative mass load, a pinch concentration exists. The pinch divides the overall network into two independent regions, i.e., the regions above and below the pinch concentration. In the region above the pinch, mass load supplied by the water sources is completely consumed by the water sinks. On the other hand, excess mass load is found in the region below the pinch.

In order to achieve the water flowrate targets, water sources above the pinch (including fresh water) should neither be fed to the water sinks nor mixed with the water sources below the pinch. Various network design techniques are described in the literature for optimum design of water network ([1, 3, 7, 8, 9, 15]). Note that WCA provides the baseline targets ahead of network design.

Combining the water cascade dia-

gram with the interval water balance table yields the water cascade table (WCT) in Table 3. The key advantage of the WCT is that it enables a designer to clearly identify the pinch-causing stream(s) and the water-allocation targets. A pinch will always occur at the concentration level of a source (10–12), and is the point where the mass load supplied from the water sources just equals the load required by the water sinks.

In Table 3, a zero cumulative mass load at the concentration level of 230 ppm represents the pinch point. Hence, the pinch-causing stream that exists at this concentration level is the water source with a flowrate of 1,306 ton/h. Table I shows that this stream is a single water source, i.e., the forming shower (S₂), or water spray.

In order to realize the pinch point and to achieve the maximum-water-recovery objective, a portion of the pinch-causing source stream (in this case, the forming shower) has to be allocated to the region above the pinch, while the rest goes to the region below the pinch. Referring to the cumulative net water source (Fᵣ) column of Table 3, of the 1,306 ton/h wastewater source from the forming shower, 1,236 ton/h (the interval between C₁ and C₂) must be sent to the region above the pinch (a negative sign indicates sending water across a driving force), while the remaining 70 ton/h (between C₁ and C₂) must be sent to the region below the pinch. These water allocation flowrates can be verified with any detailed network design techniques, such as a

![Table 3: Water cascade solution for the paper mill example.](image)

The table shows the concentration levels, cumulative flowrates, and cumulative mass loads for the water cascade solution. The final column, Cumulative Mass Load, Mass Load, g/s, indicates the cumulative mass load at each level, which helps in visualizing the pinch point and the water-allocation targets.
source-sink mapping diagram (9, 15) or a sink-source allocation technique (10, 13, 15).

These important insights into the pinch-causing stream and water allocation are evident from the WCT, but are not available from other WPA graphical techniques (e.g., Refs. 1, 2, 4, 10).

Optimizing the regeneration unit to achieve zero discharge

Water regeneration has been widely accepted as an effective means to further reduce water targets in WPA. Water regeneration involves the partial or total upgrading of water purity using any purification techniques. The regenerated water can either be reused in other water-using processes or recycled to the same process to further reduce fresh water and wastewater flows. In the context of WPA, regeneration above and across the pinch will reduce the fresh water and wastewater flows, while regeneration below the pinch will reduce only wastewater generation (10, 12).

Table 1 shows that the total flowrate of the water sinks is larger than that of the water sources. By regenerating all water sources to satisfy all water sinks, in principle, it is possible to completely eliminate wastewater and achieve a net fresh water demand of 309 ton/h.

In the paper mill water network, a regeneration unit can be placed either entirely above the pinch or across it, since both options will reduce the fresh water and wastewater flows. A dissolved air flotation (DAF) unit with a contaminant removal percentage (R) of 90% and an operating cost of $0.50/kg of contaminant load removed will be con-

Literature Cited

Considered, a DAF regenerates wastewater to a higher purity by introducing fine gas (usually air) bubbles that attach to and lift particles to the water surface for removal.

Any of the four water sources in Table 1 can be purified before reuse within the water network because the DAF unit is capable of regenerating these sources to the region above the pinch, which occurs at 230 ppm (Figure 5). For optimal regeneration, three key factors must be considered:

- selecting the optimal sequence to purify the available water sources
- deciding how much to purify each of the available water sources
- formulating the most cost-effective regeneration scheme.

The mass load removed from a water source \(i \) (\(\Delta m_{si} \)) in a regenerator is given by:

\[
\Delta m_{si} = F_{R,i} \Delta C_R
\]

(3)

where \(F_{R,i} \) is the flowrate and \(\Delta C_R = C_{in} - C_{out} \) is the difference between the inlet and outlet concentrations of water source \(i \). Since the operating cost is a linear function of the mass removed (\(\Delta m \)), the smaller the mass load removed from the water sources, the lower the operating costs of the regeneration unit will be.

Note also that, since the source flowrate (\(F_{R,i} \)) is inversely proportional to \(\Delta C_R \), a smaller \(F_{R,i} \) would be required to regenerate a dirtier water source (larger \(\Delta C_R \)) than for a cleaner water source (smaller \(\Delta C_R \)) for a fixed amount of contaminant removed (\(\Delta m \)). For instance, for \(R = 90\% \), a 250-ppm source needs to be purified to 25 ppm (\(\Delta C_R = 225 \) ppm), while a 100-ppm source needs to be purified to 10 ppm (\(\Delta C_R = 90 \) ppm).

Hence, to achieve zero discharge with the minimum capital and operating costs, the following heuristic is proposed:

Purify water sources one by one in descending order of concentration level.

This heuristic means that, in order to minimize the capital and operating costs, one should first purify the water source at the highest concentration level (or the "dirtiest"), and continue with sources at the next-highest concentration level until all water sources have been purified and wastewater eliminated to achieve zero discharge. Doing so will always lead to a smaller \(F_{R,i} \) and, hence, a smaller total regeneration flowrate (\(F_{reg} \)), and ultimately smaller and less expensive equipment.

For the paper mill process, source \(S_2 \) is purified first, from 250 ppm to 25 ppm (\(\Delta m_{S4} = 106 \) kg/h, Figure 6a). This reduces the fresh water and wastewater flowrates to 429 ton/h and 121 ton/h, respectively, but this alone does not lead to zero discharge. Then, the next source, \(S_3 \), is purified from 230 ppm to 23 ppm (\(\Delta m_{S2} = 28 \) kg/h). This achieves zero liquid discharge.

The WCA procedure indicates that only 134 ton/h of \(S_2 \) (\(F_{R,2} \)) needs to be regenerated to achieve zero discharge. Knowing the exact regeneration flowrate is crucial to avoid excessive over-design and unnecessary capital expenditure. The fresh water target (\(F_{FW} \)) of 309 ton/h generated using WCA matches the target computed as the difference between the sum of water sources and the sum of water demands. The annual operating cost associated with the addition of DAF is approximately $533,800, calculated based on the total regeneration flowrate (\(F_{reg} \)) of 604 ton/h and total \(\Delta m \) removal of 133 kg/h.

Note that if one had started by purifying the cleanest water source, i.e., \(S_1 \), first, followed by \(S_3 \) and \(S_2 \) (Figure 6b), the same annual operating cost of $533,800 (for the same amount of \(\Delta m \) removed) could be achieved. However, a larger \(F_{reg} \) of 785 ton/h, and hence a larger and more expensive DAF unit, would be needed to achieve zero discharge.

Figure 7 plots the fresh water and wastewater flowrates versus regeneration flowrate for the DAF unit, following the heuristic of purifying water sources in descending order. Note that fresh water being fed to the process remains constant at the regeneration flowrate of 604 ton/h. This is the turning point for the paper mill process to achieve zero liquid discharge.

One of the many possible water networks to achieve zero discharge is shown in Figure 8 and summarized in Table 4. This
Environmental Management

Figure 8. This water network achieves zero wastewater discharge for the paper mill example.

DOMINIC CHIN WEE FOO is currently an assistant professor at the Uni. of Nottingham Malaysia Campus. (Phone: +60(6)-8924-8130; fax: +60(6)-8924-8177; E-mail: dominic.fool@nottingham.edu.my; Website: www.geocities.com/foodominic). Previously, he served as a research associate at the chemical engineering pilot plant (CEPP) at the Universiti Teknologi Malaysia. His main research interests include material reuse and recycle via process integration techniques, batch and biochemical process modelling and optimization, and process synthesis and design. He obtained his BEng, MEng and PhD from the Universiti Teknologi Malaysia, all in chemical engineering. He is a member of the American Chemical Society (ACS), Institute of Engineers Malaysia (IEM), and Institution of Chemical Engineers Malaysia (ICMM U.K., Malaysia Branch).

ZAINUDDIN A. MANAN is an associate professor and head of the chemical engineering department at Universiti Teknologi Malaysia. (Phone: +60(6)-753512; fax: +60(6)-5531659; E-mail: zainuddin@fakulta.utm.my; Website: www.fakulta.utm.my/chem2). He received a BSc in chemical engineering from the Uni. of Houston, an MSc in process integration from the Centre for Process Integration in the University of Cambridge, and a PhD in chemical engineering from the Uni. of Edinburgh. For 15 years, he has been extensively involved as a researcher, consultant and trainer for the chemical process industry in the areas of process systems design and process improvement, with an emphasis on efficient energy utilization (pinch analysis) and waste minimization. He is a member of the Institution of Chemical Engineers Malaysia (ICEM U.K., Malaysia Branch).

YIN LING TAN is a lecturer at the Curtin Univ. of Technology, Sarawak Campus. (Phone: +60(85)-443662; fax: +60(85)-443837; E-mail: tan.yinling@curtin.edu.my). Her research interests are mainly in the areas of process integration using pinch analysis, and process improvement with an emphasis on water minimization. She received her BEng and MEng degree in chemical engineering from the Universiti Teknologi Malaysia.

The water network is more integrated than the original network in Figure 3 (in which most effluent water sources are sent for reuse and recycle). The water storage tank in the original network was removed and DAF units were installed to meet the inlet concentration of the water sinks. Apart from the total elimination of wastewater, the final network with regeneration achieves an 85% reduction in fresh water. This is an additional 27% reduction beyond reuse/recycle alone.

Closing thoughts

The systematic nature of WCA allows the technique to be automated and translated into any computer language for software development. WCA simplifies the task of incorporating the water surplus diagram (10) into computer software by eliminating the tedious iterative steps involved in constructing the diagram. WCA has been incorporated into Water-MATRIX, new software for flowrate targeting in water reuse/recycle developed by the Process Synthesis and Design Group, Dept. of Chemical Engineering, Universiti Teknologi Malaysia (16).