Universiti Teknologi Malaysia Institutional Repository

Polyethylene oxide-mcm-41 and polyaniline-mcm-41 nanocomposites: physicochemical and conducting properties

Abdul Rahman, Norizah (2005) Polyethylene oxide-mcm-41 and polyaniline-mcm-41 nanocomposites: physicochemical and conducting properties. Masters thesis, Universiti Teknologi Malaysia, Faculty of Science.



One of the exciting developments in material science today is the design and synthesis of polymer nanocomposites (PNC) containing electrically-conductive polymer and mesoporous MCM-41 that possess novel properties not exhibited by the individual organic and inorganic materials. The physicochemical and conducting properties of two types of PNC namely, PEO/Li-MCM-41 and PANI/MCM-41 prepared by melt and solution intercalation and in situ polymerisation methods have been investigated in this thesis. The aim was to obtain a more detailed understanding of how the combination of polymers with the mesoporous MCM-41 is related to the conducting properties of the PNC. Before PEO and PANI are combined with MCM-41, several modifications of MCM-41 have been done including ion exchange of MCM-41 with lithium chloride, silylation of MCM- 41 with trimethylchlorosilane (TMCS) and functionalization of MCM-41 with sulfonic acid. The PNC obtained was characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetric analysis and chemical analysis, followed by 27Al, 7Li and 13C/CP MAS NMR spectroscopy. It is confirmed that the structure of MCM-41 remains intact after combining with the polymers. The results from the conductivity study have proven that the PNC possesses electrical properties. It is revealed that the conductivity of PANI/MCM-41 is very much higher than PEO/Li-MCM-41 since PANI is a conducting polymer whereas PEO is a polymer electrolyte. The combination of PEO and MCM-41 was expected to increase the conductivity of PEO/Li-MCM-41 by intercalation of PEO inside the pores of MCM-41. However, it is demonstrated that unmodified Li-MCM-41 exhibits conductivity in the same order of magnitude as the PEO/Li-MCM-41. The NMR results suggested that the interfacial interactions occurring between the PEO and Li-Al-MCM-41 is insufficient to improve the conductivity of the PEO/Li-MCM-41 nanocomposite. On the other hand, PANI/MCM-41 nanocomposite shows an increase in thermal stability of conductivity compared to PANI, although its conductivity was lower in the presence of MCM-41.

Item Type:Thesis (Masters)
Additional Information:Thesis (Master of Science (Chemistry)) - Universiti Teknologi Malaysia, 2005; Supervisor I : Assoc. Prof. Dr. Salasiah Endud; Supervisor II: Dr. Hadi Nur
Subjects:Q Science > QD Chemistry
ID Code:3984
Deposited By: Widya Wahid
Deposited On:27 Jul 2007 04:16
Last Modified:15 Jan 2018 00:35

Repository Staff Only: item control page