EFFECTS OF Ni$_3$Ti (DO$_{24}$) PRECIPITATES AND COMPOSITION ON Ni-BASED SUPERALLOYS USING MOLECULAR DYNAMICS METHOD

GOH KIAN HENG

UNIVERSITI TEKNOLOGI MALAYSIA
EFFECTS OF Ni₃Ti (DO₂₄) PRECIPITATES AND COMPOSITION ON Ni-BASED SUPERALLOYS USING MOLECULAR DYNAMICS METHOD

GOH KIAN HENG

A project report submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Materials Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2013
Dedicated and thankful to my beloved family, lecturers and friends for their useful advices, encouragement and support
ACKNOWLEDGEMENT

Firstly, I would like to thanks the god for his blessings so that my project can be finishing in time and successfully. For sure, I would like to thanks my project supervisor, Dr. Joy Rizki Pangestu Djuansjah. He helps a lot in my project. He had been very kind and patient while suggesting me the outlines of this project and correcting my doubts. His advice, suggestion and support are very useful for me to finish my research.

Furthermore, I would like to thank my fellow colleagues for their physical and mental assistance at countless occasions. Lastly, I would like to thanks my family member too for their support when I meet problems.

Thank you!!
ABSTRACT

The main aim of this study is to simulate and investigate the gamma and gamma prime phases structure stability and behaviour of misfit dislocation-precipitate with additional of Ni$_3$Ti (DO$_{24}$) in Ni-based superalloys using MD at 10 K, 293 K and 1000 K. The Ni$_3$Ti are homogeneously distributed through γ phase and the percentages are varied from 0.22%, 0.5%, 0.89% and 2.11%. MD is capable to produce three dimensions modelling based on time evolution of a set of interacting atoms and integrating their equation of motion. The Embedded Atom Method (EAM) is used to calculate phase stability, point defect properties, surface energies and relaxation for Ni-Ti-Al system. The empirical embedding energy function, electron density function and interatomic pair potential function used by this method are obtained. The conclusion of this simulation shows that distribution of Ni$_3$Ti is vital in determining the Ni-Ni$_3$Al phase stability. The data of temperature, total energy, stress in x-axis, stress in y-axis, stress in z-axis and volume are plotted and snapshot of each percentage of Ni$_3$Ti added is taken at different step. At higher temperature (1000 K), it is more favourable and stable condition for higher Ti concentration (9L 2.11%) because of lower energy level and more stable temperature condition.
ABSTRAK

Tujuan utama kajian ini adalah untuk menjalankan proses simulasi bagi menyiasat kestabilan fasa dan ketidakpadanan struktur gamma dan gamma prime serta kehelan-mendakan dengan penambahan Ni₃Ti (DO₂₄) dalam superalloys berasaskan Nickel menggunakan Molecular Dynamic (MD) pada 10 K, 293 K and 1000 K. Ni₃Ti diedarkan secara serata melalui fasa γ dengan peratusan penambahan Ni₃Ti diubah dari 0.22%, 0.5%, 0.89% and 2.11%. MD berupaya untuk menghasilkan pemodelan 3 dimensi yang berdasarkan evolusi masa satu set atom yang berinteraksi sesama sendiri dan mengintegrasikan persamaan pergerakan yang terlibat. Embedded Atom Method (EAM) digunakan untuk mengira kestabilan fasa, ciri-ciri kecacatan titik, tenaga permukaan dan kelonggaran untuk sistem Ni-Ti-Al. Fungsi tenaga pembenaman empirikal, fungsi ketumpatan elektron dan fungsi potensi pasangan atom yang digunakan melalui kaedah ini, dapat diperolehi. Kesimpulannya, hasil daripada proses simulasi ini menunjukkan bahawa pembahagian Ni₃Ti adalah sangat penting dalam menentukan kestabilan fasa Ni-Ni₃Al. Data suhu, jumlah tenaga, tekanan di x-paksi, tekanan di paksi-y, tekanan di paksi-z dan isipadu diplotkan dan gambar setiap peratusan Ni₃Ti diambil pada langkah yang berbeza. Pada suhu yang lebih tinggi (1000 K), keadaan ada lebih sesuai dan stabil bagi peratusan Ti yang lebih tinggi (9L 2.11%) kerana jumlah tenaga ada lebih rendah dan keadaan suhu yang lebih stabil.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1
1.2 Background of Study 2
1.3 Problem Statement 4
1.4 Objective of the Study 5
1.5 Scope of Work 5
1.6 Significance of Study 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 The Role of Computer Simulation 7
2.2 Nickel Based Superalloys 8
2.3 Ni₃Ti Alloys 9
2.4 Misfit Dislocation Behaviour 10
2.5 Molecular Dynamic (MD) Simulation 11
2.6 MD Simulation in Ternary Ni-Ti- Al System 13
CHAPTER 3 METHODOLOGY

3.1 Introduction 14
3.2 Basic Theory for MD Simulation 14
 3.2.1 MD Outline 14
 3.2.2 Interatomic Potential Calculation 15
 3.2.3 Velocity Scaling 17
3.3 Potential Parameters 18
3.4 Input Data Development 22
3.5 Working Flow for Initial Misfit File to Generate the Simulation Cell 28
3.6 Common Neighbor Analysis (CNA) 32
3.7 Illustration Result and Animation Production 32

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 33
4.2 Combined Graphs Result - Comparison by same temperature but different distribution and percentages
 4.2.1 Constant temperature of 10K 35
 4.2.2 Constant temperature of 293K 40
 4.2.3 Constant temperature of 1000K 43
 4.2.4 Discussion 46
4.3 Combined Graphs Result - Comparison by same distribution and percentages but different temperature
 4.3.1 2x2x1, 2x2x3 lattices - 0.22% (4S) 48
 4.3.2 2x2x1, 4x4x3 lattices - 0.89% (4L) 51
 4.3.3 3x3x1, 2x2x3 lattices - 0.5% (9S) 54
 4.3.4 3x3x1, 4x4x3 lattices - 0.22% (9L) 57
4.4 Illustration (Snapshot) Results
 4.4.1 Effect of temperature on 2x2x1, 2x2x3 0.22% (4S)
 4.4.2 Effect of temperature on 2x2x1, 4x4x3 0.89% (4L)
 4.4.3 Effect of temperature on 3x3x1, 2x2x3 0.5% (9S)
 4.4.4 Effect of temperature on 3x3x1, 2x2x3 2.11% (9L)

CHAPTER 5 CONCLUSION 67
 5.1 Conclusion 67
 5.2 Recommendations 68

REFERENCES 69
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Reference potential parameters from Voter and Chen</td>
<td>18</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Developed potential parameters based on Farkas</td>
<td>19</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Summary of scope of study</td>
<td>34</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Unit cell of the DO_{24}-type crystal structure for Ni$_3$Ti</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Reference pairwise potential function for Ni-Ni, Al-Al, and Ni-Al based on Voter & Chen</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Reference density function for Ni-Ni and Al-All based on Voter & Chen</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Developed pairwise potential function for Ni-Ni, Al-Al, and Ni-Al based on Farkas</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Developed density function for Ni-Ni and Al-All based on Farkas</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Transformed pairwise potential function for Ni-Ni, Al-Al, and Ti-Ti based on Farkas after altering g scaling parameters</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Transformed density function for Ni-Ni and Ti-Ti based on Farkas after altering s scaling parameters</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>The sequential steps for developing input data for misfit simulation program</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Density function for Ni, Al and Ti generated from fitting file</td>
<td></td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Embedding energy function for Ni, Al and Ti generated from fitting file. Smaller figure on the left shows enlarge graph for Ni and Al</td>
<td></td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Embedding energy function for Ni, Al and Ti generated from spline file. Smaller figure on the left shows enlarge graph for Ni and Al</td>
<td></td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Initial, first and second derivative of embedding energy function for Ni, Al and Ti generated from spline file. The data serve as input parameters for misfit file. Smaller figure on the left shows enlarge graph for Ni and Al</td>
<td></td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Total embedding energy function for Ni, Al and Ti generated from total energy file</td>
<td></td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Density function for Ni, Al and Ti generated from total energy file</td>
<td></td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>The sequential working steps to generate the simulation cell in initial-misfit-laminate file</td>
<td></td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Temperature stability for 10 K simulation.</td>
<td></td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Total energy stability for 10 K simulation.</td>
<td></td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Stress in x-direction stability for 10 K simulation (a) for overall graph (b) for stress between 0.05 GPa to -0.15 GPa.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.4 Stress in y-direction stability for 10 K simulation (a) for overall graph (b) for stress between 0.04 GPa to -0.14 GPa.

Figure 4.5 Stress in z-direction stability for 10 K simulation (a) for overall graph (b) for stress between 0.08 GPa to -0.1 GPa.

Figure 4.6 Volume stability for 10 K simulation.

Figure 4.7 Temperature stability for 293 K simulation.

Figure 4.8 Total energy stability for at 293 K simulation.

Figure 4.9 Stress in x-direction stability for 293 K simulation.

Figure 4.10 Stress in y-direction stability for 293 K simulation.

Figure 4.11 Stress in z-direction stability for 293 K simulation.

Figure 4.12 Stability for 293 K simulation.

Figure 4.13 Temperature stability for 1000 K simulation.

Figure 4.14 Total energy stability for 1000 K simulation.

Figure 4.15 Stress in x-direction stability for 1000 K simulation.

Figure 4.16 Stress in y-direction stability for 1000 K simulation.

Figure 4.17 Stress in z-direction stability for 1000 K simulation.

Figure 4.18 Volume stability for 1000 K simulation.
Figure 4.19 Temperature stability for 2x2x1, 2x2x3 lattices - 0.22% simulation.

Figure 4.20 Total energy stability for 2x2x1, 2x2x3 lattices - 0.22% simulation.

Figure 4.21 Stress in x-direction for 2x2, 2x2x3 lattices - 0.22% simulation.

Figure 4.22 Stress in y-direction for 2x2, 2x2x3 lattices - 0.22% simulation.

Figure 4.23 Stress in z-direction for 2x2, 2x2x3 lattices - 0.22% simulation.

Figure 4.24 Volume stability for 2x2, 2x2x3 lattices - 0.22% simulation.

Figure 4.25 Temperature stability for 2x2, 4x4x3 lattices - 0.89% simulation.

Figure 4.26 Total energy stability for 2x2, 4x4x3 lattices - 0.89% simulation.

Figure 4.27 Stress in x-direction for 2x2, 4x4x3 lattices - 0.89% simulation.

Figure 4.28 Stress in y-direction for 2x2, 4x4x3 lattices - 0.89% simulation.

Figure 4.29 Stress in z-direction for 2x2, 4x4x3 lattices - 0.89% simulation.
Figure 4.30 Volume stability for 2x2, 4x4x3 lattices - 0.89% simulation.

Figure 4.31 Temperature stability for 3x3, 2x2x3 lattices - 0.5% simulation.

Figure 4.32 Total energy stability for 3x3, 2x2x3 lattices - 0.5% simulation.

Figure 4.33 Stress in x-direction for 3x3, 2x2x3 lattices - 0.5% simulation.

Figure 4.34 Stress in y-direction for 3x3, 2x2x3 lattices - 0.5% simulation.

Figure 4.35 Stress in z-direction for 3x3, 2x2x3 lattices - 0.5% simulation.

Figure 4.36 Volume stability for 3x3, 2x2x3 lattices - 0.5% simulation.

Figure 4.37 Temperature stability for 3x3, 4x4x3 lattices - 2.11% simulation.

Figure 4.38 Total energy stability for 3x3, 4x4x3 lattices - 2.11% simulation.

Figure 4.39 Stress in x-direction for 3x3, 4x4x3 lattices - 2.11% simulation.

Figure 4.40 Stress in y-direction for 3x3, 4x4x3 lattices - 2.11% simulation.
Figure 4.41 Stress in z-direction for 3x3, 4x4x3 lattices - 2.11% simulation.

Figure 4.42 Volume stability for 3x3, 4x4x3 lattices - 2.11% simulation.

Figure 4.43 The simulation model.

Figure 4.44 Snapshot for 4S at 10K.

Figure 4.45 Snapshot for 4S at 293K.

Figure 4.46 Snapshot for 4S at 1000K.

Figure 4.47 Snapshot for 4L at 10K.

Figure 4.48 Snapshot for 4L at 293K.

Figure 4.49 Snapshot for 4L at 1000K.

Figure 4.50 Snapshot for 9S at 10K.

Figure 4.51 Snapshot for 9S at 293K.

Figure 4.52 Snapshot for 9S at 1000K.

Figure 4.53 Snapshot for 9L at 10K.

Figure 4.54 Snapshot for 9L at 293K.

Figure 4.55 Snapshot for 9L at 1000K.
LIST OF SYMBOLS

\(\gamma \) - Gamma phase (Ni)
\(\gamma' \) - Gamma prime phase (Ni\(_3\)Al)

TEM - Transmission Electron Microscopy

Ni - Nickel
Ti - Titanium
Al - Aluminium

MD - Molecular Dynamic

Ni\(_3\)Al - Nickel Aluminide
Ni\(_3\)Ti - Nickel Titanide

\(F^\alpha \) - Force acting on atom \(\alpha \)
\(t \) - Time

\(m^\alpha \) - Mass vector position of atom \(\alpha \)
\(r^\alpha \) - position vector position of atom \(\alpha \)

\(E_{tot} \) - Total potential Energy
\(\Delta t \) - Time difference

\(r^{\alpha\beta} \) - Scalar distance

\(\emptyset \) - Pair wise interaction between atoms

\(F(\bar{\rho}) \) - Embedding function

\(\rho_\alpha \) - Density at atom \(\alpha \)

\(t_\alpha \) - Types of atoms \(\alpha \)

\(t_\beta \) - Types of atoms \(\beta \)

\(g \) - Linear transformation parameter

\(s \) - Scaling transformation parameter

\(\rho(r) \) - Density function

\(\beta \) - Adjustable parameter for density function

\(\emptyset(r) \) - Pair wise interaction function

\(D_M \) - Depth at the minimum of the energy curve
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_M</td>
<td>Position of the minimum at the minimum of the energy curve</td>
</tr>
<tr>
<td>α_M</td>
<td>Curvature at the minimum of the energy curve</td>
</tr>
<tr>
<td>\AA</td>
<td>Angstrom</td>
</tr>
<tr>
<td>eV</td>
<td>Electron Volt</td>
</tr>
<tr>
<td>K</td>
<td>Kinetic Energy</td>
</tr>
<tr>
<td>m^α</td>
<td>Mass of atom α</td>
</tr>
<tr>
<td>v^α</td>
<td>Velocity of atom α</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>N</td>
<td>Total number of atoms in the system</td>
</tr>
<tr>
<td>T</td>
<td>Instantaneous temperature</td>
</tr>
<tr>
<td>T_C</td>
<td>Constant temperature</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>σ</td>
<td>Stress</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>FCC</td>
<td>Face Centred Cubic</td>
</tr>
<tr>
<td>HCP</td>
<td>Hexagonal Closed Packed</td>
</tr>
<tr>
<td>CNA</td>
<td>Common Neighbour Analysis</td>
</tr>
<tr>
<td>EAM</td>
<td>Embedded Atom Method</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

In the recent past, with the rapid development of the computer technology, molecular dynamics (MD) simulation based on the computer simulation has played more and more important role in understanding the mechanical properties of materials. Computer simulation provides a direct route from the microscopic details of a system to macroscopic properties of experimental interest [1].

Nickel based superalloys have combination of high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments. These materials are widely used in aircraft and power-generation turbines, rocket engines, and other challenging environments, including nuclear power and chemical processing plants.

Ni-based superalloys consist of a high volume fraction of cuboidal γ' phase (L12 structure) separated by narrow γ channels (FCC solid solution) [2]. The γ' cuboidals generally align along [100] lattice direction, each of which as an average edge length of the order 500nm. Due to the edge length of the γ' cuboidal is very small, there is a vast interfacial region between the solid solution γ phase and the ordered γ' precipitates [3]. It is believed that the structure and properties of γ/γ' interface greatly affect the shape,
the size and coarsening rate of γ' precipitate, which in turn is a major factor influencing creep rupture strength of superalloys [4].

Since the lattice parameters of the two phases are similar but not identical, a stress field resulting from the lattice mismatch will be created. This will lead to the unstable stress field at the interface. In order to minimize the elastic stress field between the γ and γ' phase, the atoms on the interface will rearrange themselves. This justified with the principle of minimum energy. This stage is known as the self-accommodating process. Gradually, the misfit dislocations will be created in the interface to reduce the distorted energy. A plastic deformation is formed due to the misfit dislocation move in the interface cause permanent change of shape [5].

1.2 Background of Study

Computer simulation for example molecular dynamics has been used for studying mechanical properties of nickel based superalloys for last few ten years. The nickel based superalloys have been used widely in industry application. Nucleation of a single defect on the atomic scale sometimes brings about fatal malfunction of such devices. Therefore, it becomes important to understand the mechanics and mechanism of defect nucleation on a microscopic scale. Although the fracture of materials has been investigated for many years, there remain many uncertainties with regard to the nucleation process because of experimental difficulties.

In microelectromechanical systems (MEMS), thin films of Ni and Ni alloy have been widely used. As the dimensions of components in these systems decrease to the micro-scale, even the nano-scale, the interfacial phenomena significantly differ to the counterparts on the macro-scale. A better understanding of micro- or nano-tribology will benefit the fabrication of the small components. Thus, molecular dynamics simulations have been conducted to investigate the nanoscratch behaviour of nickel [6].
The recent rapid progress of computers makes the microscopic simulation of solid structures possible. Cyclic stress–strain curves and fatigue crack growth can be investigated by molecular dynamics. Nanoscale fatigue damage simulations were performed in nickel single crystals[7]. The mechanical properties of nickel nanowire at different temperatures are studied using molecular dynamics simulations [8].

Besides that, the effects of nickel coating on the torsional behaviours of single-walled carbon nanotubes (SWCNTs) subject to torsion motion are investigated using the molecular dynamics simulation method [9]. Extremely high strain rate effect on the mechanical properties of nickel nanowires with different cross-sectional sizes is investigated by Dan Huang et al. The stress–strain curves of nickel nanowires at different strain rates subjected to uniaxial tension are simulated [10].

T.W. Stone also conducted molecular dynamics simulations using the embedded atom method potentials to describe the interparticle behaviour of two single crystal spherical nickel nanoparticles during compaction based on the particle size and contact angle [11].

The mechanism of dislocation at the γ/γ’ interface of Ni-based superalloys, for example; the misfit dislocation, dislocation pinning by γ’-precipitates and the nucleation of super dislocation in precipitates, is of great interest in understanding the mechanical performances of the superalloys. Several studies have been made on the phenomena at the interface, with both experiment and analytical approaches, for instances direct observation of dislocation behaviour by high resolution TEM and finite-element analysis based on geometrically necessary dislocation theory [12].

Aihara et al. have conducted a molecular dynamics study on the strength of a γ/γ’ interface that idealizes a γ/ γ’ interface in Ni-based superalloys. The simulation is conducted on a nanoscopic wire with a laminate structure made from staked γ (Ni) and γ’ (Ni₃Al) layers, so that the effect of the free surfaces is significant and thus the
dislocation behaviour in the simulation may not be consistent with that in the bulk of the
\(\gamma / \gamma' \) microstructure. Moreover, it seems of greater interest to investigate the dislocation
behaviour not only at a planar interface but also at multiple intersections of interfaces
such as an apex or edge of the cuboidal precipitate [12].

Therefore, the effect of alloying element especially the \(\text{DO}_{24} \text{Ni}_3\text{Ti} \) added to Ni-
based superalloys are great interest to investigate the behaviour of misfit dislocation in \(\gamma / \gamma' \) interface because it is still new and can be explored.

1.3 Problem Statement

The interactions between these \(\gamma \) and \(\gamma' \) phases affect the properties of Ni-based
single-crystal superalloys. Capability in understanding the microscopic structure of the \(\gamma \)
and \(\gamma' \) phases are of the utmost importance in the development of novel alloys with
superior mechanical properties.

Previous study has been done in order to investigate the preferential site in \(\text{Ni}_3\text{Al} \)
lattices. The knowledge about the preferential site for alloying elements is useful in
clarifying the role of ternary system additions in controlling the mechanical properties of
Ni-based superalloys. MD simulations have been used to simulate the stability of Ni-Ni\(_3\)Al
phases, interface and dislocation-precipitate interaction. However, the interaction of \(\text{DO}_{24} \text{Ni}_3\text{Ti} \) with Ni phase on atomistic scale in Ni-based superalloys is still unclear.

The stability of the Ni-Ni\(_3\)Al phases and interface are evaluated by gradually
changing the alloying element (\(\text{DO}_{24} \text{Ni}_3\text{Ti} \)) concentration in either Ni phase. The energy
and semi-coherent interface between Ni and Ni\(_3\)Al phases are also investigated by
changing the combination of crystal orientation. Addition of alloying element (\(\text{DO}_{24} \text{Ni}_3\text{Ti} \))
will lead to higher melting point and hardening coefficient.
1.4 Objective of Study

The main objective of this study is to simulate and investigate the effects of Ni$_3$Ti with DO$_{24}$ structure precipitate and composition on Ni-based superalloys using molecular dynamics method.

1.5 Scope of Work

The scope of work is clearly define the specific field of the research and ensure that the entire content of this project is confined the scope. This project is done base on the scope below:

1. Study the effect of alloying element-DO$_{24}$ Ni$_3$Ti in Nickel Based Superalloys.
2. Utilize Molecular Dynamic (MD) method.
3. Learn the programming language – Fortran 90.
4. Analyze and develop existing MD coding.
5. Alter the additional percentages and distribution.
6. Study the changes in the simulation cell.
1.6 Significance of Study

This project has several important outcomes which included as the following:

i. Comparison for analytical and experiment’s result with computer simulation’s result.

ii. Improve the understanding and gain new knowledge for adding alloying element (DO₂₄ Ni₃Ti) and varies the percentages of additional element in Ni-based superalloys.

iii. New milestone to explore new area of study of atomic computer simulation in Mechanical Engineering Faculty (FKM), UTM.
REFERENCES

12. Kitaragi Yashiro, Masato Naito, and Yoshihiro Tomita. *Molecular Dynamic Simulation of Dislocation Nucleation and Motion at γ/γ’ interface in Ni-based Superalloys*. Kobe, Japan: Department of Mechanical Engineering, Faculty of Engineering, Kobe University, Rokkodai, Nada.

20. Dr Billy D. Todd. *Introduction to Molecular Dynamics, Centre for Molecular Simulation*, Swinburne University of Technology.

