PREPARATION AND CHARACTERIZATION OF OIL PALM FIBER REINFORCED POLY(ε-CAPROLACTONE)/POLY(LACTIC ACID) COMPOSITES

AKOS NOEL IBRAHIM

UNIVERSITI TEKNOLOGI MALAYSIA
PREPARATION AND CHARACTERIZATION OF OIL PALM FIBER REINFORCED POLY(ε-CAPROLACTONE)/POLY(LACTIC ACID) COMPOSITES

AKOS NOEL IBRAHIM

A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Polymer Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2013
Dedicated to my parents late Mr. Ibrahim Akos and late Mrs. Asibi I. Akos
ACKNOWLEDGEMENT

I thank God almighty for giving me the strength and good health to execute this program to the end. My deep appreciation goes to my supervisor, Assoc. Prof. Dr. Mat Uzir Wahit for his untiring assistance, guidance and friendship. May God almighty reward you and your generation abundantly according to his riches in glory, Amen.

My sincere appreciation goes to my beloved wife; Celina N. Akos, my children; Jeremiah, Ruth, Aaron and Firdausi for your prayers, support and endurance throughout the period of my absence. May God bless you abundantly. I thank my brothers, Mr. F.Y. Akos, Dr. J.I. Akos, and Mr. N. Akos and my sister, Mrs. D. Amos for your encouragement and support to me and my family throughout the period of my studies.

To the technical staff’s, Suhee, Zainab, Azri, Nordin, Bidin and Izad, you were all wonderful people. Without you, this work would not have come to completion. I thank you all for your untiring support.

I will not forget to thank my employers, The Federal Polytechnic, Kaura Namoda and the Tertiary Education Trust Fund (TETFund), Nigeria for giving me the privilege to further my studies.

Last but not the least; I greatly appreciate my colleagues in the Enhanced Polymer Research Group (EnPRO), for your immeasurable contributions to the success of this research. I love you all!
ABSTRACT

Palm press fibers of Tenera and Dura palm oil species of Malaysia and Nigeria respectively were used to prepare poly(ε-caprolactone)/poly(lactic acid) blend composites. All the blends and composites were produced using the twin screw extruder and the test specimens were fabricated using the injection molding machine. The morphology, mechanical, thermal, water absorption and biodegradation properties of the composites were studied. Fourier Transforms Infrared (FTIR) revealed that the hemicelluloses were completely removed after alkali fiber treatment. Field Emission Scanning Electron Microscope (FESEM) showed the improvement of fiber/matrix adhesion and the confirmation of compatibilization in the blend and composites. X-ray Diffraction (XRD) confirmed the increase in crystallinity of the fibers after alkali treatment. Compatibilization and fiber reinforcement significantly enhanced the mechanical and thermal properties, biodegradation and char yield of the composites. The Tenera composites exhibited higher mechanical properties than the Dura composites, while the Dura composites were thermally more stable than the Tenera composites. The Dura fibers also increased the percentage crystallinity of the composites more than the Tenera fibers. Compatibilization and fiber reinforcement increased the rate of biodegradation of the blend and composites. There was no significant difference in the biodegradation rate between the Tenera and Dura composites. The optimum properties were obtained for Tenera and Dura composites at 15 wt. % fiber loading. In view of the above, the composite was adjudged as the best formulation for both fiber reinforcements.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of the Study 1
1.2 Problem Statement 4
1.3 Objectives of the Study 5
1.4 Scope of the Study 6

2 LITERATURE REVIEW 8

2.1 Fibers 8
2.1.1 Introduction 8
2.1.2 Oil Palm (*Elaeis guineensis*, Palmacea) Fibers 11
2.2 Fiber Treatment and Modification 15
2.2.1 Physical Fiber Treatment Methods 16
RESEARCH METHODOLOGY

3.1 Research Design

3.2 Materials

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Poly (ε-caprolactone)</td>
<td>59</td>
</tr>
<tr>
<td>3.2.2 Poly (Lactic Acid)</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3 Dicumyl Peroxide</td>
<td>60</td>
</tr>
<tr>
<td>3.2.4 Other Chemicals Used</td>
<td>61</td>
</tr>
<tr>
<td>3.2.5 Unprocessed Palm Fibers</td>
<td>62</td>
</tr>
</tbody>
</table>

3.3 Fiber Characterization

3.4 Biodegradable Polymers and their Properties

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1 Poly(lactic acid)</td>
<td>29</td>
</tr>
<tr>
<td>3.4.2 Properties of PLA</td>
<td>30</td>
</tr>
<tr>
<td>3.4.3 Limitations of PLA</td>
<td>31</td>
</tr>
<tr>
<td>3.4.4 PLA Natural Fiber Composites and Their Properties</td>
<td>31</td>
</tr>
</tbody>
</table>

3.5 Poly(ε-caprolactone)

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1 Properties of PCL</td>
<td>41</td>
</tr>
<tr>
<td>3.5.2 Limitations of PCL</td>
<td>42</td>
</tr>
<tr>
<td>3.5.3 PCL Natural Fiber Composites and Their Properties</td>
<td>44</td>
</tr>
</tbody>
</table>

3.6 Polymer Blends

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.1 Composites and their Properties</td>
<td>53</td>
</tr>
<tr>
<td>3.6.2 Classification of Composites</td>
<td>55</td>
</tr>
</tbody>
</table>
3.3.1 Field Emission Scanning Electron Microscope (FESEM) 63
3.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 63
3.3.3 Determination of Fiber Crystallinity 63
3.3.4 Determination of Ash Content 64
3.3.5 Determination of Lignin 64
3.3.6 Determination of Holocellulose 65
3.3.7 Determination of \(\alpha \)-cellulose 65

3.4 Sample Preparations 66
3.4.1 Fibers Processing 66
3.4.2 Fiber Surface Modification 66
3.4.3 Formulation and Preparation of Blends 67
3.4.4 Preparation of Blend and Composites 67
3.4.5 Injection Molding 69

3.5 Mechanical Tests 69
3.5.1 Tensile Strength 69
3.5.2 Flexural Strength 70
3.5.3 Impact Strength 70

3.6 Thermal Analysis 70
3.6.1 Differential Scanning Calorimetry (DSC) 70
3.6.2 Thermogravimetric Analysis (TGA) 71
3.6.3 Dynamic Mechanical Analysis (DMA) 71

3.7 Water Absorption Test 72

3.8 Biodegradability Test 72

3.9 Characterization of Blends and Composites 73
3.9.1 Field Emission Scanning Electron Microscope (FESEM) 73
3.9.2 Fourier Transform Infrared Spectroscopy (FTIR) 73
3.9.3 Determination of Crystallinity 73

4 RESULTS AND DISCUSSION 75
4.1 Overview 75
4.2 FESEM of Treated and Untreated Fibers 75
4.3 Mechanical Properties 78
4.3.1 Mechanical Properties of virgin Polymers and Blends 78
4.4 Properties of the Composites 81
4.4.1 Stress-Strain relationship of blends and composites 81
4.4.2 Effect of Compatibilization and Fiber Loading on Tensile Properties 82
4.4.3 Effect of Compatibilization and Fiber Loading on Flexural Properties 87
4.4.4 Effect of Compatibilization and Fiber Loading on Izod Impact Strength 91
4.4.5 Balanced Mechanical Properties 95
4.5 Effect of Compatibilization and Fiber Loading on Water Absorption 95
4.6 Effect of Compatibilization and Fiber Loading on Biodegradation 98
4.7 Thermal Properties 108
4.7.1 Differential Scanning Calorimetry (DSC) 108
4.7.2 Thermogravimetric Analysis (TGA) 110
4.7.3 Dynamic Mechanical Analysis (DMA) 113
4.8 Characterization of Blends and Composites 118
4.8.1 Field Emission Scanning Electron Microscope (FESEM) 118
4.8.2 Fourier Transform Infrared Spectroscopy (FTIR) 119
4.8.3 X-Ray Diffraction Studies of Fibers and Composites 121

5 CONCLUSIONS AND RECOMMENDATIONS 126
5.1 Conclusions 126
5.2 Recommendations 127
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical Composition of Some Natural Fibers</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification and Types of Plastic Additives</td>
<td>53</td>
</tr>
<tr>
<td>3.1</td>
<td>General Properties of PCL</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>General Properties of PLA</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>General Properties of DCP</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>General Properties of the other Chemicals used</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>PCL/PLA Blend Formulation</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>Uncompatibilized Blend and Blend</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Composite Formulations of TF and DF</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Compatibilized Blend and Blend Composite</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Formulations of TF and DF</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Chemical Composition of Dura and Tenera fibers</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Mechanical Properties of Virgin Polymers and Blends</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>DSC Results of Virgin Polymers and Blends</td>
<td>108</td>
</tr>
<tr>
<td>4.4</td>
<td>DSC result of Dura (DF) and Tenera (TF) composites</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>TGA results of treated fiber, blends and composites</td>
<td>113</td>
</tr>
<tr>
<td>4.6</td>
<td>XRD Peak Areas and Crystallinity Index For TF and DF Fibers</td>
<td>122</td>
</tr>
<tr>
<td>4.7</td>
<td>XRD Peak Areas and Crystallinity Index For Blends and Composites</td>
<td>123</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic Classification of Reinforcing Natural/Biofibers</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of lignocellulose</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of a biofiber</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Photograph of Oil Palm Empty Fruit Bunch</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Photographs of (a) Oil Palm Empty Fruit Bunch Fibers</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(b) Oil Palm Mesocarp Fibers</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation of acetylation of cellulose fiber constituents</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Reaction schemes of maleic anhydride and cellulose fiber constituents</td>
<td>21</td>
</tr>
<tr>
<td>2.8</td>
<td>(a) Degradation of PCL via Hydrolysis (b) Crystalline Fragmentation of PCL (c) Accelerated Degradation of PCL in NaOH for 5weeks</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Mechanism of hydrolytic degradation at pH ≤ 7</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Mechanism of alkaline hydrolytic degradation</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Classification of biodegradable polymers</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>Biomass plastic product life cycle</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>Synthesis of PLA</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>PLA/jute composite fractured surface of specimen used to carry out tensile test showing brittle failure of fibers</td>
<td>34</td>
</tr>
<tr>
<td>2.15</td>
<td>SEM micrographs of interface between matrix and BF in PLA/BF (70/30) composite without (A), or with LDI (NCO content, 0.65%) (B) and PBS/BF(70/30) composite without (C), or with LDI (NCO content, 0.65%) (D)</td>
<td>35</td>
</tr>
</tbody>
</table>
FTIR spectra of treated and untreated hemp composites
(a) PLA and untreated fiber-reinforced PLA composites
(b) various treated hemp fiber-reinforced PLA composites
(c) UPE and untreated fiber-reinforced UPE composites

Preparation of Poly (ε-caprolactone)

(a) Fracture surface of tensile specimens of flax/PCL composites. (b) Fracture surface of tensile specimens of flax/PCL-g-MA composite

Polybutadiene dispersed in continuous phase of polystyrene

Classification of composites

Research Design Flowchart

Chemical structure of PCL

Chemical structure of PLA

Chemical structure of DCP

FESEM micrographs of (a) untreated TF fibers (b) treated TF fibers (c) untreated DF fibers and (d) treated DF fibers

FTIR of treated and untreated fibers

Stress-Strain curves of neat polymers, uncompatibilized and compatibilized blend

Stress-Strain curves of uncompatibilized and compatibilized blend and composites of 15 wt. % DF composites

Tensile strength of uncompatibilized and compatibilized composites of TF and DF

Reaction Mechanisms for PCL/PLA crosslink Formation

Young’s moduli of uncompatibilized and compatibilized composites of TF and DF

Flexural moduli of uncompatibilized and compatibilized composites of TF and DF

FESEM micrographs showing (a) absence of fiber agglomeration at 15 wt. % (b) fiber agglomeration at 25 wt. % loading

Flexural strengths of uncompatibilized and compatibilized
4.11 Impact strengths of uncompatibilized and compatibilized composites of TF and DF

4.12 Elongation at break of (a) uncompatibilized composites of TF and DF and (b) compatibilized composites of TF and DF

4.13 Balanced mechanical properties of (a) TF composites and (b) DF composites

4.14 Water absorptions of uncompatibilized and compatibilized TF composites

4.15 Water absorptions of uncompatibilized and compatibilized DF composites

4.16 FESEM micrographs of virgin samples before soil burial (a) neat PCL (b) neat PLA (c) CB90 (d) UB90

4.17 FESEM of composites before soil burial (a) CTF10 (b) CTF15 (c) CTF20 (d) CTF25 (e) UTF10 (f) UTF15 (g) UTF20 (h) UTF25

4.18 FESEM micrographs after 10 days soil burial (a10) CTF10 (b10) CTF15 (c10) CTF20 (d10) CTF25 (e10) UTF10 (f10) UTF15 (g10) UTF20 (h10) UTF25

4.19 Residual weights of neat polymers, uncompatibilized blend and composites of TF

4.20 FESEM micrographs after 30 days soil burial (a30) Neat PCL (b30) Neat PLA (c30) CB90 (d30) UB90

4.21 FESEM micrographs after 30 days soil burial (a30) CTF10 (b30) CTF15 (c30) CTF20 (d30) CTF25 (e30) UTF10 (f30) UTF15 (g30) UTF20 (h30) UTF25

4.22 Residual weights of neat polymers, compatibilized blend and composites of TF

4.23 FESEM micrographs after 90 days soil burial (a90) PCL (b90) PLA (c90) CB90 (d90) UB90

4.24 FESEM micrographs after 90 days soil burial (a90) CTF10 (b90) CTF15 (c90) CTF20 (d90) CTF25 (e90) UTF10 (f90) UTF15 (g90) UTF20 (h90) UTF25
4.25 TGA and DTG curves of treated TF, blends and TF composites 112
4.26 TGA and DTG curves of treated DF, blends and DF composites 112
4.27 Dynamic storage modulus of blends and TF composites 115
4.28 Dynamic storage modulus of blends and DF composites 115
4.29 Tan δ for blends and DF composites 117
4.30 Tan δ for blends and TF composites 117
4.31 FESEM micrographs of (a) UB90 (b) CB90 (c) UTF25 (d) CTF 10 119
4.32 FTIR spectra of untreated and treated fibers, uncompatibilized and compatibilized blends and composites 121
4.33 XRD of TF and DF fibers 122
4.34 XRD of blends and TF composites 124
4.35 XRD of DF composites 125
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL</td>
<td>Poly(ε-caprolactone)</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid)</td>
</tr>
<tr>
<td>DCP</td>
<td>Dicumyl peroxide</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>NaClO₂</td>
<td>Sodium chlorite</td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>CH₃OH</td>
<td>Methanol</td>
</tr>
<tr>
<td>TF</td>
<td>Tenera fibers</td>
</tr>
<tr>
<td>DF</td>
<td>Dura fibers</td>
</tr>
<tr>
<td>TAPPI</td>
<td>Technical Association of the Pulp and Paper Industry</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic Mechanical Analysis</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>UTF</td>
<td>Uncompatibilized Tenera fiber blend composites</td>
</tr>
<tr>
<td>CTF</td>
<td>Compatibilized Tenera fiber blend composites</td>
</tr>
<tr>
<td>UDF</td>
<td>Uncompatibilized Dura fiber blend composites</td>
</tr>
<tr>
<td>CDF</td>
<td>Compatibilized Dura fiber blend composites</td>
</tr>
<tr>
<td>wt. %</td>
<td>Weight percent</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>M Pa</td>
<td>Mega pascal</td>
</tr>
<tr>
<td>kJ/m²</td>
<td>Kilo joules per meter square</td>
</tr>
<tr>
<td>J/g</td>
<td>Joules per gram</td>
</tr>
<tr>
<td>ΔHₘ</td>
<td>Melting enthalpy</td>
</tr>
<tr>
<td>ΔHₘ°</td>
<td>Melting enthalpy for 100 % crystalline material</td>
</tr>
<tr>
<td>T₉</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>Tₘ</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>Tₖ</td>
<td>Crystallization temperature</td>
</tr>
<tr>
<td>Iₖᵣ</td>
<td>Crystallinity index</td>
</tr>
<tr>
<td>G'</td>
<td>Dynamic storage modulus</td>
</tr>
<tr>
<td>Xₖ</td>
<td>Degree of crystallinity</td>
</tr>
<tr>
<td>θ</td>
<td>Theta</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>A</td>
<td>Amperes</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
</tbody>
</table>
mol.l⁻¹ - Mole per liter
g/l - Gram per liter
cm⁻¹ - Per centimeter
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Calculation of Crystallinity Index Using the Buschle-Diller and Zeronian Equation</td>
<td>148</td>
</tr>
<tr>
<td>B</td>
<td>Abstract of publications in international journals</td>
<td>149</td>
</tr>
<tr>
<td>C</td>
<td>Abstract of publications in international conferences</td>
<td>153</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The utilization and over exploitation of resources that cannot be replaced or re-introduced into the environment prompted research interest in the development, production and application of natural polymers. The last decade of the 20th century has experienced a geometric growth of plastic demand due to their extensive use in the packaging industries. The reasons adduced to the high demand are safety, low cost and aesthetics [1].

Sinha and Bousmina [2] reported that 41% of plastics worldwide are used for packaging out of which 47% of these are used for foodstuff packaging. These materials produced from non-renewable sources are used and discarded into the environment that cannot degrade them as such 40% ends up as refuse which constitute global environmental problem. For the environment to be free from wastes disposal methods like land filling, incineration and recycling have been used. However, land filling and incineration of wastes eventually leads to generation of CO₂ which causes temperature rise globally. Another alternative in use in waste disposal is recycling which unfortunately is costly and labor intensive because of the processes involved. In view of the above, the development of green polymeric materials has become necessary. The fact is that these polymeric materials can be prepared without using toxic or noxious components and also, they can be easily broken down naturally in the environment. Materials scientist and engineers all over the world have been challenged to develop biodegradable materials with properties
that can be manipulated to solve the above mentioned problems. As a result of this, manufacturing of various products using composites produced from natural fibers and other friendly materials is being developed [2-5].

There are overwhelming reports from scientists and other researchers in the field in respect of the friendly nature and numerous advantages that natural fibers have over conventional reinforcing fibers. These advantages have attracted industries like the automobile industries to embrace the use of natural fibers in place of the regular conventional fibers used in most products [3, 4]. Report have shown that the hydrophilic nature of natural fibers is one major disadvantage in terms of their compatibility with the hydrophobic polymers [4]. It has also been reported that this deficiency can be enhanced by modifying the fibers or polymer properties [5-9].

Several methods have been adopted by scientists to modify the fibers or polymers to enhance their performance. Alkali and acids were used by Alawar and co-workers [10] to modify the surface of date palm fibers to enhance the fibers performance. They recorded improvement in tensile strength and surface morphology for the fibers treated with alkali. However, the performance of the fibers dropped remarkably with acid treatment.

Valadez-Gonzalez and co-workers [11] reported improvement in interfacial shear strength between matrix and fibers after morphological modification of the fiber surface with alkali. The alkali treatment increased the roughness of fiber surface thereby leading to better mechanical interlocking. Also, better exposure of cellulose on the fiber surface was achieved after alkali treatment thereby resulting in increased number of reaction sites. Their work with silane coupling treatment further enhanced the fiber-matrix adhesion and improved the interfacial load transfer of the composites.

In a review of chemical treatments of natural fibers, Kabir and co-workers [12] concurred that treatment is an important factor that has to be considered when processing natural fibers. They observed that fibers loose hydroxyl groups due to
different chemical treatments thereby reducing the hydrophilic behavior of the fibers. Their general conclusion was that chemical treatment of natural fibers results in remarkable improvement of the natural fiber composites.

Matrix modification is another option used to improve the performance of polymers and their composites. Avella and co-workers [13] prepared compatibilized polycaprolactone/starch composites using pyromellitic anhydride as compatibilizer and studied the performance of the composites. The result showed improved properties performance of the composites. They also observed that the composite properties can be modified by altering the quantity of compatibilizer and starch.

The effect of dicumyl peroxide (DCP) as a cross linking agent in blends of poly(lactic acid)/poly(ε-caprolactone), (PLA/PCL) has been investigated [14]. Improved mechanical properties due to the incorporation of DCP were reported for the blends. The researchers concluded based on the DMA, melting interfacial tension and tensile test results that the blends were compatible when small quantity of DCP is added. Also, they submitted that DCP was a good compatibilizer for the PLA/PCL blend.

In another work, PCL-g-MA coupling agent composites were prepared and their mechanical properties investigated [15]. It was reported that increasing the quantity of coupling agent resulted in composites with better mechanical properties. Evidences from these literatures establish the fact that polymer composites prepared with modified natural fibers and blends exhibit improved properties and performance over their neat counterparts.

This research has formulated and prepared environmentally friendly and enhanced blend composites of poly(ε-caprolactone)/poly(lactic acid) using palm press fibers obtained from the Tenera and Dura palm oil species from Malaysia and Nigeria respectively. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis were employed to characterize the fibers, blends and blend
composites. The mechanical and thermal properties, water absorption and biodegradability of the fibers, blends and blend composites were also studied.

1.2 Problem Statement

PCL is petroleum derived synthetic biodegradable polymer. At ambient temperature it is tough and fairly rigid with an average modulus like that of polyethylene. Its low melting point (58-60°C) and biocompatibility makes it suitable in the production of composites and biomedical use respectively. However, the very low glass transition temperature, T_g and low melting point, T_m of PCL are major setback of this biodegradable polyester thereby reducing its chances of being used in some applications, especially outdoor.

PLA is a biodegradable thermoplastic produced from sources like tapioca products, corn starch and sugarcane which are considered renewable. It has high melting point (173-178°C), high strength and modulus but is brittle. The intrinsic brittleness of PLA greatly reduces its application areas. For PLA to be used in various applications, modifications like plasticization, copolymerization, addition of rigid fillers and blending with varieties of flexible polymers or rubbers has to be carried out.

These individual weaknesses exhibited by PCL and PLA have prompted researchers to improve on them through blending with other polymers [16-18], blending and reinforcing with fibers [19, 20], reinforcing the single polymers with fibers [11, 15, 21-23] and other treatment methods [12]. It is therefore imperative to improve the properties of these polymers to make them fully competitive with the conventional polymers in use. These polymers with their unique properties even though not compatible but biodegradable have in this research been successfully blended and reinforced with palm press fibers to produce biodegradable composites with enhanced properties.
The use of natural fibers as reinforcements in single polymers has been extensively reported [5, 7, 8, 24-27]. Major drawbacks observed with natural fibers and their composites is their hydrophilic nature and incompatibility with polymers yet researches show that they can be improved upon through chemical and other treatments [6, 26, 28-31]. Composites formation using natural fibers as fillers and biodegradable polymers as matrix will help to solve the environmental and waste management problems associated with conventional polymers. Most researches carried out using natural fibers as reinforcement have been with conventional polymers which are still not friendly to the environment and also difficult to manage [3, 6-9].

To the best of the researcher’s findings with respect to literature review for this research, no work has been carried out using palm press fibers of any palm tree species as reinforcement in PCL/PLA blend. In view of the above, palm press fibers which are highly generated by the palm industry (but seldom used) were used as reinforcement in PCL/PLA blend to improve the blend properties and expand their outdoor application fields. The aim of this research is to formulate, prepare and investigate PCL/PLA blends reinforced with palm press fibers obtained from the Tenera and Dura palm oil species of Malaysia and Nigeria respectively.

1.3 Objectives of the Study

This research aims at developing environmentally friendly composites using PCL/PLA blend as matrix and palm press fibers obtained from the Tenera and Dura palm oil tree species of Malaysia and Nigeria respectively. The objectives of this study are as follows:

(i) To formulate, prepare and characterize PCL/PLA blends and composites of palm press fibers obtained from the Tenera and Dura palm oil tree species of Malaysia and Nigeria.
(ii) To study the effect of compatibilization and fiber content on the morphology, mechanical, thermal, water absorption and biodegradation properties of the blends and composites.

(iii) To characterize the fibers and determine the proximate chemical composition of the fibers and its effect on properties of the composites.

1.4 Scope of the Study

In order to achieve the objectives of this research, the following activities were carried out:

(i) Collection, processing and treatment of palm press fibers based on existing methods.

(ii) Proximate determinations of the fibers composition using the Technical Association for the Pulp, Paper and Converting Industry (TAPPI T13M-54) methods.

(iii) Formulation of PCL/PLA blends and composites of palm press fibers.

(iv) Preparation of PCL/PLA blends and composites of palm press fibers using melt blending technique.

(v) Fabrication of PCL/PLA blends and composites of palm press fibers using injection molding technique.

(vi) Evaluating physical and mechanical properties of the fabricated PCL/PLA blends and composites by determining water absorption, tensile, flexural and impact properties.
(vii) Characterizing the thermal properties and structural composition of the fibers, PCL/PLA blends and composites using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared Spectroscopy (FTIR).

(viii) Evaluating the biodegradation behavior of PCL, PLA, PCL/PLA blends and composites by normal outdoor soil burial test.
REFERENCES

58. Zafeiropoulos, N. E. and C. A. Baillie. A study of the effect of surface treatments on the tensile strength of flax fibres: Part II. Application of

67. Biagiotti, J., Puglia, Debora., Torre, Luigi., Kenny, José M., Arbeiaiz, Aitor., Cantero, Guillermo., Marieta, Cristina., Llano-Ponte, Rodrigo., Mondragon, Iñaki. A systematic investigation on the influence of the chemical treatment
of natural fibers on the properties of their polymer matrix composites.

82. Albertsson, A. C., Karlsson, S. *Chemistry and Technology of Biodegradable Polymers*. Glasgow, UK: Blackie Academic & Professional; Chapman and Hall. 1994

190. Mandal, S. and S. Alam. Dynamic mechanical analysis and morphological studies of glass/bamboo fiber reinforced unsaturated polyester resin-based

