A CASE STUDY ON CONCRETE PROBLEMS IN UTM

ABDUL AZIZ JULKARNAIN

A project report submitted in partial fulfilment of the requirement for the award of the degree of Master of Engineering (Civil – Structure)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

MAY, 2006
This study is especially dedicated to my beloved Mommy and Daddy

Brothers and Sisters,

Beloved Dear,

for everlasting love, care, and supports.....
ACKNOWLEDGMENT

With the accomplishment of this project, the author would like to extend the special and greatest gratitude to the project supervisor, Assoc. Prof. Dr. Abdul Rahman Mohd. Sam of Faculty of Civil Engineering, Universiti Teknologi Malaysia for his enthusiastic effort and concern. With his invaluable advice, guidance and encouragement, the author was able to complete this project.

Deepest thanks to the author’s family especially for their encouragement and support in life. Without them the author would not be able to complete the project.
This Project was conducted to study the types of concrete problems and its basic category in UTM. The required information was gathered by conducting visual inspection to selected areas and buildings. Interviews with Pejabat Harta Bina and building custodian had made this survey easier when the required information available in their archive. By using fundamental knowledge in relating symptoms of defects to its causes, defects list and weightage of concrete problems based on percentage according to their basic category of cause i.e. Design Deficiency, Material Defect, Construction Error and Maintenance Defect, has been able to be developed and derived. The relationships were determined using approximate approach i.e. deducing initial failure hypotheses (IFH). From this survey, apparently based on the percentage, Design Deficiency has contributed the highest numbers of defective concrete in the survey, followed by Material Defect, Construction Error and Maintenance Defect, by, 34%, 30%, 26% and 10%, respectively. These data are further utilised by relating its causes to durability of the concrete structures in UTM. The results show that, regardless the root of reasons why concrete has became problematic; it has, for sure, given profound impact on the durability of concrete. For instance, crackings induced by design deficiency or by construction error at least permit access and ingress to aggressive agents to propagate deterioration process i.e. corrosion of reinforcement. With these information, it is hoped that the established platform on gathered information about concrete problems in UTM, may able to set forth preliminary reference for any purposes in relating to the above subject. Therefore, preventive measures can be set forth to avoid repetitive concrete problems in UTM in years to come.
ABSTRAK

TABLE OF CONTENTS

CHAPTER DESCRIPTION PAGE

TITLE i
STUDENT’S DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF APPENDICES xvii

1 INTRODUCTION
1.1 Introduction 1
1.2 Research Background 2
1.3 Research Objectives 5
1.4 Scopes of Research 5

2 LITERATURE REVIEW
2.1 Introduction 7
2.2 Durability 8
 2.2.1 Environmental and Usage Factors 10
2.2.1.1 Abrasion and Erosion 10
2.2.1.2 Climatic Condition 11
2.2.1.3 Atmospheric Pollution 11
2.2.1.4 Biological Attack 11
2.2.1.5 Chemical Attack 11
2.2.2 Compositional and Production Factors 12
 2.2.2.1 Types of Cement and Cement Content 13
 2.2.2.2 Types of Aggregate 15
 2.2.2.3 Degree of Compaction and Air Content 16
 2.2.2.4 Water/Cement Ratio (w/c) and Curing 17
2.3 Quality Control 19
2.4 Distinguishing Durability Problem and Design Problem 20
 2.4.1 Determining Structural Integrity 21
 2.4.2 Pre-Determining of Structural Integrity 23
 2.4.2.1 Inadequate Structural Design 23
 2.4.2.2 Poor Design Details 24
 2.4.3 Types of Concrete Cracks, Causes of Cracks, Remedial Works and Time of Appearance 25
2.5 Non-Destructive Tests 27
 2.5.1 Covermeter 28
 2.5.1.1 Reliability, Limitations and Applications 29
 2.5.2 Rebound Hammer Method 30
 2.5.3 Ultrasonic Pulse Velocity Test (UPV) 31

3 METHODOLOGY
 3.1 Introduction 34
 3.2 Methods in Gathering Raw Data 35
 3.2.1 Site Visits 35
 3.2.2 Interviews 38
 3.3 Methods in Interpreting and Analysis of Raw Data 39

4 RESULTS AND FINDINGS
 4.1 Introduction 43
4.2 Common Defects and Their Causes

4.2.1 List of Defects Through Findings

5 ANALYSIS OF RESULTS

5.1 Introduction

5.2 Design Deficiencies

5.2.1 Predictable Design Deficiencies

5.2.2 Unpredictable Design Deficiencies

5.3 Material Defects

5.4 Construction Errors

5.5 Maintenance Defects

6 DISCUSSION OF FINDINGS

6.1 Introduction

6.2 Concrete Problems vs. Durability of Concrete

6.3 Design Deficiencies

6.4 Material Defects

6.5 Construction Errors

6.5.1 Adding Water to Concrete

6.5.2 Improper Alignment of Formwork

6.5.3 Improper Consolidation

6.5.4 Improper Curing

6.5.5 Improper Location of Reinforcing Steel

6.5.6 Movement of Formwork

6.5.7 Premature Removal of Shores or Reshores

6.5.8 Settling of the Concrete

6.5.9 Settling of the Subgrade

6.5.10 Vibration of Freshly Placed Concrete

6.5.11 Improper Finishing of Flatwork

6.6 Maintenance Defects

6.6.1 Prevention of Differential Settlement or Slope Subsidence

6.6.2 Prevention of Staining on Concrete Surface
6.6.3 Building Maintenance Manual/Log Book

6.7 Corrosion of Reinforcement

- 6.7.1 Protection of Steel in Concrete
- 6.7.2 Mechanism of Corrosion and Corrosion Protection
- 6.7.3 Carbonation of Concrete
- 6.7.4 Chloride Attack
- 6.7.5 Corrosion of Reinforcement
- 6.7.6 Preventive Measures

7 CONCLUSIONS AND RECOMMENDATIONS

- 7.1 Introduction
- 7.2 Summary of the Findings
- 7.3 Conclusions
- 7.4 Recommendation for Future Study

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Table adapted from Table 6.1 from BS8110: Part 1.</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical composition of Ordinary Portland Cement.</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of intrinsic cracks.</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Visual examination of concrete problems: items for checklist.</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>List of defects identified through survey.</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Data used to develop chart in Figure 4.1.</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Data for Academic Buildings aged more than 10 years.</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Data for Academic Buildings aged less than 10 years.</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Data for Residential Buildings aged more than 10 years.</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Data for Residential Buildings aged less than 10 years.</td>
<td>54</td>
</tr>
<tr>
<td>6.1</td>
<td>Vibration limits for freshly placed concrete.</td>
<td>108</td>
</tr>
<tr>
<td>6.2</td>
<td>Conditions and features of reinforcement corrosion.</td>
<td>115</td>
</tr>
<tr>
<td>6.3</td>
<td>The manifestation of reinforcement corrosion.</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Figure depicts concrete have been severely eroded and start spalling.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Figure depicts pathways slab transversely cracking.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Figure depicts apron slab start cracking and surface is abraded.</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Biological Attack on concrete.</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Water / cement ratio 0.3.</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Water / cement ratio 0.5.</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Water / cement ratio 0.8.</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Some typical crack types: (a) reinforcement corrosion; (b) plastic shrinkage; (c) sulphate attack; (d) alkali/aggregate reaction.</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>NDT was carried out to check the structural integrity of the beam by getting essential parameters such as cover thickness, numbers of reinforcement, size of reinforcement, location of reinforcement and stirrups.</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>NDT was carried out to check the structural integrity of the beam by getting essential parameters such as cover thickness, numbers of reinforcement, size of reinforcement, location of reinforcement and stirrups.</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic representation of the various types of cracking which can occur in concrete (see Table 2.3).</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Typical simple covermeter .</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>Typical simple covermeter circuitry.</td>
<td>29</td>
</tr>
</tbody>
</table>
2.11 Most common used rebound hammer, Schmidt Hammer.

2.12 The Schmidt Hammer in use.

2.13 Commonly used UPV, ‘PUNDIT’.

2.14 Placement of pundit test equipment.

3.1 Pejabat Harta Bina.

3.2 Reinforcement corrosion is related to the pattern of distress (longitudinal cracking) along prop for Monsoon Drain.

3.3 Illustration of Methodology.

4.1 Percentage of Defects based on main category and age.

5.1 Combination of shear and flexural cracks clearly shown.

5.2 Longitudinal also detected on the soffit of the beam (enlarged view).

5.3 Combination of shear and longitudinal cracks.

5.4 Typical pattern of cracks on slab in residential buildings.

5.5 Staining on wall due to leakage.

5.6 Staining on wall due to leakage.

5.7 Watermarks at intersection joints of columns and beams.

5.8 Watermarks at intersection joints of columns and beams. Seems stalactite (Calcium salts) has been formed.

5.9 Typical arrangement of reinforcing bars at intersection.

5.10 The building seems slipping on one side based on the cracks appeared.

5.11 Pusat Komposit (Block P23).

5.12 Cracks appeared on beam.

5.13 Diagonal distortion cracking caused by differential foundation settlement due to hard/soft contact pressure.

5.14 Differential settlement of external stack wall resulting
5.15 Settlement of internal wall due to soft spot caused by migrating swallow hole.

5.16 Front view of Pusat Komposit.

5.17 Cracks on beam (zoomed-in view).

5.18 Cracks on column (enlarged view).

5.19 Retaining wall near Pusat Komposit (Block P23).

5.20 Slope at Block M47.

5.21 Cracks on wall, Block M47.

5.22 Cracks on apron slab, Block M47.

5.23 Cracks on drain wall, Block M47.

5.24 Monsoon drain at Kolej 16.

5.25 Algae resided in the prop and longitudinal cracks are visible.

5.26 Stain (rust-colored) implied corrosion of reinforcement had occurred.

5.27 Longitudinal stain at the bottom of beam.

5.28 Cracks on the perimeter beam.

5.29 Retaining wall adjacent to Pusat Komposit.

5.30 White deposits show formation of efflorescence / ettringitte.

5.31 Cavitated concrete surface.

5.32 Arrangement of roofing allows rainwater to drop on the surface of slab.

5.33 Kitchen rear area at Block L50.

5.34 Disintegrated cement paste and aggregate of concrete slab at kitchen area of Block L50.

5.35 Transverse cracks on the drain cover adjacent to Masjid Sultan Ismail, UTM.

5.36 Crazing cracks and stains (dark green-colored) on concrete floor slab at Block C10 level 1.

5.37 Honeycombed concrete at basement level of Block M47.
5.38 Exposed reinforcing steel at basement level of Block M47.

5.39 Rehabilitated honeycombed concrete but wasn’t done properly at basement level of Block M47.

5.40 Honeycombed concrete on soffit slab at basement level of Block M47.

5.41 Honeycombed concrete on soffit slab at basement level of Block M47 (enlarged view).

5.42 Differential settlement at Block M47 adjacent to TNB sub-station.

5.43 Differential settlement at rear elevation of Block M47.

5.44 Differential settlement on pathway slab at Kolej 16.

5.45 Differential settlement at Block L50.

5.46 Differential settlement at Block L50.

5.47 Rising Dampness on wall.

5.48 Rising Dampness on wall at Block S46.

5.49 Rising Dampness on wall at Block L50.

5.50 Water falls on railing due to leakage at beam junction.

5.51 Staining on railing due to leaking water drops.

5.52 Joint failure on upper level of beam junction as shown in Figure 5.50.

5.53 Roof joint/sealant failure.

5.54 Level 1 Block B08 – Linkway.

5.55 Plants well grown in between cracks.

6.1 Illustration of cracking mechanism due to overstress in structural element.

6.2 The three-stage model of corrosion damage.

6.3 Progress of carbonation with time of exposure under different conditions: (A) 20°C and 65% RH; (B) outdoors, protected by roof; (C) horizontal surface outdoors in Germany. The values are averages for concrete with w/c ratios of 0.45, 0.60, and 0.80, wet-cured for 7 days.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Spalling of delamination occurs when expansion of reinforcing steel due to corrosion begins.</td>
</tr>
<tr>
<td>6.5</td>
<td>Graph shows relationship between corrosion rate and pH of concrete.</td>
</tr>
<tr>
<td>6.6</td>
<td>Illustration of mechanism of corrosion of reinforcement.</td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>APPENDICES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Defective Locations in Kolej Perdana</td>
<td>130</td>
</tr>
<tr>
<td>B</td>
<td>List of Defective Locations in Kolej Tun Razak</td>
<td>135</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

With the advancement of concrete technology, concrete are formed in many ways and in enhanced quality. For instance, precast structures have become prominent in the contemporary construction industry, concrete are pre-prepared in the factory before placing it to the construction site area. Furthermore, nowadays, we can see so many ready mixed concrete suppliers, offering various type of concrete. It has become pleasant and a great helpful system especially when dealing with fast-track projects. Hence, with rapid growth of its use for structures skeleton or for aesthetic purpose, nobody can help from being surrounded by material named concrete; housing, bridges, dams, roads, offices and even pathways also made from concrete. Some says, it is like living in a concrete jungle era or concrete-age.

However, inevitably, numbers of records have shown that concrete has been experiencing problems in deterioration, cracks, spalling, corrosion and many more to quote here [1, 2, 3, 4]. These problems has become unfavourable and invited unpleasant feeling to the occupants. Seeing this, most of us take some form of acceptance when seeing problems in concrete. Wide variety of concrete problems may result in many bewildering impressions. Are they due to poor workmanship, were non-compliance materials used, construction errors or perhaps design errors? In fact, there are a lot more of reasons why concrete becomes problematic. Therefore, decisions to overcome concrete problems can be started using heuristics to deal with bounded rationality of such why the problem occurred in the first place. Systematic
errors can result in from use of an incorrect heuristic and the errors, for sure, will appear over and over since the rule used to make decision is flawed from the onset.

Henceforth, engineers may have to learn and understand the behaviour of the concrete problems before implying any repairing methods and learn from the successful implemented solutions done by others before this. Otherwise, time, money and efforts, will be wasted for using wrong implication and heuristic. Therefore, a research should be conducted to get the right implication and heuristic. Nobody should imply solution if there is lacking of complete information on the intended-for-research concrete. Hence, investigations may have to be carried out on certain parameters such as the proportion of the mix, criterions applied to calculate concrete mix, types of supervision during construction; were the materials inspected before use, were the concrete poured complying with the design mix, and many more approaches to get the right implication and heuristic.

Using the above philosophy, a research on concrete problems in UTM ought to be conducted in obtaining the right repairing methods or at least as a general reference tool before doing any construction works.

However, the research in this paper is not about repairing methods but merely a case study research on concrete problems related to durability; investigate and identify concrete problems including locations where they might be, and classify its symptoms to probable causes where in here appropriate preventive measures and repairing methods can be suggested. Still, it is not about repairing methods.

1.2 Research Background

As mentioned previously, concrete problems are so common and yet, there are numerous types of concrete problems that can be inserted in the list if any.

Noticeably, there are many types of concrete problems in UTM such as cracks, deteriorated and abraded concrete; probably due to chemical attack,
construction errors, design errors etc. This has brought the interest to conduct a research on type of concrete problems in the vicinity of Universiti Teknologi Malaysia, Skudai (UTM).

Having this in mind, it is a need that a research on concrete problems in UTM may have to proceed with limitation on its durability aspect due to the fact that concrete problems is an extremely complex subject. It differs from one to another due to different site attributes. Few examples of concrete problems in UTM are shown in Figure 1.1, Figure 1.2 and Figure 1.3:

![Image of concrete erosion and spalling](image)

Figure 1.1: Figure depicts concrete have been severely eroded and start spalling.
Figure 1.2: Figure depicts pathways slab transversely cracking.

Figure 1.3: Figure depicts apron slab start cracking and surface is abraded.
1.3 Research Objectives

The objectives of the research can be short listed as follows:

(i) To conduct a study on concrete problems occurring in UTM.
(ii) To classify the concrete problems and its causes using initial failure hypothesis (IFH) method [5].
(iii) To relate the concrete problems in UTM to the durability aspect of concrete.

1.4 Scopes of Research

The scope of research shall be in line with the concrete problems in durability aspect. Its huge built area encompasses faculties’ buildings, residential buildings, library, and facilities buildings such as sports complex, food courts, mosque, banks, student affairs buildings, and administration centre. These buildings and its surroundings shall be the areas where all the data will be sourced out.

During the process of gathering raw data, all types of problems will be recorded and illustrated. Screening and scrutinizing will be carried out to classify the problems prior getting into the main study that is durability problem of concrete, which will be discussed in the Chapter 4, where it presents a logical method for relating the symptoms or observations to the various causes.

In addition, the study is also intended to establish diagnoses on concrete problems in initial failure hypothesis form. The cause or causes for the deterioration of concrete, such as crack problems will be diagnosed and related to common problems that can occur anywhere, anytime in the field of construction site due to the lack of precautions or steps taken to ensure that the concrete was satisfactorily complied in accordance with the requirements of relevant standard.

Finally, all the interpreted and analyzed data will be tabulated in a table form, showing type of problems, weightage by numbers and percentage, and locations
where problems occurred. These data can be used to relate its symptoms to causes of the problem where it may suggest solutions and preventive measures to avoid repetitive problems in the future. In addition, it is hoped that the information from this study can be useful as a preliminary reference to construction players prior executing any construction works or repairing works in the future prospect of the Malaysian construction industry.
REFERENCES

