PREDICTING THE PERFORMANCE OF DESIGN-BID-BUILD PROJECTS: A NEURAL-NETWORK BASED APPROACH

TAN CAI LOON / CAREN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

APRIL, 2006
To my beloved family
ACKNOWLEDGEMENTS

The author would like to express sincere gratitude and grateful appreciations to her supervisor, Ir. Dr. Rosli Mohamad Zin, for his invaluable guidance, advice, encouragement and help throughout the project. Without his advices and constructive ideas, this report would not be successfully accomplished.

It is also the author’s outmost gratitude to Dr. Sobri Harun, for his assistance and guidance throughout this learning curve. The invaluable advice and suggestion that he gave truly help the progression and smoothness of this report.

Finally, the author would like to speak thousand of thanks to the management of Universiti Teknologi Malaysia (UTM) and Perpustakaan Sultanah Zanariah (PSZ) for all the information and help in all areas in order to finish this project report. It is also the author’s gratitude to those who had helped in the process of collecting data. May God bless you with all His grace.
ABSTRACT

Several studies had shown that many project managers are facing difficulties in predicting the performance of Design-bid-build (DBB) projects. This is due to the fact that there are many factors that affect DBB project success. This research is carried out to identify these factors. In addition, a model to predict the performance of DBB project was developed based on time. Through literature research, a total of forty-four factors that affect DBB project success had been established. The degree of importance for these factors had been determined through questionnaire survey. Eight out of forty-four factors that affecting project performance were found to be the most important factors from the viewpoint of project managers and contractors in the Malaysia construction industry. The outcome of the survey formed a basis for the model development. Artificial neural network (ANN) technique is used to construct the models to predict construction project performance based on time. The best performance model was the multiplayer back-propagation neural network model, which consisted of eight input nodes, five hidden nodes and three output nodes. These models were tested by using data from nine new projects. The results indicated that the developed model can give a good prediction. In this study, it was concluded that the ANN prediction model can be an efficient tool for predicting the performance of DBB project from the time aspect.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction to the Problem 1
1.2 Objectives 3
1.3 Scopes of Work 4
1.4 Project Methodology 4
1.5 Significance of Findings 5
1.6 Report Structure 5
1.7 Summary 6

2 OVERVIEWS OF ARTIFICIAL NEURAL NETWORK (ANN)

2.1 Introduction 7
2.2 Definition of Artificial Neural Network (ANN) 8
2.3 Issues in ANN 11
2.4 Neural Network Elements and Principles 12
2.5 ANN Structures 15
2.6 ANN Modellings 16
2.7 Multilayer Perceptrons 21
2.8 Backpropagation 24
2.9 Generalization 27
2.10 Learning 28
2.11 Performance Measures of ANN Models 31
2.12 Applications 33
2.13 Advantages and Disadvantages of ANNs 41
2.14 Modeling Environment 42
2.15 Summary 43

3 CONSTRUCTION PROJECT AND ITS PERFORMANCE MEASUREMENTS

3.1 Introduction 45
3.2 Design-bid-build (DBB) Project 46
3.3 Construction Industry in Malaysia 47
3.4 Current Scenario in Construction Project Success in Malaysia 51
3.5 Contractors Roles and Challenges 53
3.6 Project Time Management 55
3.7 Construction Performance 58
3.8 Progress Measurement 60
3.9 Performance Criteria 62
3.10 Factors Affecting Project Performance 65
3.11 Performance Audit 68
3.12 Summary 69

4 RESEARCH METHODOLOGY

4.1 Introduction 71
4.2 The Operation Framework of the Study 72
4.3 Preliminary Interview 73
4.4 Questionnaire Survey 73
 4.4.1 Questionnaire Design 74
 4.4.2 Questionnaire Analysis 75
4.5 Proposed Model 76
4.6 Graphical User Interface 79
4.7 Summary 80

5 QUESTIONNAIRE SURVEY ANALYSIS
5.1 Introduction 81
5.2 Questionnaire Survey – Part 1 82
 5.2.1 Questionnaire Analysis 82
 5.2.2 Results of Analysis 84
5.3 Summary 87

6 DEVELOPMENT OF ANN PREDICTION MODEL
6.1 Introduction 88
6.2 ANN Prediction Model 89
 6.2.1 Input and Output Variables 89
 6.2.2 The ANN Model 91
 6.2.2.1 Multi-Layer Perceptron
 Prediction Model 91
6.3 Data Collection 92
 6.3.1 Questionnaire Survey – Part 2 92
 6.3.2 Questionnaire Analysis 92
6.4 ANN Software 93
6.5 Results 94
6.6 Actual and Predicted Output 96
6.7 Discussions 97
6.8 Performance Prediction Tool 100
6.9 Summary 101
7 CONCLUSIONS AND FUTURE RECOMMENDATIONS

7.1 Introduction 102
7.2 Conclusions 103
7.3 Future Recommendations 105

REFERENCES 107

APPENDICES 112
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Factors affecting project performance</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Questionnaire Survey – Part 1 (Main Sections)</td>
<td>74</td>
</tr>
<tr>
<td>5.1</td>
<td>Forty-four potential factors affecting project performance</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>Average index for each of the potential factors</td>
<td>85</td>
</tr>
<tr>
<td>5.3</td>
<td>The most important factors resulted from average index</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Variables for ANN Prediction Model</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Training Parameters</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>Training and testing results based on number of hidden layers</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Training and testing results based on number of hidden nodes</td>
<td>95</td>
</tr>
<tr>
<td>6.5</td>
<td>Training and testing results based on learning algorithm</td>
<td>96</td>
</tr>
<tr>
<td>6.6</td>
<td>Observed and Predicted Output for Nine Testing Samples</td>
<td>97</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Four possible architectures of ANNs</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) An ANN and (b) the processing function of a single neuron</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical neural network architecture</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic neuron model</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>“Generic” combination of inputs to produce corresponding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>artificial neuron output</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Four nodes Hopfield network</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Mexican hat function</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>A radial basis function network</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>N-tuple network</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>Three-layer multi-layer perceptron</td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>A backpropagation network trains with a two-step procedure</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>Generalization vs. memorization dilemma shown in the curve fitting</td>
<td>27</td>
</tr>
<tr>
<td>2.13</td>
<td>Sample error measure trajectories</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Illustration of the overfitting problem</td>
<td>33</td>
</tr>
<tr>
<td>2.15</td>
<td>Multisensor Data Fusion with Neural Networks</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Fundamental arrangements in the DBB</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Manpower problems affecting construction productivity</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Management problems affecting construction productivity</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>Time management cycle</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary of principal factors affecting construction durations of projects</td>
<td>68</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow chart of research methodology</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Proposed Model</td>
<td>77</td>
</tr>
<tr>
<td>6.1</td>
<td>MLP Architecture Prediction Model</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>Neural Connection Window Interface</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Time Performance (Observed vs. Predicted) for the ANN Model</td>
<td>97</td>
</tr>
<tr>
<td>6.4</td>
<td>Neural Network Architecture of Model MLP7</td>
<td>99</td>
</tr>
<tr>
<td>6.5</td>
<td>Spreadsheet interface for ANN prediction model</td>
<td>100</td>
</tr>
<tr>
<td>6.6</td>
<td>Project data input screen</td>
<td>100</td>
</tr>
<tr>
<td>6.7</td>
<td>Predicted performance screen</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Example of Questionnaire Survey – Part 1</td>
<td>112</td>
</tr>
<tr>
<td>A2</td>
<td>Example of Questionnaire Survey – Part 2</td>
<td>115</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem

Construction projects are intricate, time-consuming undertakings. The total development of a project normally consists of several phases requiring a diverse range of specialized services. A number of financial considerations dictate the earliest possible completion date for many construction projects. Traditionally, field construction is not begun until the architect-engineer has completed and finalized the design. This sequence is still predominant in the industry and is referred to as the design-bid-build procedure. It is possible to reduce the total design-bid-build time required for some projects by starting the construction before complete design of the entire project has been accomplished.

The construction process is subject to the influence of highly variable and sometimes unpredictable factors. The construction team, which includes architects, engineers, building tradesmen, subcontractors, material dealers, and others change from one job to the next. All the complexities inherent in different construction sites, such as subsoil conditions, surface topography, weather, transportation, material
supply, utilities and services, local subcontractors, labor conditions and available technologies are an innate part of construction.

As a result, construction project performance needs to be measured. Measurements of performance provide management with invaluable feedback to guide daily decision making. And by regularly using such feedback, management becomes more competent. Measurements help turn even average managers into exemplary performers merely by supplying them with better information. Every contractor wants to have measurements of performance improvement and to know how much was spent to achieve the work. But the problem is how to measure and improve the performance. They want to improve jobsite performance. In other words, judgement of jobsite performance is not only on what was accomplished but also on how it was done and at what cost. On-time completion means that the job finished as it was scheduled. Within budget means no cost overruns.

However, measurements of schedule and budget offer too little information for day-to-day project management. They do not tell us where the problems lie and they do not point us toward solutions. Time and budget measurements frequently come too late to guide daily management decision making. They are better-suited as gross measurements of a completed job. On-site management needs more refined measurements for job control, measurements that provide timely feedback concerning current performance.

In the era of globalization, most of the project managers encounter difficulties to predict the performance of DBB project. They need the skills to evaluate the factors that affect DBB project success. This has prompt to the need for computerization of the analysis for the ease of project managers. The management team needs a means to determine the strategy and level of management controls to achieve a good project performance. As a result, the project managers are asking for software modelling to evaluate and analyze the different factors in the project. There
is possibility that construction project performance in Malaysia could be measured by an ANN model.

Under this circumstance, there is an urgent need to study, analyze and investigate into the prevailing conditions with a view to identify the factors and formulate solutions and, if required, to carry out extensive researches to upgrade and improve the project performance evaluation by ANN approaches. From the developed model, the project managers can evaluate their project performance easily and accurately. This study is important because project coordinators and their members will know the important variable that they must pay closer attention to, in order that their DBB projects can be completed according to schedule. It is anticipated that the findings reported in this study could be important for future strategies and guidelines for measuring construction project performance in Malaysia.

1.2 Objectives

The objectives of this research are stated as follow:

i. To identify factors that affecting the project performance.

ii. To determine the degree of importance for each of the respective factors.

iii. To develop a model based on Artificial Neural Networks (ANN) to predict the performance of design-bid-build (DBB) projects from the time aspect.
1.3 Scopes of Work

The scopes of work for this research are as shown:

i. Focus on the traditional project delivery system, which refer to Design-bid-build (DBB) projects.

ii. Emphasis on the model development using Artificial Neural Network (ANN).

iii. Study on the project performance according to time.

1.4 Project Methodology

The methodology of the project consists of seven steps, as shown below (Refer to Figure 4.1):

1. Gather information from internet, reference books, and journals.
2. Literature review on the factors affecting project performance.
3. Preliminary interview with several project managers to identify the most important variable among time, cost and quality.
4. Identify the most important factors from the aspect of project managers over the 44 factors thru Questionnaire Survey.
5. Develop the prediction model using Artificial Neural Network.
6. Test and validate the model using Mean Square Error (MSE) Method.
7. Conclusion and Recommendations.
1.5 Significance of Findings

This study had identified forty-four factors that affect the project performance and determine the project success. The factors affecting project success are categorized into attributes relating to the project characteristic, project procedures, project management actions, project participants, and external environment. The degree of importance for each of the respective factors had been determined.

As project success can be measured in terms of time, cost and quality, this study focuses only on time that governs construction project performance. Based on data obtained from contractors and developers on their projects, a neural network-based project performance evaluation model that fits the observed data is developed. It is used to predict the performance of design-bid-build (DBB) projects from the time aspect. It will provide the project management team a means to determine the strategy and level of management controls it should provide in order to achieve a good project performance. The model is also used to evaluate the effects in the trade-off of different levels of inputs. Through an iterative process, the neural network is able to learn from a subset of the knowledge domain represented by case examples and draw its own pattern of relationships.

1.6 Report Structure

This report consists of seven chapters which gives a better understanding about the propose title, project progress and the achievement of the project. The seven chapters are:

1. Chapter 1: Introduction gives the overall view on the project including the objective, scope and project methodology of the thesis.
2. Chapter 2: *Overviews of Artificial Neural Network (ANN)* gives the overall view of ANN definition, principles, models and its application.

3. Chapter 3: *Construction Project and its Performance Measurements* describe the DBB projects, its current practice and concepts in detail.

4. Chapter 4: *Research Methodology* describes the methods used in this research.

5. Chapter 5: *Questionnaire Survey Analysis* shows the results of interviews and questionnaire survey conducted, together with the related analysis and discussion.

6. Chapter 6: *Development of ANN Prediction Model* discusses the programming tools used in developing the prediction model. The ANN model will be developed using SPSS: Neuron Connection. The interfaces in prediction model will be shown in this chapter.

7. Chapter 7: *Conclusions and Future Recommendations* conclude the overall works and activities of this research. Recommendations for further work are briefly discussed.

1.7 Summary

This chapter covered the introduction to the problem of construction project performance that has prompted to this study. Furthermore it states the objectives, scopes, methodologies used. It continues with the significance of findings, and explains the report structure. The whole project is based on developing a prediction model using ANN. The developed model will be organized in appropriate forms and interfaces for easy access for the user and will systematically carry out a procedural analysis.
REFERENCES

Atkinson, A.V. Civil Engineering Contract Administration. Thornes, 1992

