NILAI Cl/Br dan HALIDA/Pb
DI DALAM MINYAK PETROL TEMPATAN

oleh:

Mohd. Rashid Mohd. Yusoff,
Jabatan Kejuruteraan Kimia,
Universiti Teknologi Malaysia,
54100 KUALA LUMPUR.

Rahmalan Ahmad,
Jabatan Kimia,
Universiti Teknologi Malaysia,
81300 Sekudai,
JOHOR.

Abdul Khalik Wood,
Unit Tenaga Nuklear,
Jabatan Perdana Menteri,
Komplek PUSPATI,
43000 Bangi,
SELANGOR.

untuk penerbitan:

Jurnal Teknologi

JULAI 1988
NILAI Cl/Br dan Halida/Pb DI DALAM MINYAK PETROL TEMPATAN

Mohd. Rashid Mohd. Yusoff, Jabatan Kejuruteraan kimia,
Universiti Teknologi Malaysia, 54100 Kuala Lumpur.

Rahmalan Ahmad, Jabatan Kimia,
Universiti Teknologi Malaysia, 81300 Sekudai, Johor.

Abdul Khalik Wood, Unit Tenaga Nuklear,
Komplek PUSPATI, 43000 Bangi, Selangor.

ABSTRAK

Unsur Br (dan Cl juga), sering dikaitkan dengan logam Pb sebagai bahan pencemaran dari ekzos automobil. Sehubungan dengan ini, kajian telah dijalankan bagi menganalisis unsur Br dan Cl di dalam sampel minyak petrol daripada 6 buah syarikat pengeluar minyak petrol terkemuka di negara ini. Nisbah Cl/Br yang diperolehi adalah di antara 0.017 - 0.515, manakala nisbah puratanya ialah 0.322 ± 0.200. Anggaran purata Br/Pb ialah 0.862, manakala nilai purata bagi C/Cl di 0.195. Keputusan kajian tersebut menunjukkan bahawa nilai Br/Pb dan Cl/Pb di dalam petrol tempatan tidak sama dengan yang terdapat di negara-negara lain. Seterusnya faktor-faktor yang menyebabkan perbezaan ini dibincangkan di dalam kertas kerja ini.

PENGENALAN

Kepekatan Br (dan Cl juga) di udara, merupakan unsur surih yang sering dikaitkan dengan pencemaran logam Pb dari sumber ekzos automobil.1-3 Kewujudan Br dan Cl di dalam sumber tersebut adalah hasil daripada pembakaran etilena dihalida (sama ada dalam bentuk C₂H₄Br₂ atau C₂H₂Cl₂ atau kedua-duanya) yang dicampurkan ke dalam minyak petrol bersama agen anti-kebukatan tetraakilplumbum. Pencampuran etilena dihalida ke dalam minyak petrol sebagai agen "pembersih" ini adalah penting untuk mengelakkan berlaknya pengenapan sebatian Pb di dalam enjin automobil. Hasilnya, kebanyakan daripada sebatian Pb ini akan keluar melalui ekzos kenderaan tersebut dalam bentuk tak organik, misalnya PbBrCl₄. Melalui pertalian yang rapat di antara unsur Br, Cl dan Pb ini maka dengan sendirinya unsur-unsur tersebut boleh dikaikan sebagai unsur surih di antara satu sama lain. Walau bagaimanapun Cl sering tidak digunakan sebagai unsur surih bagi pencemaran automobil kerana Cl juga terbit daripada sumber-sumber lain misalnya daripada aerosol marin dan industri-industri kimia. Oleh itu unsur Br sering digunakan bagi tujuan tersebut kerana unsur ini agak unik, lantaran tiada sumber selain daripada automobil yang melepaskannya ke udara.
Kandungan sebatian plumbum yang dicampurkan ke dalam petrol ini adalah berlainan daripada satu tempat (negara) ke satu tempat yang lain. Rata-rata bahan tambah Pb yang digunakan di seluruh dunia yang dinyatakan oleh O'Connor et al., ialah TEP-B, TEP-CB dan TMP-CB. Peratus kandungan bahan tambahan ini diberi di dalam Judul 1. Bahan tambah TEP-CB kebanyakkannya diguna di Amerika Syarikat dan juga negara-negara lain. Kandungan berat nilai nisbah Cl/Pb dan Br/Pb dalam bahan tambah tersebut masing-masingnya ialah 0.342 dan 0.586. Nilai-nilai ini juga dikenali sebagai 'nisbah etil'. Di Australia campuran kedua-dua TEP-B dan TEP-CB digunakan. Oleh itu nilai Cl/Pb yang didapati adalah di sekitar 0.000 - 0.342 dan nilai Br/Pb pula ialah diantara 0.386 - 0.772.

Sehubungan dengan ini satu kajian menganalisis unsur Br dan Cl di dalam minyak petrol tempatan telah dilakukan. Anggaran nilai Br/Pb dan Cl/Pb juga telah dilakukan dengan menganggap kepekatan Pb sebanyak 0.400 g/liter di dalam semua sampel minyak petrol tersebut.

METODOLOGI

Sampel minyak

Penyediaan Sampel

Sebanyak 0.5 ml daripada sampel tadi dipindahkan dengan menggunakan mikropipet ke dalam tiub polietilina (yang telah ditimbang terlebih dahulu) dan ditutup rapi. Seterusnya tiub polietilina ini ditimbang sekali lagi bagi menentukan berat sampel dan kemudian disimpan di dalam nitrogen cecair untuk mengelakkan berlakunya peruapan sampel sebelum dilakukan analisis.

Penyediaan Piawai

Larutan mengandungi 1,000 ppm unsur Br⁻ dan Cl⁻ disediakan dengan melarutkan garam dengan air piawai KBr (Merck) dan NH₄Cl (Ueb), masing-masing ke dalam 1 liter kelang isipadu. Sebanyak 0.3 mL daripada larutan tadi dimasukkan ke dalam tiub polietilina (yang diketahui beratnya) dan ditimbang sekali lagi bagi menentukan berat larutan tersebut. Kepekatan unsur Br dan Cl ditentukan melalui berat larutan-larutan tersebut. Isipadu larutan di dalam tiub tersebut dijadikan 0.5 mL dengan air suling bagi menyamakan geometri sampel dan piawai.
Analisis Br dan Cl

Analisis kedua-dua unsur tersebut di dalam sampel telah dilakukan dengan teknik Analisis Pengaktifan Neutron. Sampel dan piawai disinarkan di dalam Reaktor Triga PUSPATI yang mempunyai fluks neutron $3 \times 10^{12} \text{ ncm}^{-2}\text{s}^{-1}$. Sampel dan piawai di dalam bentuk pepejal disinarkan selama 1 minit dan dibiarkan mengejuk setelah diaktifkan selama 20 minit. Klorida dikesan melalui isotop ^{38m}Cl yang memancarkan sinar gamma pada tenaga 1642 keV dan 2167 keV. Sementara bromida dikesan melalui isotop ^{80}Br pada tenaga 618 keV. Sinar gamma yang dipancarkan oleh radionuled tersebut dikesan oleh pengesan semi-konduktor HPGe yang mempunyai resolusi 1.90 keV ^{60}Co. Analisis spectrum tersebut dibuat melalui sistem penganalisis multichannel berkomputer ND6600.

Kepekatan Br dan Cl di dalam sampel ditentukan melalui perbandingan antara jumlah aktiviti pada puncak-puncak foto isotop sampel dan piawai, setelah pembetulan masa menyusut dilakukan. Bagi mengelakkan kesan masa mati alat, sampel dan piawai dibilang pada jarak tertentu sehingga kesibukan alat yang dicatatkan kurang daripada 10%.

KEPUTUSAN

Jadual 2 menunjukkan kepekatan unsur Br dan Cl beserta dengan nisbah Cl/Br. Anggaran nilai purata Br/Pb dan Cl/Pb juga diberi dalam jadual yang sama. Walaupun analisis kepekatan Pb di dalam petrol tidak dilakukan dalam kajian ini, anggaran kandungan had maksimum Pb = 0.400 g/L yang dibenarkan oleh kerajaan, adalah memadai untuk memperlihatkan perbezaan nilai nisbah-nisbah tersebut secara kasar.

PERBINCANGAN

Daripada Jadual 2, kepekatan purata Br yang diperolehi ialah 345 ± 215 mg/L dan manakala kepekatan purata Cl ialah 77.9 ± 36.2 mg/L. Sampel minyak BP mencatatkan kepekatan Br yang paling tinggi iaitu 760 mg/L. Manakala kepekatan Cl di dalam sampel tersebut adalah yang paling rendah jika dibandingkan dengan sampel-sampel yang lain. Suatu ciri nyata yang telah ditemui melalui kajian ini ialah bahawa kandungan Cl rendah apabila kandungan Br tinggi. Demikian pula sebaliknya, kandungan Br berkurang apabila kandungan Cl ditingkatkan. Pekali sekitan yang tinggi ($r = -0.93$) di antara Br dan Cl menjelaskan kenyataan di atas. Pertalian kandungan Br dan Cl sebegini adalah penting untuk memastikan kepekatan unsur-unsur tersebut adalah mencukupi untuk bertindakan-balas dengan sebatian plumbum ketika berlakunya proses pembakaran di dalam enjin kenderaan. Perbandingan perbezaan kandungan Br dan Cl bagi setiap sampel ini juga dapat dilihat daripada nilai nisbah Cl/Br yang diperolehi. Diantara syarikat-syarikat hak milik Amerika Syarikat, Mobil menunjukkan nilai Cl/Br yang rendah (0.169) manakala Caltex dan Esso mempunyai nilai Cl/Br yang sama. Syarikat
minyak hak milik dari United Kingdom iaitu BP mempunyai nilai nisbah \(\text{Cl/Br} \) yang paling rendah iaitu 0.017 jika dibandingkan dengan sampel-sampel minyak yang lain. Shell iaitu dari negara Belanda pula mempunyai nilai \(\text{Cl/Br} = 0.514 \) yang paling tinggi, manakala Petronas mempunyai nilai \(\text{Cl/Br} \) perantaraan diantara semua syarikat-syarikat minyak tersebut. Jelasnya perbezaan nilai \(\text{Cl/Br} \) ini adalah mengikut asal-usul hak milik syarikat-syarikat minyak tersebut. Perbezaan ini adalah bergantung kepada banyak faktor selain daripada faktor ekonomi yang diambil kira. Walau bagaimanapun nilai purata \(\text{Cl/Br} \) untuk semua sampel-sampel minyak yang diperoleh ialah \(0.322 \pm 0.200 \).

Anggaran nilai halida/Pb juga telah diambil kira dalam kajian ini. Walau pun unsur Pb tidak dianalisis di dalam sampel-sampel minyak tersebut, anggapan kandungan Pb sebanyak 0.400 \(\text{g/L} \) di dalam setiap sampel petrol tersebut adalah wajar mengikut had kepekatan maksimum yang dibenarkan oleh kerajaan negara ini. Purata nilai \(\text{Br/Pb} \) ialah 0.862 dan nilai ini adalah berbeza dengan nilai 'nisbah etil' 0.385 yang terdapat di Amerika Syarikat dan di negara-negara lain. Demikian juga dengan nilai \(\text{Cl/Pb} \) tempatan iaitu 0.195, adalah berbeza dengan nilai 'nisbah etil' 0.336 yang terdapat di tempat yang dinyatakan di atas. Tetapi nilai purata \(\text{Br/Pb} = 0.862 \) di dalam minyak petrol tempatan adalah agak hampir dengan yang terdapat di Australia iaitu 0.60. Ini jelas menunjukkan bahawa nilai \(\text{Br/Pb} \) di dalam minyak petrol adalah berlainan dari satu tempat ke satu tempat. Kemungkinan faktor iklim juga mempengaruhi nilai \(\text{Br/Pb} \) dan \(\text{Cl/Pb} \) ini seperti yang dinyatakan oleh O'Connor et al. Bagi negara yang mempunyai iklim panas nilai \(\text{Br/Pb} \) adalah tinggi dan manakala nilai \(\text{Cl/Pb} \) adalah rendah jika dibanding dengan negara-negara yang mempunyai iklim yang sejuk seperti Amerika dan Eropah. Perbezaan tersebut mungkin diambil kira untuk mengurangkan kesan iklim terhadap keberkesanan minyak sebagai bahanapi demi menjaga kualiti minyak tersebut.

KESIMPULAN

Kajian menganalisis kandungan \(\text{Br} \) dan \(\text{Cl} \) di dalam sampel minyak petrol tempatan telah dilaporkan di dalam kertas kerja ini. Hasilnya menunjukkan bahawa kandungan \(\text{Br}, \text{Cl} \) dan nisbah anggaran halida/Pb adalah berlainan sama sekali jika dibandingkan dengan negara-negara lain. Kemungkinan faktor iklim juga dapat mempengaruhi nilai unsur-unsur tersebut. Walau bagaimanapun, purata anggaran \(\text{Br/Pb} \) yang diperoleh dalam kajian ini boleh dijadikan asas untuk menentukan pencemaran logam Pb dari ekzos automobil melalui kepekatan unsur \(\text{Br} \) di dalam atmosfera tempatan.

Jadual 1: Komposisi dan Nisbah Halida/Pb Dalam Kebanyakan Petrol

<table>
<thead>
<tr>
<th>Bahan Tambahan</th>
<th>(CH₃)₄Pb</th>
<th>(C₂H₅)₄Pb</th>
<th>C₂H₄Cl₂</th>
<th>C₂H₄Br₂</th>
<th>Cl/Pb</th>
<th>Br/Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEP-B</td>
<td>-</td>
<td>61.5%</td>
<td>-</td>
<td>35.7%</td>
<td>-</td>
<td>0.772</td>
</tr>
<tr>
<td>TEP-CB</td>
<td>-</td>
<td>61.5%</td>
<td>18.8%</td>
<td>17.9%</td>
<td>0.342</td>
<td>0.386</td>
</tr>
<tr>
<td>TMP-CB</td>
<td>50.8%</td>
<td>-</td>
<td>18.8%</td>
<td>17.9%</td>
<td>0.342</td>
<td>0.386</td>
</tr>
</tbody>
</table>

TEP, tetraetilplumbum; TMP, tetrametilplumbum; C₂H₄Br₂, etilena dibromida; C₂H₄Cl₂, etilena diklorida.
Jadual 2: Kandungan Br dan Cl Di Dalam Petrol (mg/L)

<table>
<thead>
<tr>
<th>Jenama</th>
<th>Br</th>
<th>Cl</th>
<th>Pb*</th>
<th>C1/Br</th>
<th>Br/Pb</th>
<th>C1/Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>760±3.4</td>
<td>12.6±1.5</td>
<td>400</td>
<td>0.017</td>
<td>1.900</td>
<td>0.032</td>
</tr>
<tr>
<td>Caltex</td>
<td>227±3.0</td>
<td>106±8.0</td>
<td>400</td>
<td>0.471</td>
<td>0.567</td>
<td>0.267</td>
</tr>
<tr>
<td>Esso</td>
<td>223±3.4</td>
<td>106±3.4</td>
<td>400</td>
<td>0.475</td>
<td>0.557</td>
<td>0.265</td>
</tr>
<tr>
<td>Mobil</td>
<td>355±2.0</td>
<td>59.7±7.4</td>
<td>400</td>
<td>0.169</td>
<td>0.887</td>
<td>0.150</td>
</tr>
<tr>
<td>Petronas</td>
<td>335±3.2</td>
<td>94.1±9.5</td>
<td>400</td>
<td>0.286</td>
<td>0.830</td>
<td>0.237</td>
</tr>
<tr>
<td>Shell</td>
<td>173±0.2</td>
<td>89.3±2.3</td>
<td>400</td>
<td>0.514</td>
<td>0.432</td>
<td>0.222</td>
</tr>
<tr>
<td>Purata</td>
<td>345</td>
<td>77.9</td>
<td>400</td>
<td>0.322</td>
<td>0.862</td>
<td>0.195</td>
</tr>
<tr>
<td>Sisihan Piawai</td>
<td>215</td>
<td>36.2</td>
<td>-</td>
<td>0.200</td>
<td>0.537</td>
<td>0.091</td>
</tr>
</tbody>
</table>

* Anggapan kepekatan Pb dalam petrol mengikut had maksimum yang dibenarkan oleh kerajaan.