DEVELOPMENT OF CONSTRUCTOR’S PROPOSAL PROCESS MODEL IN DESIGN-BUILD PROCUREMENT

DENNIS THEN CHOO KHUN

A master’s report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

NOVEMBER, 2005
To my beloved mother and father
ACKNOWLEDGEMENT

In order to prepare this master’s project, I was in contact with many people, academicians and professionals such as architects, developers, contractors, quantity surveyors and design consultants. In particular, I wish to express my deepest gratitude to my thesis supervisor, Ir Dr. Rosli Mohamad Zin for the guidance, advices, supervision, encouragement and friendship during the research.

I am also very thankful to the experienced design-build contractor, Mr. John Lau Kee Meng, who has become my semi-structured interview respondent for comments, advices, validation and guidance.

I would like to express my sincere appreciation to all others who have responded to the questionnaire surveys and played a part in contribution of the success of this research. Unfortunately, it is not possible to list all of them in this limited space. Without their continued support and interest, this thesis would not have been the same as presented here. I am grateful to all my family members.
ABSTRACT

Design-build procurement has been dramatically increased recently and has taken over conventional delivery system in both government and private sectors in our construction industry. Despite the advantages of design-build procurement system, there is a great potential for dispute and claim at the construction stage due to the client’s requirement and contractor’s proposal not being well defined at the early stage. Therefore, a process model of dominant contents is developed to guide and assist design-build contractor in preparation of proposal. Essentially, the objectives of this research are to study the concept of design-build system, to study the dominant contents of design-build contractor’s proposal, to identify the degree of importance of the dominant contents and to develop a process model in determining contractor’s proposal in design-build procurement. The scope of the study is only focusing on the typical contents of contractor’s proposal, such as design proposals, financial details, alternative proposals, details on assumptions made, fabrication / construction proposals, contract administration details, details on qualifications / deviations and miscellaneous matters. This study was carried out by going through literature reviews, semi-structured interview and questionnaire survey exercises. The target respondents are developers, architects, contractors, quantity surveyors and design consultants working in the state of Wilayah Persekutuan and Sarawak. Through the process of data collection and analysis, the degrees of importance of the dominant contents have been determined. The results obtained form a basis for the development of a design-build contractor’s proposal process model, by using Data Flow Diagram (DFD) approach. It has been developed to well formulate effective strategies, in order to minimize contractual conflicts and improve project performances in design-build projects.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objective</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Methodology</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope of Research</td>
<td>6</td>
</tr>
</tbody>
</table>
2 LITÉRATURE REVIEW

2.1 Definitions 7

2.2 Types of Contracts Based on Pricing / Payment 8

2.3 Common Contract Procurement Methods 10

2.4 Comparison of Common Contract Procurement Methods 11

2.5 Design and Build Concept 12

2.6 Factors Considered in Selecting Design-build Method 14

2.6.1 Owner’s Lack of Expertise 14

2.6.2 Time or Market Pressures 14

2.6.3 Budget Pressures 15

2.6.4 Adversarial Nature of Design-bid-build Model 15

2.6.5 Suitability of Design-build for Certain Projects 16

2.6.6 Reduction of Claim Exposure 16

2.6.7 New Technology 17

2.6.8 Overall Project Optimization 17

2.6.9 Early Cost Visibility 18

2.7 Advantages of Design-build Delivery System 19

2.7.1 Speedy Procurement 20

2.7.2 Reduction for Stress and Conflict 20

2.7.3 Project Fit for Purpose 20

2.7.4 Improved Working Relationship 21

2.7.5 Better Buildability 21

2.7.6 Better Quality Control 21

2.7.7 Cost Effective 22

2.7.8 Design Benefit 22

2.7.9 Single Point Responsibility 22

2.7.10 Price Certainty 23

2.7.11 Minimal Extra Charge 23

2.7.12 Simplified Contractual Arrangement 23

2.8 Disadvantages of Design-build Delivery System 24

2.8.1 Little Feasibility to Change 25

2.8.2 Novel / Unfamiliar to Practitioners 25

2.8.3 Difficult to Evaluate 25

2.8.4 Problem with Design Liability 26
2.8.5 Uneconomic Use of Resources 26
2.8.6 Employer’s Involvement 26
2.8.7 Compromise in Quality 27
2.8.8 Higher Professional Fees Outlay 27

2.9 Roles and Responsibilities of Design-builder / Contractor 27
2.10 Roles and Responsibilities of Client / Owner 28

2.11 Alternative Contract Models Available in Design-build Model 29
2.11.1 Single Design-build Entity 29
2.11.2 A/E as Consultant to Contractor 30
2.11.3 A/E Hires Contractor 31
2.11.4 A/E as Joint Venture with Contractor 32

2.12 Contract Award or Selection Procedure 32
2.12.1 Prequalification / Short-listed Contractors 34
2.12.2 Issuance of Request for Proposal (RFP) 34
2.12.3 Pre-proposal Conference 34
2.12.4 Submission of Contractor’s Proposal 35
2.12.5 Jury’s Recommendation 36

2.13 Criteria and Selection for Pre-qualifying Contractor 36

2.14 Risk Allocation 37

2.15 Design-build Project Success Factors 40
2.15.1 Project Team Commitment 41
2.15.2 Contractor’s Competencies 42
2.15.3 Risk and Liability Assessment 42
2.15.4 Client’s Competencies 42
2.15.5 End-user’s Needs 42
2.15.6 Constraints Imposed by End-users 43

2.16 Design-build Contractor’s Proposal Contents 43
2.16.1 Design Proposals 44
2.16.2 Financial Details 45
2.16.3 Alternative Proposals 48
2.16.4 Fabrication / Construction Proposals 49
2.16.5 Details on Assumptions Made 50
2.16.6 Contract Administration Details 51
3 RESEARCH METHODOLOGY

3.1 Introduction 55
3.2 Preliminary Discussion 55
3.3 Literature Reviews 56
3.4 Data Collection 57
 3.4.1 Semi-structured Interview 57
 3.4.2 Questionnaire Surveys 58
3.5 Data and Analysis 59
3.6 Process Model Development 60
 3.6.1 Data Flow Diagram (DFD) 60
 3.6.2 Validation 62
3.7 Conclusion and Recommendation 62

4 DATA ANALYSIS AND RESULTS

4.1 Introduction 63
4.2 Ranking and Mean Index of Typical Contents 65
4.3 Ranking and Mean Index of Design Proposals 66
4.4 Ranking and Mean Index of Financial Details 67
4.5 Ranking and Mean Index of Alternative Proposals 68
4.6 Ranking and Mean Index of Details on Assumptions Made 69
4.7 Ranking and Mean Index of Fabrication / Construction Proposals 70
4.8 Ranking and Mean Index of Contract Administration Details 71
4.9 Ranking and Mean Index of Details on Qualifications / Deviations 72
4.10 Summary 73
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 DEVELOPMENT OF CONTRACTOR’S PROPOSAL PROCESS MODEL IN DESIGN-BUILD PROCUREMENT</td>
<td>74</td>
</tr>
<tr>
<td>5.1 DFD Process Model</td>
<td>74</td>
</tr>
<tr>
<td>5.2 Validation of Process Model Developed</td>
<td>84</td>
</tr>
<tr>
<td>6 CONCLUSION AND RECOMMENDATION</td>
<td>85</td>
</tr>
<tr>
<td>6.1 Conclusion</td>
<td>85</td>
</tr>
<tr>
<td>6.2 Recommendation</td>
<td>89</td>
</tr>
</tbody>
</table>

REFERENCES

APPENDICES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flow Chart of Research Methodology</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Types of Contracts Based on Pricing / Payment</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Common Contract Procurement Methods</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Design-build Contractual Relationships</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Advantages of Design-build Delivery System</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Disadvantages of Design-build Delivery System</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Contract Award / Selection Procedure</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Design-build Contractor’s Proposal Typical Contents</td>
<td>44</td>
</tr>
<tr>
<td>5.1</td>
<td>Development of Contractor’s Proposal Process Model in Context Diagram</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>Development of Contractor’s Proposal Process Model in Level 0 Diagram</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>Development of Contractor’s Proposal Process Model in Level 1 Diagram</td>
<td>77</td>
</tr>
<tr>
<td>5.4</td>
<td>Development of Contractor’s Proposal Process Model in Level 1 Diagram</td>
<td>78</td>
</tr>
<tr>
<td>5.5</td>
<td>Development of Contractor’s Proposal Process Model in Level 1 Diagram</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>Development of Contractor’s Proposal Process Model in Level 1 Diagram</td>
<td>80</td>
</tr>
<tr>
<td>5.7</td>
<td>Development of Contractor’s Proposal Process Model in Level 1 Diagram</td>
<td>81</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.8</td>
<td>Development of Contractor’s Proposal Process Model in Level 1 Diagram</td>
<td>82</td>
</tr>
<tr>
<td>5.9</td>
<td>Development of Contractor’s Proposal Process Model in Level 1 Diagram</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Evolution of Project Delivery System</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Risk Allocation for Design Issues</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>Risk Allocation for Construction Issues</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Components of Data Flow Diagram</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Total Questionnaires Received and Validation</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Ranking and Mean Index of Typical Contents in Contractor’s Proposal</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Ranking and Mean Index of Dominant Contents in Design Proposals</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Ranking and Mean Index of Dominant Contents in Financial Details</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Ranking and Mean Index of Dominant Contents in Alternative Proposals</td>
<td>68</td>
</tr>
<tr>
<td>4.6</td>
<td>Ranking and Mean Index of Dominant Contents in Details on Assumptions Made</td>
<td>69</td>
</tr>
<tr>
<td>4.7</td>
<td>Ranking and Mean Index of Dominant Contents in Fabrication / Construction Proposals</td>
<td>70</td>
</tr>
<tr>
<td>4.8</td>
<td>Ranking and Mean Index of Dominant Contents in Contract Administration Details</td>
<td>71</td>
</tr>
<tr>
<td>4.9</td>
<td>Ranking and Mean Index of Dominant Contents in Details on Qualifications / Deviations</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND SYMBOLS

A/E - Architect / Engineer
CPM - Critical Path Method
QA - Quality Assurance
QC - Quality Control
RFP - Request For Proposal
RFQ - Request For Qualification
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Questionnaires</td>
<td>93</td>
</tr>
<tr>
<td>B</td>
<td>Semi-structured Interview</td>
<td>98</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Construction is considered as one of the largest and most challenging industry in the world. It touches all aspect of human lives by providing factories, airports, roads, hospitals, schools, canals, bridges, houses and all sorts of structures and facilities to be used for the comfort of man and the betterment of life.

Construction projects are completed following a tight schedule by a unique and temporary collection of people. The entire organizational structure of the group is constructed of multiple social interdependencies and much of the project’s ultimate success is also reliant on these relationships. It is through the joint effort of all key players that the construction of a facility can come to fruition. To construct a structure, project requires a great number of materials, equipments and people, and the organization of all resources in a manner that the progress follows a natural progression. Project delivery systems are mean to ensuring this progression; from conceptual plans to drawings to the physical construction of a facility. In essence, this term refers to this temporary group of people that form the construction team and the contractual ties that bind them.

Basically, there are three common delivery systems in our construction industry, namely traditional or design-bid-build, design-build and construction management. In the traditional design-bid-build delivery system, owner bears the entire responsibility and risk for any design related issues. All responsibility for
design decisions and conformance to standards rests with the owner. Traditional design-bid-build is a segmented and sequential process in which the owner first contracts with a design professional to prepare detailed, suitable-for-construction plans and specifications (or sometimes prepared by its in-house engineers), then uses the detailed plans and specifications to solicit competitive bids for construction and finally awards the construction contract to the low bidder.

The term of “Design-Build” refers to a range of alternatives to the traditional project delivery system. It differs from traditional design-bid-build system in two ways. First, the design and construction components are packaged into a single contract. Second, the single contract is not necessarily awarded to the low bidder after competitive bidding.

In design-build, one entity performs both design and construction under a single contract. Usually, the design-build contract is awarded by some process other than competitive bidding. Award shall be made to the design-build entity whose proposal is judged as providing the best value in meeting the interest of the department and complying with the objectives of the project. “Best Value” is hereby including “price, features, functions and life-cycle costs.”

As for design-build system, several of these responsibilities shift to the design-builder. Client is still responsible for establishing the scope, project definition, design criteria, performance measurement and existing conditions of the site (initial site investigation, geotechnical investigation, subsurface-condition, etc.). As the designer of record and plan accuracy, conformance with established standards and constructability rest with the design-builder.
1.2 Problem Statement

Design-build procurement has dramatically increased and recently taken over conventional delivery system in both government and private sectors in our construction industry nowadays. It incorporates entire construction teams including designers, subcontractors and suppliers, provides input into the design and engineering details to make sure the project is workable, cost-effective, safe and minimizes the time required.

As for the current design-build approach, there are some limitations between client and contractor. Normally client incurs extra cost in retaining a set of consultants or architect at the early stage of the project. Then the outline design which forms the basis of tender is based on the initial consultant’s interpretation of client requirement and thus the result may be distorted and could mislead the tendering consortia.

Furthermore, design-build system inhibits the ingenuity and creativity of the tendering consortia by the initial consultant’s vision of the desired facility. There is a significant amount of rework and duplication inherent in existing procedures, particularly. The expertise of the successful consortium is not fully exploited in the most influential stage of the design process. Subsequently, delay often arises due to the initial time spent developing the outline design, time spent by the successful consortium in clarifying client requirements and liaising with the initial consultants and time spent seeking approval for the alternative materials and design.

This is great potential for dispute and claim at the construction stage due to the client’s requirement and contractor’s proposal not being well defined at the early stage. Quality, value for money, delivery time, performance and client satisfaction are not guaranteed by existing procedure. Consequently, it could result in contractual conflict, which may leads to time, cost and quality impacts as well as harm to our working environment. Other than that, it also creates some uncertainties and threats in a very root manner.
1.3 Research Objective

The aim of this study is to develop a suitable process model for design-build contractor’s proposal. In achieving this aim, four objectives are delineated as below:

1. To study the concept of design-build system in construction industry;
2. To study the dominant contents in determining design-build contractor’s proposal;
3. To identify the degree of importance of dominant contents in design-build contractor’s proposal; and
4. To develop a process model for design-build contractor’s proposal.

1.4 Research Methodology

Figure 1.1 shows the flow chart of research methodology. This research title and objective are created based on the problem statement. Research scope and limitation of research are then identified. First of all, several literature reviews are studied to consolidate the knowledge and skills in attainment of accurate results. Subsequently, data collection through questionnaire surveys and semi-structured interview are conducted. The data obtained are then analyzed and assimilation is made to develop a process model of design-build contractor’s proposal. Eventually, conclusion is made to express the results of research.
Figure 1.1: Flow Chart of Research Methodology

1. Problem Statement
2. Objective & Title
3. Research Scope
4. Literature Review
5. Data Collection
 - Questionnaire Surveys
 - Semi-structured Interview
7. Data Analysis
8. Assimilation
9. Develop Model
10. Conclusion
1.5 Scope of Research

In design and build project, contractor’s proposal essentially consists of definition or nature, proposal preparation, typical contents, pre-awarded modifications, ambiguities or discrepancies and status. As for this thesis, scope of research only emphasizes on contractor’s proposal typical contents, which are design proposals, fabrication or construction proposals, financial details, contract administration details, alternative proposals, details on qualifications or deviations, details on assumptions made and miscellaneous matters.
REFERENCES

California: Spring Master.
