PARTITIONING OF RAINFALL AND FLOWPATH PROCESSES IN SMALL OIL PALM CATCHMENTS

GEOFFERY ANAK JAMES GERUSU

UNIVERSITI TEKNOLOGI MALAYSIA
PARTITIONING OF RAINFALL AND FLOWPATH PROCESSES IN SMALL OIL PALM CATCHMENTS

GEOFFERY ANAK JAMES GERUSU

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JULY 2013
To my dearest and greatest inspiration,

God, Lydia, Glyns Meyes, Grace Nala, Mom and Dad
ACKNOWLEDGEMENT

All praises to God for His blessing in completing this thesis. I owe highest gratitude and respect to my supervisor Professor Dr Zulkifli Yusop for his countless support in term of knowledge and continuously advice in finishing this study. This thesis presented here was possible only because of his endless effort and time spent in supervisory.

Special thanks to few staffs of Malaysian Nuclear Agency, especially Dr. Wan Zakaria Wan Md Tahir, Mr. Lakam Mejus, Mr. Johari Abd Latif, and Mr. Juhari Muhd Yusof for their big contribution in technical support during data collection and analysis. The study would be nothing without their uncountable help and assistance. I also wish to thanks the management of Sedenak Estate for allowing and give permission to carry out this research within their area.

Last but not least, greatest acknowledgement to my daughter, mom and dad for constantly support and inspiration. Above all, to Lydia for her love all the time.

This study was funded by the Ministry of Sciences, Technology and Innovation (MOSTI) under Vot 74237.
ABSTRACT

Oil palm area forms the second largest land-use fraction in Malaysia, after forest. Therefore, scientific understanding of hydrological processes in oil palm catchment is crucial for an improved catchment and water resources management. This important issue was examined, involving three small catchments, namely C1, C2 and C3 in Sedenak, Johore. Rainfall and streamflow were continuously recorded in all catchments. Throughfall and stemflow were monitored for interception loss computation. Neutron scattering and resistivity imaging system were applied for measuring soil moisture and generate stratigraphy pattern. Storm water samples were analysed for oxygen-18 and silica concentration for hydrograph separation to determine event and pre-event water. The revised Gash’s model was also applied to estimate interception loss. On an average, 28.9% of the gross rainfall was intercepted by the canopy and 71.1% reaches the ground surface in C3. Throughfall and stemflow account for 66.9% and 4.2% of the rainfall, respectively. About 14.5% of the rainfall was infiltrated into the soil and recharge the soil moisture. During storm events, stormflow and baseflow constituted up to 56.6% of the total rainfall. The hydrographs were dominated by event water during wet seasons and by pre-event water during dry seasons. The stratigraphy patterns revealed that streamflow leakage to deeper layer might contribute to lower stormflow response factors and runoff coefficient in C1. The four components of the interception loss in C3, i.e. canopy storage capacity, trunk storage capacity, evaporation and evapotranspiration were estimated at 8.8%, 0.3%, 8.5% and 11.3%, respectively. The predicted interception loss derived from the revised Leyton and Gash methods were 13% and 11%, respectively. Both models were found to underestimate the measured interception loss and therefore not applicable in oil palm catchments. Radioisotope technique is a better approach for establishing time of concentration as it is able to determine the actual travelling times of both overland and channel flow in the field. The water budgets in the study catchments seem comparable with forested catchments. However, detailed study on the long term flow regime and water quality is still necessary to formulate management guidelines for protecting water resources in oil palm catchment.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background | 1
1.2 Statement of Problem | 3
1.3 Study Objectives | 5
1.4 Scope of Study | 6
1.5 Significance of Research | 7
1.6 Thesis Structure | 8

2 LITERATURE REVIEW

2.1 Introduction | 10
2.2 Hydrological Cycle in Vegetated Catchment | 12
 2.2.1 Rainfall Characteristics | 15
 2.2.2 Throughfall | 18
 2.2.3 Stemflow | 22
2.2.4 Interception Loss
2.2.5 Factors Affecting Interception Loss
2.2.6 Interception Models
2.2.7 Evapotranspiration
2.2.8 Runoff Generation Processes

2.3 Hillslopes Process
2.3.1 Types of Flow along Hill Slope

2.4 Hydrograph Separation method for Runoff Generation Study
2.4.1 Graphical Model Hydrograph Separation
2.4.2 Isotopic Hydrograph Separation
2.4.3 Geochemical Hydrograph Separation

2.5 Time of Concentration
2.5.1 Radioisotope Tracers

2.6 Soil Water Content

2.7 Environmental Impact of Plantation Ecosystem

2.8 Catchment Study in Malaysia

2.9 Literature Review Findings

2.10 Summary

3 MATERIAL AND METHODS
3.1 Introduction
3.2 General Location of Study Site
3.2.1 The Study Catchments Description
3.2.2 Selection of Study Sites
3.2.3 Physiographical Summary
3.2.4 Soil Characteristics and Profile

3.3 General Oil Palm Characteristics

3.4 General Climate

3.5 Experimental Layout and Field Instrumentations
3.5.1 Weir
3.5.2 Rainfall
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.3</td>
<td>Water Level</td>
<td>88</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Stream Discharge Measurement</td>
<td>89</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Soil Water Content</td>
<td>90</td>
</tr>
<tr>
<td>3.5.5.1</td>
<td>Neutron Moisture Meter principles</td>
<td>91</td>
</tr>
<tr>
<td>3.5.5.2</td>
<td>NMM Measurement Precaution</td>
<td>94</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Stratigraphy Pattern Measurement</td>
<td>95</td>
</tr>
<tr>
<td>3.5.6.1</td>
<td>Resistivity Imaging System principles</td>
<td>96</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Throughfall</td>
<td>98</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Stemflow</td>
<td>100</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Measurement of Oil Palm Stand Characteristics</td>
<td>101</td>
</tr>
<tr>
<td>3.5.9.1</td>
<td>Diameter at Breast Height</td>
<td>101</td>
</tr>
<tr>
<td>3.5.9.2</td>
<td>Trunk Height</td>
<td>101</td>
</tr>
<tr>
<td>3.5.9.3</td>
<td>Canopy Diameter</td>
<td>102</td>
</tr>
<tr>
<td>3.5.9.4</td>
<td>Canopy Depth</td>
<td>102</td>
</tr>
<tr>
<td>3.5.10</td>
<td>Rain and Storm Water Samples</td>
<td>103</td>
</tr>
<tr>
<td>3.5.11</td>
<td>Radioisotope Estimation for Catchment Time of Concentration</td>
<td>104</td>
</tr>
<tr>
<td>3.6</td>
<td>Laboratory Analysis</td>
<td>108</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Stable Environmental Isotope</td>
<td>108</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Geochemical analysis</td>
<td>110</td>
</tr>
<tr>
<td>3.7</td>
<td>Modelling Application</td>
<td>110</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Throughfall and Stemflow</td>
<td>110</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Interception Loss</td>
<td>111</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Hydrograph separation</td>
<td>114</td>
</tr>
<tr>
<td>3.7.3.1</td>
<td>Rational for using Oxygen-18</td>
<td>117</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Modeling of Time of Concentration (t_c)</td>
<td>118</td>
</tr>
<tr>
<td>3.7.4.1</td>
<td>Empirical Formula</td>
<td>118</td>
</tr>
<tr>
<td>3.7.4.2</td>
<td>Graphical Method</td>
<td>121</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary</td>
<td>123</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4</td>
<td>RAINFALL-RUNOFF</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>125</td>
</tr>
<tr>
<td>4.2</td>
<td>Rainfall Pattern</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Stream Discharge</td>
<td>126</td>
</tr>
<tr>
<td>4.4</td>
<td>Hydrograph Analysis</td>
<td>126</td>
</tr>
<tr>
<td>4.5</td>
<td>Soil Water Content and Stratigraphy Pattern</td>
<td>131</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Soil Water Change with Time and Depth</td>
<td>131</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Soil Water Pattern</td>
<td>133</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Resistivity Image</td>
<td>133</td>
</tr>
<tr>
<td>4.6</td>
<td>Factors Influencing Soil Water Content</td>
<td>139</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>INTERCEPTION LOSS</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>5.2</td>
<td>Rainfall Characteristic</td>
<td>153</td>
</tr>
<tr>
<td>5.3</td>
<td>Throughfall</td>
<td>154</td>
</tr>
<tr>
<td>5.4</td>
<td>Stemflow</td>
<td>156</td>
</tr>
<tr>
<td>5.5</td>
<td>Measured Interception Loss</td>
<td>156</td>
</tr>
<tr>
<td>5.6</td>
<td>Interception Prediction by Revised Gash Analytical Model</td>
<td>160</td>
</tr>
<tr>
<td>5.7</td>
<td>Prediction Accuracy</td>
<td>160</td>
</tr>
<tr>
<td>5.8</td>
<td>Comparison of Throughfall, Stemflow and Interception Loss</td>
<td>164</td>
</tr>
<tr>
<td>6</td>
<td>HYDROGRAPH SEPARATION</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>6.2</td>
<td>Storm Event Characteristics</td>
<td>179</td>
</tr>
<tr>
<td>6.3</td>
<td>Statistical Analysis</td>
<td>180</td>
</tr>
<tr>
<td>6.4</td>
<td>Stable Isotopic Approaches</td>
<td>180</td>
</tr>
<tr>
<td>6.5</td>
<td>Geochemical</td>
<td>189</td>
</tr>
</tbody>
</table>
6.6 Graphical Approaches 194
6.7 Silica Behaviour during Storms 195
6.8 Time of Concentration in Oil Palm Catchments 199
 6.8.1 Graphical Techniques and Empirical Equations 199
 6.8.2 Radioisotope techniques 206
 6.8.3 Comparison between Rainfall Ceased and Rainfall Mass Center Graphical Techniques 209
6.9 Summary 211

7 CONCLUSION AND RECOMMENDATIONS 213
7.1 Introduction 213
7.2 Conclusions 214
 7.2.1 Hyetograph-hydrograph Pattern 214
 7.2.2 Interception Loss 216
 7.2.3 Hydrograph Separation 218
 7.2.4 Flow path of Rainfall Distribution 220
7.3 Recommendations 224

REFERENCES 225
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Throughfall (TF) pattern under diverse vegetation cover in natural, plantation and other vegetated canopy in tropical and temperate regions.</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Stemflow (SF) study under varies vegetation cover in natural, plantation and other vegetated canopy in tropical and temperate regions</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Percentages of interception loss (Ei) at selected tropical rainforest sites</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Categories of ET measurements</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Isotopic hydrograph separation studies</td>
<td>51</td>
</tr>
<tr>
<td>2.6</td>
<td>Geochemical hydrograph separation studies</td>
<td>56</td>
</tr>
<tr>
<td>2.7</td>
<td>Mean Runoff and Soil Loss under Different Covers</td>
<td>64</td>
</tr>
<tr>
<td>2.8</td>
<td>Interception Loss from Oil Palm Canopy</td>
<td>68</td>
</tr>
<tr>
<td>2.9</td>
<td>Interception Loss from Forest Canopy</td>
<td>68</td>
</tr>
<tr>
<td>2.10</td>
<td>Suggested methods that applicable for this study</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of physical characteristics of the study catchment</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Statistical properties of gross rainfall of long-term records (1947-2004)</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Suggested minimum numbers of raingauge</td>
<td>87</td>
</tr>
<tr>
<td>3.4</td>
<td>Information quality evaluation criteria</td>
<td>99</td>
</tr>
<tr>
<td>3.5</td>
<td>Characteristics of seven selected oil palm trunk for SF measurements in Catchment 3 (C3)</td>
<td>102</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.6</td>
<td>Abundances of oxygen atoms and isotopically different water molecules</td>
<td>117</td>
</tr>
<tr>
<td>3.7</td>
<td>Summary of Time of Concentration Formulae</td>
<td>118</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparisons of monthly and annually rainfall in 2006 and 2007 with the long term average</td>
<td>127</td>
</tr>
<tr>
<td>4.2</td>
<td>Number of wet and dry days in the three catchments (within 5 km² area)</td>
<td>128</td>
</tr>
<tr>
<td>4.3</td>
<td>The highest hourly and daily rainfall intensity for 2006-2007 in the study catchments.</td>
<td>128</td>
</tr>
<tr>
<td>4.4</td>
<td>The difference (%) of annual rainfall in C1, C2 and C3 compared with long term average</td>
<td>130</td>
</tr>
<tr>
<td>4.5</td>
<td>The numbers of rainday and storm events which include percentage of event that generate stormflow in all three catchments</td>
<td>133</td>
</tr>
<tr>
<td>4.6</td>
<td>The stormflow and baseflow fractions and range for C1, C2 and C3</td>
<td>135</td>
</tr>
<tr>
<td>4.7</td>
<td>The summary of soil water content values of BH1, BH2 and BH3</td>
<td>139</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary of soil water content(%) for BH1, BH2 and BH3</td>
<td>142</td>
</tr>
<tr>
<td>4.9</td>
<td>General descriptions of the stratigraphy pattern for C1, C2 and C3</td>
<td>147</td>
</tr>
<tr>
<td>4.10</td>
<td>Summary of soil water content influencing factors</td>
<td>151</td>
</tr>
<tr>
<td>5.1</td>
<td>The characteristics of monthly rainfall, TF and SF</td>
<td>155</td>
</tr>
<tr>
<td>5.2</td>
<td>Descriptive statistics of rainfall, TF and SF (event basis)</td>
<td>155</td>
</tr>
<tr>
<td>5.3</td>
<td>The fractions of rainwater passing through oil palm canopy</td>
<td>157</td>
</tr>
<tr>
<td>5.4</td>
<td>Monthly rainfall, funneling ratio and SF</td>
<td>162</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of Ei values from rainforest and oil palm canopy in tropics</td>
<td>165</td>
</tr>
<tr>
<td>5.6</td>
<td>Calculated parameter of estimate in revised Gash analytical model</td>
<td>167</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.7</td>
<td>The components of revised Gash analytical model for estimating E_i in oil palm catchment</td>
<td>169</td>
</tr>
<tr>
<td>5.8</td>
<td>Error analysis of each parameter in Gash model (Aboal et al., 1991)</td>
<td>171</td>
</tr>
<tr>
<td>5.9</td>
<td>T_F, S_F and E_i under diverse vegetation cover in tropical, temperate, semi-arid and arid eco-regions.</td>
<td>175</td>
</tr>
<tr>
<td>6.1</td>
<td>Storm characteristics used for assessing hydrograph separation techniques</td>
<td>186</td>
</tr>
<tr>
<td>6.2</td>
<td>Statistical properties of δ^{18}O and silica in stream water during storm events</td>
<td>187</td>
</tr>
<tr>
<td>6.3</td>
<td>Descriptive statistics of stormflow runoff for different separating technique</td>
<td>187</td>
</tr>
<tr>
<td>6.4</td>
<td>The storm characteristics and peak levels of various tracers for flow separation</td>
<td>191</td>
</tr>
<tr>
<td>6.5</td>
<td>Percentages of event water based on graphical, isotopic and geochemical approaches</td>
<td>192</td>
</tr>
<tr>
<td>6.6</td>
<td>Time of concentration (t_c) values computed using various empirical equations, radioisotope approach and Hyetograph-Hydrograph methods</td>
<td>201</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary of best formula agreement</td>
<td>202</td>
</tr>
<tr>
<td>6.8</td>
<td>Descriptive statistics of combined graphical method (RC and RMC), Kirpich’s nomograph and computed t_c (11 formulae)</td>
<td>203</td>
</tr>
<tr>
<td>6.9</td>
<td>Rankings of t_c formulae evaluated in terms of NSC value based on graphical method (RC and RMC)</td>
<td>205</td>
</tr>
<tr>
<td>7.1</td>
<td>Summary findings of Rainfall-Runoff</td>
<td>215</td>
</tr>
<tr>
<td>7.2</td>
<td>Summary findings of Interception Loss</td>
<td>217</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary findings of Hydrograph Separation</td>
<td>219</td>
</tr>
<tr>
<td>7.4</td>
<td>The rainfall fraction of runoff generation in oil palm catchment</td>
<td>220</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Oil palm and forest coverage in Malaysia (Source: MPOB, 2006)</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>The hydrologic cycle of a vegetated catchment (ET-evapotranspiration, E-evaporation, RF-rainfall, R-surface runoff, G-groundflow, and I-infiltration)</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of the interaction between oil palm canopies and received rainfall. Symbols RF is gross rainfall above the canopy, TF_l is throughfall beneath the canopy, TF_d is direct throughfall, SF is stemflow and E_i is interception loss.</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>The effect of wind and character of rainfall on E_i (Toba and Ohta, 2005)</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>A conceptual framework for stormflow generation and flowpaths (Elsenbeer and Vertessy, 2000)</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Common types of hydrograph separation analysis</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Potential environmental impacts of forest removal and conversion to oil palm plantation (Jamaludin, 2002)</td>
<td>63</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of the study area</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>The contour pattern of C1, C2 and C3</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>The soil profile survey; a) soil retrieval; b) 2.0m soil profile</td>
<td>79</td>
</tr>
<tr>
<td>3.4</td>
<td>Soil compositions at C3; a) Sandy Clay soil with Organic; b) Peat or Clayey Sand</td>
<td>80</td>
</tr>
<tr>
<td>3.5</td>
<td>Bedrock depth profile at C3</td>
<td>81</td>
</tr>
<tr>
<td>3.6</td>
<td>An average diameter at breast height for mature oil palm stand</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>V-notch weirs installed at the outlets of C1, C2 and C3</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>The rain gauges installed at each catchment. A-Aluminium wind shield protection in C1; B-data retrieval using laptop; C-additional storage rain gauge for back-up</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>The water level housing at each catchment</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Volumetric streamflow gauging at C1, C2 and C3</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>The Neutron Moisture Meter; a) preparation of bole holes; b) NMM probe; c) soil preparation for gravimetric soil water content analysis; d) preparing the NMM for soil water content measurements</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>The NMM probe diagram and functions</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Neutron moisture calibration curve</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>General layout of resistivity imaging monitoring system in catchment C3</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>100 collectors for throughfall measurement</td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>Location of interception transects and stemflow collectors</td>
<td></td>
</tr>
<tr>
<td>3.17</td>
<td>Stemflow collector fitted around oil palm stem</td>
<td></td>
</tr>
<tr>
<td>3.18</td>
<td>ISCO sampler for sampling stormflow</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>The radioisotopic tracer approach; a) the release of radioisotope Technetium (Tc-99m) which was tagged with Rhodamine-B (red dye) at the most upstream of C3; b) mintec container for Tc-99m storage to prevent any leakage of radioactive; c) the radioactivity counter and detector; d) data recording in progress</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>Layout of the injection point for tracer experimental study (not to scale)</td>
<td></td>
</tr>
<tr>
<td>3.21</td>
<td>The isotopic analysis; a) Mass Spectrometer SIRA 10 MS; b) Faraday collectors; c) isotopic analysis</td>
<td></td>
</tr>
</tbody>
</table>
of rain and water samples in progress

3.22 Principle of mass spectrometry measurements. (1) Measured gas ionized by ion sources. (2) The ions accelerated by high voltage and enter to magnetic field. The ions pathway becomes circular; light ions follow a pathway with a smaller radius than heavy ions. (3) The Faraday collectors collected the separated ions.

3.23 Kirpich’s nomograph for estimating time of concentration

3.24 Schematic diagram of hydrograph and hyetograph

3.25 The fieldwork research and data analysis structure

4.1a Rainfall standard deviation and highest daily and hourly (2006)

4.1b Rainfall standard deviation and highest daily and hourly (2007)

4.2 Sequence of Radar Imageries at 8.00am and 8.00pm on 19th December 2006

4.3 Stage-Discharge rating curves for C1, C2 and C3

4.4 Typical hydrographs for all three catchments in June 2006

4.5a The rainfall, stormflow and baseflow fractions in C1

4.5b The rainfall, stormflow and baseflow fractions in C2

4.5c The rainfall, stormflow and baseflow fractions in C3

4.6 Tradeoff between infiltration and overland flow in recharging soil moisture storage and baseflow processes. ET is evapotranspiration, OF is overland flow and BF is baseflow. (a) Forested catchment: infiltration is high but the soil moisture is taken up by plants and transpired to the atmosphere as ET, leaving limited soil moisture for BF, (b) Reduced impact logging: reduction in ET and slightly increase OF but the infiltration opportunity remains high, causing increase in soil...
moisture and BF, (c) Clear felling: despite reduction in ET, soil moisture will not increase because of limited infiltration opportunity, thereby producing greater overland flow and smaller BF. (d) Mature oil palm catchment (C3): infiltration is low due to soil compaction and causing higher OF. Available soil moisture is transpired through plants and further reduces BF. (e) Younger oil palm catchment (C1 and C2): lower overland flow due to the dense cover crop which improve the soil properties and infiltration opportunity, thus producing higher baseflow (after Yusop, 2010).

4.7 Variations of soil water content for BH1, BH2 and BH3

4.8 Boxplots showing the temporal pattern of soil water contents. An average soil water content for BH1, BH2 and BH3 were 20.5%, 20.6% and 21.8% as showed in D

4.9 Average of soil water content versus depth for BH1, BH2 and BH3

4.10a Higher soil water content readings during wet days compared to dry days

4.10b Higher soil water content readings during wet days compared to dry days

4.11 Resistivity imaging with topography of Catchment 1

4.12 Resistivity imaging with topography of Catchment 2

4.13 Resistivity imaging with topography of Catchment 3

5.1 Monthly rainfall and mean intensity of individual rainfall

5.2 Regression of TF against individual rainfall

5.3 The relationship between (a) mean TF (%) against rainfall event and (b) the C.V. of the mean TF (%) against rainfall

5.4 Regression of SF against individual rainfall
5.5 The relationship between (a) mean SF (%) against rainfall event and (b) C.V. of the mean SF (%) against rainfall

5.6 Relationship between interception loss (Ei) against rainfall

5.7 Relationship between throughfall against small rainfall of less than 15 mm

5.8 Canopy structure above collector

5.9 a) Oil palm trunk indicate highly absorbance characteristics. b) Leakage might occur during SF collection

6.1 Variations of $\delta^{18}O\%$ and silica in stream compared with discharge and hyetograph-hydrograph characteristics for 11 November 2006, 19 November 2006 and 8 December 2006 storm events

6.2 Variations of $\delta^{18}O\%$ and silica in stream compared with discharge and hyetograph-hydrograph characteristics for 11 November 2007, 11 December 2007 and 15 December 2007 storm events

6.3 Variations of $\delta^{18}O\%$ and silica in stream compared with discharge and hyetograph-hydrograph characteristics for 17 December 2007, 20 December 2007 and 10 December 2006 storm events

6.4 Variations of $\delta^{18}O\%$ and silica in stream compared with discharge and hyetograph-hydrograph characteristics for 21 May 2007 and 15 April 2007 storm events

6.5 Box plots of $\delta^{18}O$ level and silica

6.6 Example of a box plot diagram

6.7 Silica versus stream discharge for six different storm events

6.8 Hysteresis loops of dissolved silica for five different storm events
6.9 Observed (RC and RMC) and computed t_c using 11 formulae

6.10 Box plots for all observed and computed t_c

6.11 Tracer response curve for measuring channel flow time (t_d)

6.12 Tracer response curve for measuring overland flow time (t_o) on 7° slope

6.13 Tracer response curve for measuring overland flow time (t_o) on 5° slope

6.14 Tracer response curve for measuring overland flow time (t_o) on 2° slope

6.15 1:1 graph for graphical methods in C1. The t_c values calculated based on RMC were slightly higher compared to RC

6.16 1:1 graph for graphical methods in C2. The t_c values calculated based on RMC were slightly higher compared to RC

6.17 1:1 graph for graphical methods in C3. The t_c values calculated based on RMC were higher compared to RC

7.1 The schematic of runoff generation processes and flow path of rainfall among the hydrological components at Sedenak oil palm catchment during wet months

7.2 The schematic of runoff generation processes and flow path of rainfall among the hydrological components at Sedenak oil palm catchment during drier months
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C1$</td>
<td>Catchment 1</td>
</tr>
<tr>
<td>$C2$</td>
<td>Catchment 2</td>
</tr>
<tr>
<td>$C3$</td>
<td>Catchment 3</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>E</td>
<td>Evaporation</td>
</tr>
<tr>
<td>RF</td>
<td>Rainfall</td>
</tr>
<tr>
<td>R</td>
<td>surface runoff</td>
</tr>
<tr>
<td>G</td>
<td>ground flow</td>
</tr>
<tr>
<td>I</td>
<td>infiltration</td>
</tr>
<tr>
<td>TF_l</td>
<td>throughfall beneath the canopy</td>
</tr>
<tr>
<td>TF_d</td>
<td>direct throughfall</td>
</tr>
<tr>
<td>SF</td>
<td>stemflow</td>
</tr>
<tr>
<td>E_i</td>
<td>interception loss</td>
</tr>
<tr>
<td>CR_{soil}</td>
<td>counts s$^{-1}$ in soil</td>
</tr>
<tr>
<td>CR_{water}</td>
<td>counts s$^{-1}$ in water tank</td>
</tr>
<tr>
<td>W</td>
<td>gravimetric water content</td>
</tr>
<tr>
<td>NMM</td>
<td>Neutron Moisture Meter</td>
</tr>
<tr>
<td>$NMM_{reading}$</td>
<td>neutron count/second</td>
</tr>
<tr>
<td>A</td>
<td>Area of the catchment (unit km2)</td>
</tr>
<tr>
<td>P</td>
<td>Perimeter of the catchment (unit km)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>L_b</td>
<td>Length of the main stream (unit km)</td>
</tr>
<tr>
<td>W_b</td>
<td>Average width of the catchment (unit km)</td>
</tr>
<tr>
<td>F_f</td>
<td>Form factor</td>
</tr>
<tr>
<td>C_r</td>
<td>Circularity ratio</td>
</tr>
<tr>
<td>E_r</td>
<td>Elongation ratio</td>
</tr>
<tr>
<td>L_{mm}</td>
<td>maximum length (m) of the basin parallel to the principal drainage lines.</td>
</tr>
<tr>
<td>S</td>
<td>Average catchment slope</td>
</tr>
<tr>
<td>m</td>
<td>total length of contour lines (km)</td>
</tr>
<tr>
<td>h</td>
<td>contour height interval (km)</td>
</tr>
<tr>
<td>D_d</td>
<td>Drainage Density (unit km/km2)</td>
</tr>
<tr>
<td>V</td>
<td>measured voltage difference</td>
</tr>
<tr>
<td>I</td>
<td>applied current</td>
</tr>
<tr>
<td>k</td>
<td>geometric factor</td>
</tr>
<tr>
<td>t</td>
<td>elapsed time after injection (minute)</td>
</tr>
<tr>
<td>C</td>
<td>count rate (cps)</td>
</tr>
<tr>
<td>Δt</td>
<td>time interval (second)</td>
</tr>
<tr>
<td>t_c</td>
<td>Time of concentration</td>
</tr>
<tr>
<td>δ</td>
<td>delta units</td>
</tr>
<tr>
<td>^{18}O</td>
<td>Oxygen-18</td>
</tr>
<tr>
<td>$%$</td>
<td>parts per thousand</td>
</tr>
<tr>
<td>V-$SMOW$</td>
<td>Vienna Standard Mean Ocean Water</td>
</tr>
<tr>
<td>TH</td>
<td>Throughfall</td>
</tr>
<tr>
<td>SF</td>
<td>Stemflow</td>
</tr>
<tr>
<td>FR</td>
<td>funnelling ratio</td>
</tr>
<tr>
<td>BA</td>
<td>basal area (m2)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>P_G</td>
<td>gross rainfall</td>
</tr>
<tr>
<td>c</td>
<td>canopy cover</td>
</tr>
<tr>
<td>S</td>
<td>canopy storage capacity</td>
</tr>
<tr>
<td>\bar{R}</td>
<td>mean rainfall rate</td>
</tr>
<tr>
<td>\bar{E}</td>
<td>Mean evaporation rate</td>
</tr>
<tr>
<td>S_c</td>
<td>canopy storage per unit area of canopy cover</td>
</tr>
<tr>
<td>\bar{E}_c</td>
<td>evaporation rate from the canopy</td>
</tr>
<tr>
<td>Q_r</td>
<td>total runoff</td>
</tr>
<tr>
<td>Q_n</td>
<td>runoff components</td>
</tr>
<tr>
<td>$c_{n_i}^{t_i}$</td>
<td>respective concentrations of one observed tracer</td>
</tr>
<tr>
<td>t_i</td>
<td>observed tracer</td>
</tr>
<tr>
<td>Q_E</td>
<td>contribution of event water for oxygen-18</td>
</tr>
<tr>
<td>Q_P</td>
<td>contribution of pre-event water for oxygen-18</td>
</tr>
<tr>
<td>Q_S</td>
<td>contribution of event water for dissolved silica</td>
</tr>
<tr>
<td>Q_G</td>
<td>contribution of pre-event water for dissolved silica</td>
</tr>
<tr>
<td>Δf</td>
<td>Gaussian standard error</td>
</tr>
<tr>
<td>CN</td>
<td>runoff Curve Numbers</td>
</tr>
<tr>
<td>RC</td>
<td>Rainfall ceased</td>
</tr>
<tr>
<td>RFM</td>
<td>Rainfall mass center</td>
</tr>
<tr>
<td>OF</td>
<td>overland flow</td>
</tr>
<tr>
<td>BF</td>
<td>baseflow</td>
</tr>
<tr>
<td>$BH1$</td>
<td>Bore Hole 1</td>
</tr>
<tr>
<td>$BH2$</td>
<td>Bore Hole 2</td>
</tr>
<tr>
<td>$BH3$</td>
<td>Bore Hole 3</td>
</tr>
<tr>
<td>HZ</td>
<td>Hard zone area;</td>
</tr>
</tbody>
</table>
L - Stream leakage

HP - High permeability

SS - Shallow water saturated strata

S_r - Stream

$C.V.$ - Coefficient of variation

p - Free throughfall coefficient

S_{c1} - Canopy storage per unit area of canopy cover (Leyton’s method)

S_{c2} - Canopy storage per unit area of canopy cover (Gash’s method)

p_t - Proportion of rainwater diverted to trunks

S_t - Trunk storage capacity

IQR - Interquartile Range

Si - Silica

NSC - Nash and Sutcliffe

t_{co} - observed time of concentration

t_{ce} - estimated time of concentration

t_{cm} - mean of all the observed time of concentration

t_o - overland flow time

t_d - channel flow travelling time
CHAPTER 1

INTRODUCTION

1.1 Research Background

Runoff generation processes represents a key parameter in understanding the global catchment hydrology system. These runoff generation processes data are used by various researchers to assess and understand pathway pattern of where water goes when it rains for catchment modelling and quantification of water quantity and quality, sediment and solute loadings and land denudation. It must also be recognised that runoff generation processes have an important social and economic dimension related to the problem of solute and contaminant transport in headwater catchment and other aspects of water resources management downstream.

In Malaysia, increasing land conversion to more profitable land development such as oil palm plantation has raised concern among relevant authorities, scientists, environmentalists and those directly affected by it. It has been associated by the removal of the primary forest and expanded significantly (Koh and Wilcove, 2008). The extensive clearance of forest for large scale oil palm plantations has been driven by high global market prices which create high profit margin compared to other types of land use.

Other activities such as urbanisation and rural development also drastically increased which directly reduce the rate of forested areas. The decline of forested area is inevitable as new land needed for the expansion of settlements to meet the
demand of the growing population which is expected to reach 32 million by year 2020 (Thang, 2009). The environmental consequences of this change have been depicted through deterioration of water quantity and quality, loss of biodiversity and soil fertility degradation (Ahern et al., 2011).

As a result of rapid economic development, especially industrialisation, urbanisation and new settlement, shortage of raw water supply become a pressing issue in Southeast Asia (Goh, 2003). Water supply distresses are intricately linked with hydrological processes within the natural forested catchment areas. Conversion of forests into large scale oil palm plantation might have adverse hydrological and ecological consequences and may threaten the long term sustainability of the water environment (Soon and Hoong, 2002). For instances, studies by Lim (1990) and Hartemink (2003) found that soil compaction on pathways caused significant low infiltration of soil and high erosion in oil palm plantation. Additionally, mature oil palms normally have closed canopies which only create little protective ground vegetation.

It is essential to first understand the hydrological behaviour of the catchment system in order to assess any form of disturbances associated with land uses (Dykes and Thornes, 2000). Black box approach in hydrological study, by relying only on rainfall and discharge data often has limitation in describing numerous different processes or combination of process that influence a catchment hydrologic regime (Beven, 1991; Latron and Gallart, 2008). For example the hydrograph behaviour is the interplay of several processes such as rainfall characteristics, canopy interception storage and loss, evapotranspiration, surface runoff, hydrograph separation to quantify event and pre-event water, and soil water content.

All these components are needed to quantify runoff generation processes for ensuring sustainable land use. In addition, the conversion of complex structure of forest canopies in the tropics into mono-structure canopies might alter the runoff generation processes within catchment area and are suggested to be sensitive to such
land use changes (Shuttleworth, 1988). The rates of flow paths and partitioning of rainfall within oil palm catchments are still not documented, despite rapid growth of interest in the processes involved. Consequently, it is vital that the runoff generation processes are properly study in oil palm ecosystems.

1.2 Statement of Problem

Malaysia as an upper middle-income country is rapidly developing economy in Asia. It has transformed itself since the 1970s from a producer of raw materials into an emerging multi-sector economy country. Its goal is to attain high-income status by 2020 while ensuring that development growth is sustainable. It is also promoting tools in shaping a much more responsible business community towards the development of a green economy. Aspiration to achieve a developed nation status by 2020 has created new challenges. The growing population and increasing demand for space and resources have put pressure on the environment especially for clean water supply. Thus, Malaysia has gazetted totally protected area covering 5.16 million ha with 4.08 million ha in Sarawak and the balance of 0.85 million ha and 0.23 million ha in Peninsular Malaysia and Sabah respectively, as to ensure adequate supply of clean water to meet increasing demands for domestic, industrial and agricultural needs (Thang, 2009).

In its quest for development there is concern that Malaysia has compromised on the quality of its environment through the aggressive production and extraction of commodities such as palm oil. No doubt that the quantity and quality of water have been reduced by the depletion of water catchment for development purposes. In addition, population in Malaysia has grown from 15.68 million in 1985 to 26.75 million in 2005 or an increase of 70.6% over the 20-year period. Thus, the growth in per capita uses of total water requirements is forecasted to double from 250-500 l/c/d in 1997 to 400-1000 l/c/d in 2050 (Anon, 2000). Moreover, the quality of raw
water is highly dependent on the river and stream in the totally protected areas which comprises only 15% of total land area in Malaysia.

The total land conversion to oil palm plantations in Malaysia has increased drastically from 1.47 million ha in 1985 to 4.85 million ha in 2010, an increment of 3.38 million ha or at an average annual rate of more than 150 thousands ha a year (Figure 1.1). This is considered the most wide spreading and rapidly expanding crops in Malaysia. Forest conversion to oil palm plantations has been identified as causing significant environmental issues in Peninsular Malaysia (Abdullah and Hezri, 2008). Consequently, many catchments areas have experienced severe environmental problems, especially those related to erosion and sedimentation (Douglas, 1972; Abdul Rahim, 1988; Lai, 1992; Yusop and Anhar, 1994), water quantity (Abdul Rahim and Yusop, 1994), and urban flooding (Jamaluddin, 2000).

Figure 1.1 : Oil palm and forest coverage in Malaysia (Source: MPOB, 2006)
The land use changes normally link to forest functional systems disturbance and fluctuation of unstable environmental conditions in catchment areas, for example, the overland flow generation of hydrological systems (Ziegler et al., 2004). Moreover, the quantity and quality of raw water supply greatly depends on the activities within the catchment areas (Yusop, 2010). Thus, the impact of land development in Malaysia especially on runoff generation processes in agricultural plantation ecosystems has not been studied so far in a significant way. Information on runoff generation processes is still not well understood especially under oil palm catchments as many hydrological researches in Malaysia are confined to forested ecosystems. Uhlenbrook et al. (2003) also suggested that there are still much lacking of runoff generation processes information globally in order to understand better of the hydrological processes in any form of catchment areas.

1.3 Study Objectives

This study focuses on quantification of runoff generation processes in oil palm catchments. Intensive field data collections were carried out in order to achieve the objectives of the study. This research also seeks to contribute differently by presenting new knowledge in term of practical and computation approaches. This include the use radioisotope method for computing time of concentration, usage of isotope and silica for hydrograph separation analysis, neutron scattering for soil water content determination, and resistivity imaging monitoring system for stratigraphy pattern. In addition, the revised Gash’s model was applied for modelling interception loss and compared to field data. On the basis of these primary focal points, the following specific research aims are defined:

1. To examine the rainfall-runoff pattern in three small oil palm catchments of different ages and degree of disturbance within the planted areas in order to quantify the rainfall fraction and flow pathways during wet and dry months.
2. To examine the soil water content response to storm event and assess stratigraphy pattern between the study catchments.

3. To determine the throughfall, stemflow and interception loss, and assess the reliability of revised Gash’s model in predicting interception loss.

4. To evaluate the consistency of isotopic, geochemical and graphical hydrograph separation approaches to compute event and pre-event water.

5. To estimate time of concentration using radioisotope approach and compare with empirical methods.

It is hope that with the information generated from this study some valuables information is obtained. More importantly, this study will enable greater understanding of oil palm ecosystem response to hydrological processes.

1.4 Scope of Study

This study is focusing on the rainfall fraction in oil palm catchments and can be divided into four main parts. The first part involves selection of potential study sites with different oil palm planted ages and installation of all related hydrological equipment for data collection. Three small catchments were selected comprises C1 (3 years old), C2 (6 years old) and C3 (11 years old). Physiographical measurements were conducted at each catchment to determine the catchment physical characteristics. Rain gauge and water level pressure sensor were installed at these study sites to monitor continuously two years of rainfall and stream flow data for rainfall-runoff analysis. Throughfall and stemflow measurements were conducted under the oil palm canopies for interception loss and storage analysis. Further, soil moisture was measured in C3 using Neutron Moisture Meter. Storm water was sampled and analysed for oxygen-18 and silica concentration. All the three
catchments stratigraphy patterns were measured using Resistivity Imaging System. Radioisotope tracer approaches was used to compute the catchment time of concentration and the results were compared with empirical methods.

The second part of the study discussed on the limitation of time for data collection. Chapter 3 present and further discussed the detail of data collection and analysis of this study in term of space and time. The third part of the research focuses on the data analysis and interpretation. The collected storm water samples were further analysed in laboratory for hydrograph separation analysis. Statistical software (Minitab) was used to perform the statistical analysis.

Final part discussed on method implemented in the study. Among the new approaches used in this study were application of isotope and geochemical method for hydrograph separation. Radioisotope approaches was applied to determine the time of concentration. In addition, revised Gash’s model was applied to predict the interception loss from oil palm canopies and compared with the measured interception loss values.

1.5 Significance of Research

The issues discussed above so far confirmed that there is clear need to improve our understanding on the quantification of runoff generation processes response in oil palm catchment. The growing significance of runoff generation processes has inevitably directed attention to assess the relative amounts of water movement via various components of the hydrologic cycle. It also helps to bridge the gap between theory and field-based research in order to define the key variables controlling runoff generation processes from small headwater catchments to larger scale of oil palm catchment. Furthermore, an understanding of runoff generation
processes that affects solute and sedimentation within and from the catchment is vital to identify sensitive areas and encouraging sustainable environmental management (Negishi et al., 2007). Additionally, Blume et al. (2008) also revealed that the runoff generation processes is important for flood prediction, water management, erosion control, water quality, contaminant transport and the evaluation of impacts of land use change.

The study of runoff generation processes has become vitally important aspects of environmental management as there are significant portion of total area in Malaysian is now dominated by human landscapes such as an oil palm plantations. As discussed in the earlier sections, the oil palm total planted area was almost equivalent with totally protected areas. Hence, the identification of runoff generation processes required further investigations within oil palm catchment to characterize dominant water flow pathways for ensuring continuously raw water supply. This, therefore, is the focus of this research in order to obtain significant improvements in the understanding of runoff generation processes in the agricultural catchment areas. Where applicable, the results of this study are used to see how far the oil palm ecosystem helps to safeguard our water resources.

1.6 Thesis Structure

Chapter Two presents the literature reviews associated with runoff generation processes in the tropics and temperate. The chapter is divided into six main sections which consists of rainfall distribution, canopy interception losses and storage, surface flow, evapotranspiration, hydrograph analysis and soil water content. Each component of hydrological cycle is discussed in detailed in order to evaluate the rainwater pathways in oil palm catchment. However, most of the literatures are confined to forested areas and only limited studies are conducted in agricultural catchments.
Chapter Three describes the materials and methods used in the study. This includes the description of study site, catchment physical characteristics, climatic behaviour and general description of the oil palm stand. The equipment used and experimental layouts in the study areas are also described in this chapter including laboratory analysis. All models related with the computation of the runoff generation processes are discussed.

Chapters Four to Six present the results on rainfall-runoff, interception loss, and hydrograph separation. The results are also compared with studies carried out in Malaysia, elsewhere in the tropic and temperate regions. The models used to estimate or predict interception loss are compared with measured values in order to determine the model accuracy. The new approaches suggested in this study are examined carefully and compared with conventional method in order to identify reliable approach.

The conclusions of the study are presented in Chapter Seven. It provides a summary of the rainfall fraction and flow pathways to quantify the runoff generation processes in oil palm catchments in general. The study results obtained are used to assess whether oil palm catchments are able to safeguard water resources. Recommendations of future work that could be undertaken to narrow the current research gaps are also provided.
REFERENCES

Crockford, R.H. and Richardson, D.P. (1990b). Partitioning of rainfall in a eucalypt forest and pine plantation in southern Australia : IV. The relationship of interception and canopy storage capacity, the interception of these forests, and the effect on interception of thinning the pine plantation. *Hydrological Processes* 4, 169-188.

