CYCLODEXTRIN-MODIFIED MICELLAR ELECTROKINETIC CHROMATOGRAPHY FOR THE ENANTIOSEPARATION OF IMIDAZOLE AND VINPOCETINE DRUGS

SITI MUNIRAH BINTI ABD WAHIB

UNIVERSITI TEKNOLOGI MALAYSIA
CYCLODEXTRIN-MODIFIED MICELLAR ELECTROKINETIC CHROMATOGRAPHY FOR THE ENANTIOSEPARATION OF IMIDAZOLE AND VINPOCETINE DRUGS

SITI MUNIRAH BINTI ABD WAHIB

A thesis submitted in fulfillment of the requirements for the award of
Masters of Science (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

October 2012
“......Act! Allah will behold your actions, and (so will) His messenger and the believers, and ye will be brought back to the Knower of the Invisible and the Visible, and He will tell you what ye used to do” (A Taubah: verse 105)

This Thesis is dedicated to my beloved family.
ACKNOWLEDGEMENTS

In the name of Allah The Most Merciful and The Most Compassionate. First and foremost, I would like to express my appreciation and gratitude to my main supervisor, Prof. Dr. Wan Aini Wan Ibrahim for her precious advice, guidance, assistance and encouragement. I am also very thankful to my co-supervisor, Prof. Dr Mohd Marsin Sanagi for his support, guidance and motivation. Ministry of Science, Technology and Innovation Malaysia (MOSTI) is acknowledged for the NSF award. This study was also supported by Fundamental Research Grant Scheme (FRGS) vote number 78314 which is gratefully acknowledged.

A word of thanks goes to my fellow graduate students in Department of Chemistry, especially members of Separation Science and Technology Group. I give my deepest thank and gratitude to my beloved family for their understanding and support. The last thank goes to Dr Dadan Hermawan for his great ideas and helping hand.
ABSTRACT

In the present work, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was developed and applied for enantioseparation of three imidazole drugs and vinpocetine. The three imidazole drugs namely tioconazole, isoconazole and fenticonazole were simultaneously separated for the first time by MEKC technique using dual cyclodextrin (CD) approach. A combination of two neutral CDs; 2-hydroxypropyl-γ-CD (HP-γ-CD) and heptakis (2,6-di-O-methyl)-β-CD (DM-β-CD) (35 mM: 10 mM) in background electrolyte (BGE) containing 35 mM phosphate buffer (pH 7.0), 50 mM sodium dodecyl sulfate (SDS) and 15% (v/v) acetonitrile at 27 kV and 30°C gave the best separation of six stereoisomers of imidazole drugs with resolutions, R_s 1.90-27.22 and peak efficiencies, $N > 180,000$ in less than 15 min. The samples were injected electrokinetically at 3 kV for 3 s and detection was carried out at 200 nm. The method was linear over the concentration range of 25-200 mg/L ($r^2 > 0.998$) and the detection limits ($S/N = 3$) of the three imidazole drugs were found to be 2.7-7.7 mg/L. The CD-MEKC method was successfully applied to the determination of the three imidazole drugs in spiked human urine to give mean recoveries ranging from 72.3 to 107.5% (RSD < 6%, n = 3). The method was also applied to the analysis of commercial cream formulation of tioconazole and isoconazole. Good mean recoveries were obtained, ranging from 93.6-100% (RSD < 7%, n = 3). The best chiral separation of vinpocetine that gave four resolved peaks was achieved using 40 mM HP-β-CD in 50 mM phosphate buffer (pH 7.0) consisting of 40 mM SDS and 10% v/v acetonitrile at a separation temperature of 25°C and separation voltage 25 kV. Samples were injected electrokinetically at 5 kV for 7 s. Vinpocetine detection was accomplished using diode array detector at 200 nm. The complete vinpocetine separation was achieved in less than 15 min with peak resolution, R_s 1.40-5.80.
Dalam kajian ini, kaedah kromatografi elektrokinetik misel terubahsuai siklodekstrin (CD-MEKC) telah dibina dan diaplikasikan untuk pemisahan enantiomer tiga dadah imidazol dan vinposetin. Tiga dadah imidazol iaitu tiokonazol, isokonazol dan fentikonazol telah dipisahkan secara serentak untuk pertama kalinya menggunakan teknik MEKC dengan dua siklodekstrin (CD). Kombinasi dua CD neutral; 2-hidroksipropil-γ-CD (HP-γ-CD) dan heptakis(2,6-di-O-metil)-β-CD (DM-β-CD) (35 mM: 10 mM) dalam latarbelakang elektrolit yang mengandungi 35 mM larutan penimbal fosfat (pH 7.0), 50 mM natrium dodesil sulfat (SDS) dan 15% v/v asetonitril pada 27 kV dan 30°C telah memberikan pemisahan terbaik bagi enam stereoisomer dadah imidazol dengan resolusi, R_s 1.90-27.22 dan kecekapan puncak, $N > 180\,000$ dalam masa kurang daripada 15 min. Sampel disuntik secara elektrokinetik pada 3 kV selama 3 s pada pengesan panjang gelombang 200 nm. Kaedah ini adalah linear dalam julat kepekatan 25-200 mg/L ($r^2 > 0.998$) dan had pengesan (S/N = 3) tiga dadah imidazol yang diperoleh ialah 2.7-7.7 mg/L. Kaedah CD-MEKC ini telah diaplikasikan dengan jayanya bagi penentuan tiga dadah imidazol dalam sampel air kencing dengan purata perolehan semula dalam julat 72.3 hingga 107.5% (RSD < 6%, n = 3). Kaedah ini juga telah diaplikasikan kepada analisis krim formula komersial tiokonazol dan isokonazol. Purata perolehan semula yang baik telah diperoleh dalam julat 93.6-100% (RSD < 7%, n = 3). Pemisahan kiral terbaik vinposetin yang memberikan empat puncak diperoleh menggunakan 40 mM HP-β-CD dalam 50 mM larutan penimbal fosfat (pH 7.0) yang mengandungi 40 mM natrium dodesil sulfat (SDS) dan 10% v/v asetonitril pada suhu pemisahan 25°C dan voltan pemisahan 25 kV. Sampel disuntik secara elektrokinetik pada 5 kV selama 7 s. Vinposetin dikesan menggunakan pengesan susun atur diod pada panjang gelombang 200 nm. Pemisahan lengkap vinposetin telah diperoleh dalam masa kurang daripada 15 minit dengan resolusi puncak yang baik, R_s 1.40-5.80.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION OF ORIGINALITY</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Aim and Objectives of Research 4
1.4 Scopes of Study 4
1.5 Significance of Study 5

CHAPTER 2 LITERATURE REVIEW

2.1 The Importance of Chiral Drug Separation 6
2.2 Techniques for Chiral Separation 7
 2.2.1 Capillary Electrophoresis 8
 2.2.2 Micellar Electrokinetic Chromatography 9
 2.2.3 Cyclodextrin-modified Micellar Electrokinetic Chromatography 10
2.3 Cyclodextrin As Chiral Selector 14
2.4 Azole Drugs 20
2.5 Vinpocetine 24

CHAPTER 3 RESEARCH METHODOLOGY
3.1 Description of Methodology 28
 3.2.1 Standards and Chemicals 30
 3.2.2 Methods 30
 3.2.3 Sample Preparation and Pretreatment using Solid Phase Extraction 31

CHAPTER 4 ENANTIOSEPARATION OF SELECTED IMIDAZOLE DRUGS USING CD-MEKC TECHNIQUE
4.1 Screening of Selected Imidazole Drugs Using Single CD System 33
4.2 Enantioseparation of Selected Imidazole Drugs Using Dual Systems 37
4.3 Effect of Organic Modifier 39
4.4 Optimization of Enantioseparation of Selected Imidazole Drugs Using Dual CD Systems in MEKC Technique 45
 4.4.1 Effect of CDs Concentration in Dual CD Systems 45
 4.4.2 Effect of Different Phosphate Buffer Concentrations 48
 4.4.3 Effect of Different pH buffer 50
 4.4.4 Effect of SDS Concentrations 52
 4.4.5 Effect of Different Separation Voltages 54
 4.4.6 Effect of Different Separation Temperatures 56
 4.4.7 Effect of Different ACN Percentages 58
4.5 Method Validation 60
4.6 Real Sample Analysis 62
4.7 Conclusions 67
CHAPTER 5 ENANTIOSEPARATION OF VINPOCETINE ENANTIOMERS

5.1 Preliminary Study of Vinpocetine Separation Using CD-EKC 68

5.2 Separation of Vinpocetine Enantiomers Using CD-MEKC Technique

5.2.1 Screening of Neutral CDs for Enantioseparation of Vinpocetine 73

5.2.2 Effect of pH, Buffer and SDS Concentrations 79

5.2.3 Effect of the Sample Injection Voltages and Injection Times 81

5.2.4 Effect of Methanol and Acetonitrile as Organic Modifier 84

5.3 Conclusions 88

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1 Concluding Remarks 89

6.2 Future Work 92

REFERENCES 93

LIST OF PUBLICATIONS AND PRESENTATIONS 111
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Several studies on drugs separation using CD-MEKC technique</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Some previous works on enantioseparation of azole drugs using CE</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Separations of vinpocetine and other related compounds from previous studies</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Peak resolutions and analysis time for enantioseparation of selected imidazole drugs using MeOH, ACN, mixture MeOH: ACN at different percentages</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Peak resolutions of the three imidazole drugs using different concentrations of HP-γ-CD and DM-β-CD as chiral selector in dual CD systems</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Peak efficiencies of the three imidazole drugs using different concentrations of HP-γ-CD and DM-β-CD as chiral selector in dual CD systems</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Peak resolutions of the three imidazole drugs at different phosphate concentrations</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Peak efficiencies of the three imidazole drugs at different phosphate concentrations.</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>Peak resolutions of the three imidazole drugs at different buffer pH.</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>Peak efficiencies of the three imidazole drugs at different buffer pH</td>
<td>52</td>
</tr>
<tr>
<td>4.8</td>
<td>Peak resolutions of the three imidazole drugs at different SDS concentrations</td>
<td>54</td>
</tr>
</tbody>
</table>
4.9 Peak efficiencies of the three imidazole drugs at different SDS concentrations 54
4.10 Peak resolutions of the three imidazole drugs at different separation voltages. 56
4.11 Peak efficiencies of the three imidazole drugs at different separation voltages 56
4.12 Peak resolutions of the three imidazole drugs at different separation voltages 58
4.13 Peak efficiencies of the three imidazole drugs at different separation voltages 58
4.14 Peak resolutions of the three imidazole drugs at different acetonitrile percentages 60
4.15 Peak efficiencies of the three imidazole drugs at different acetonitrile percentages 60
4.16 RSD values of intra-day and inter-day precision at optimum conditions for migration time (t_R), peak area and peak height 62
4.17 Linearity, coefficient of determination, LOD (S/N = 3) and LOQ (S/N = 10) values for enantioseparation of the three imidazole drugs using CD-MEKC at optimum conditions 62
4.18 The mean recovery of extracts mixture of selected imidazole drugs in urine sample 64
4.19 Recovery and RSD value obtained in the analysis of cream formulation (tioconazole and isoconazole nitrate) using proposed CD-MEKC method 67
5.1 Retention time (t_R), resolution (R_s) and peak efficiency (N) for four peaks of vinpocetine enantiomers using CD-MEKC at optimum conditions 87
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Number of articles on CE method for different groups of analytes based on Scopus database search (up to March 2012).</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Number of articles on CE using neutral CDs based on search from Scopus publications (from 2000-Mac 2012, by typing cyclodextrin and CE)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Number of articles on CE using charged CDs based on search from Scopus publications (from 2000-Mac 2012, by typing cyclodextrin and CE)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structure and geometry of cyclodextrin</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Structures of several cyclodextrins (CDs) employed in the present work</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Chemical structures of the studied azole drugs and their Log P value</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Chemical structure of vinpocetine</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Electropherograms for the effect of different concentrations of DM-β-CD on the enantiomeric separation of selected imidazole drugs using CD-MEKC in 25 mM phosphate buffer (pH 7.0) and 50 mM SDS at 25 kV separation voltage, 25°C separation temperature and electrokinetic injection (EKI) at 3 kV for 3 s</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Electropherograms for the effect of different concentrations of HP-β-CD on the enantiomeric separation of selected imidazole drugs using CD-MEKC in 25 mM phosphate buffer (pH 7.0) and 50 mM SDS at</td>
<td>35</td>
</tr>
</tbody>
</table>
25 kV separation voltage, 30°C separation temperature and electrokinetic injection (EKI) at 3 kV for 3 s

4.3 Electropherograms for the effect of different concentrations of HP-γ-CD on the enantiomeric separation of selected imidazole drugs using CD-MEKC. Other conditions are as in Figure 4.2

4.4 Electropherograms of the individual drugs and mixture of imidazole drugs using dual CD systems. BGE conditions: 35 mM HP-γ-CD, 10 mM DM-β-CD in 25 mM phosphate buffer (pH 7.0) containing 50 mM SDS at 25 kV separation voltage, 30°C separation temperature and electrokinetic injection (EKI) at 3 kV for 3 s

4.5 Electropherograms of the studied imidazole drugs using dual CD systems (35 mM HP-γ-CD and 10 mM DM-β-CD) at different MeOH percentages. Other conditions are as in Figure 4.4

4.6 Electropherograms of the studied imidazole drugs using dual CD systems (35 mM HP-γ-CD and 10 mM DM-β-CD) at different ACN percentages. Other conditions are as in Figure 4.4

4.7 Electropherograms of the studied imidazole drugs using dual CD systems (35 mM HP-γ-CD and 10 mM DM-β-CD) at different MeOH:ACN percentages. Other conditions are as in Figure 4.4

4.8 Electropherograms for simultaneous separation of the three imidazole drugs using different concentrations of HP-γ-CD and DM-β-CD as chiral selector in dual CD systems. Separation conditions: 25 mM phosphate buffer (pH 7.0), 50 mM SDS, 20% v/v ACN at 25 kV separation voltage, 30°C separation temperature and electrokinetic injection (EKI) at 3 kV for 3 s. Peaks identification: 1, 1° = R-, S-tioconazole; 2, 2° = R-, S-
isoconazole; 3, 3\(^*\) = R-, S-fenticonazole.

4.9 Electropherograms of enantioseparation of the selected imidazole drugs at different phosphate buffer concentrations. Other conditions are as in Figure 4.8. Peaks identification: 1, 1\(^*\) = R-, S-tioconazole; 2, 2\(^*\) = R-, S-isoconazole; 3, 3\(^*\) = R-, S-fenticonazole

4.10 Electropherograms of enantioseparation of the selected imidazole drugs at different buffer pH. Separation conditions: 35 mM phosphate buffer, 50 mM SDS, 20% v/v ACN at 25 kV separation voltage, 30°C separation temperature and electrokinetic injection (EKI) at 3 kV for 3 s. Peaks identification: 1, 1\(^*\) = R-, S-tioconazole; 2, 2\(^*\) = R-, S-isoconazole; 3, 3\(^*\) = R-, S-fenticonazole

4.11 Electropherograms of enantioseparation of the selected imidazole drugs at different SDS concentrations. Other conditions are as in Figure 4.10. Peaks identification: 1, 1\(^*\) = R-, S-tioconazole; 2, 2\(^*\) = R-, S-isoconazole; 3, 3\(^*\) = R-, S-fenticonazole

4.12 Electropherograms of enantioseparation of the selected imidazole drugs at different separation voltages. Other conditions are as in Figure 4.10. Peaks identification: 1, 1\(^*\) = R-, S-tioconazole; 2, 2\(^*\) = R-, S-isoconazole; 3, 3\(^*\) = R-, S-fenticonazole

4.13 Electropherograms of enantioseparation of the selected imidazole drugs at different separation temperatures. Separation conditions: 35 mM phosphate buffer, 50 mM SDS, 20% v/v ACN at 27 kV separation voltage, and electrokinetic injection (EKI) at 3 kV for 3 s. Peaks identification: 1, 1\(^*\) = R-, S-tioconazole; 2, 2\(^*\) = R-, S-isoconazole; 3, 3\(^*\) = R-, S-fenticonazole

4.14 Electropherograms of the enantioseparation of selected imidazole drugs at different ACN percentages. Other conditions are as in Figure 4.13
4.15 Electropherograms of enantioseparation of the selected imidazole drugs at optimum CD-MEKC conditions.
Separation conditions: 35 mM HP-γ-CD, 15 mM DM-β-CD, 35 mM phosphate buffer (pH 7.0), 50 mM SDS, 15% (v/v) ACN, 27 kV separation voltage and 30°C separation temperature. Analytes injected electrokinetically at 3 kV for 3 s

4.16 Electropherograms of a) blank urine and b) extracts of urine spiked with 10 mg/L mixture of standards and c) extract of urine spiked with 15 mg/L mixture of standards using proposed CD-MEKC method.
Separation conditions are as in Figure 4.15

4.17 Electropherograms of tioconazole a) standard solution b) cream solution after SPE treatment using proposed CD-MEKC method. Separation conditions: 35 mM HP-γ-CD, 15 mM DM-β-CD, 35 mM phosphate buffer (pH 7.0), 50 mM SDS, 15% (v/v) ACN at 27 kV separation voltage and 30°C separation temperature. Analytes were electrokinetically injected at 3 kV for 3 s

4.18 Electropherograms of isoconazole a) standard solution b) cream solution after SPE treatment using proposed CD-MEKC method. Separation conditions are as in Figure 4.17

5.1 Electropherograms for vinpocetine enantiomers using CM-β-CD at different concentrations. Conditions: 25 mM phosphate buffer (pH 5.0), 25 kV separation voltage and 25°C separation temperature. Analyte injected hydrodynamically at 50 mbar for 1 s

5.2 Electropherograms for vinpocetine enantiomers at different S-β-CD concentrations. Conditions: 25 mM phosphate buffer (pH 5.0), 25 kV separation voltage and 25°C separation temperature. Analyte injected hydrodynamically at 50 mbar for 1 s
5.3 Electropherogram for vinpocetine enantiomers with dual CD systems using CD-EKC technique. Conditions: 0.13% (w/v) S-β-CD and 7.5 mM HP-β-CD, 25 mM phosphate buffer (pH 5.0), 25 kV separation voltage and 25°C separation temperature. Analyte injected hydrodynamically at 50 mbar for 1 s.

5.4 Electropherograms of effect of different concentrations of a) 15 mM b) 25 mM c) 35 mM and d) 40 mM DM-β-CD on the enantioseparation of vinpocetine using CD-MEKC technique. Other conditions: 50 mM phosphate buffer (pH 7.0), 40 mM SDS, 25 kV separation voltage and 25°C separation temperature. Analytes injected electrokinetically at 5 kV for 5 s.

5.5 Electropherograms of enantioseparation of vinpocetine using CD-MEKC at different TM-β-CD concentrations; a) 15 mM TM-β-CD b) 25 mM TM-β-CD c) 35 mM TM-β-CD and d) 40 mM TM-β-CD. Other conditions are as in Figure 5.4.

5.6 Electropherograms of enantioseparation of vinpocetine using CD-MEKC at a) 15 mM HP-α-CD b) 25 mM HP-α-CD c) 35 mM HP-α-CD and d) 40 mM HP-α-CD. Other conditions are as in Figure 5.4.

5.7 Electropherograms of enantioseparation of vinpocetine using CD-MEKC at different HP-β-CD concentrations; a) 15 mM HP-β-CD b) 25 mM HP-β-CD c) 35 mM HP-β-CD and d) 40 mM HP-β-CD. Other conditions are as in Figure 5.4.

5.8 Electropherograms of enantioseparation of vinpocetine enantiomers using CD-MEKC at different HP-γ-CD concentrations; a) 15 mM HP-γ-CD b) 25 mM HP-γ-CD c) 35 mM HP-γ-CD and d) 40 mM HP-γ-CD. Other conditions are as in Figure 5.4.
5.9 Electropherogram of enantiomeric separation of vinpocetine using CD-MEKC with 40 mM HP-β-CD in 50 mM phosphate buffer (pH 7.0) containing 40 mM SDS, 25 kV separation voltage, 25°C separation temperature and electrokinetic injection at 5 kV for 5 s.

5.10 Electropherograms of enantiomeric separation of vinpocetine using different injection times at 5 kV injection voltage. Separation conditions: 40 mM HP-β-CD, 50 mM phosphate buffer (pH 7.0), 40 mM SDS, 25 kV separation voltage and 25°C separation temperature.

5.11 Electropherograms of effect of different injection voltages on the enantiomeric separation of vinpocetine using 5 s injection times. Separation conditions: 40 mM HP-β-CD, 50 mM phosphate buffer (pH 7.0), 40 mM SDS, 25 kV separation voltage and 25°C separation temperature.

5.12 Electropherograms of separation of vinpocetine enantiomers using different percentages of MeOH by CD-MEKC. Separation conditions: 40 mM HP-β-CD, 50 mM phosphate buffer (pH 7.0), 40 mM SDS, 25 kV separation voltage and 25°C separation temperature. Analyte injected electrokinetically at 5 kV for 5s.

5.13 Electropherograms of enantioseparation of vinpocetine enantiomers using 5-15% v/v ACN with sample injections at 5 kV for a) 5 s and b) 7 s. Other conditions are as in Figure 5.12.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>BGE</td>
<td>Background electrolyte</td>
</tr>
<tr>
<td>CD</td>
<td>Cyclodextrin</td>
</tr>
<tr>
<td>CD-EKC</td>
<td>Cyclodextrin-modified electrokinetic chromatography</td>
</tr>
<tr>
<td>CD-MEKC</td>
<td>Cyclodextrin-modified micellar electrokinetic chromatography</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary electrophoresis</td>
</tr>
<tr>
<td>CM-β-CD</td>
<td>Carboxymethyl-beta-cyclodextrin</td>
</tr>
<tr>
<td>CS</td>
<td>Chiral selector</td>
</tr>
<tr>
<td>CZE</td>
<td>Capillary zone electrophoresis</td>
</tr>
<tr>
<td>DM-β-CD</td>
<td>Heptakis (2,6-di-O-methyl)-beta-cyclodextrin</td>
</tr>
<tr>
<td>EKC</td>
<td>Electrokinetic chromatography</td>
</tr>
<tr>
<td>EKI</td>
<td>Electrokinetic injection</td>
</tr>
<tr>
<td>EOF</td>
<td>Electroosmotic flow</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HP-α-CD</td>
<td>Hydroxypropyl-alpha-cyclodextrin</td>
</tr>
<tr>
<td>HP-β-CD</td>
<td>2-hydroxypropyl-beta-cyclodextrin</td>
</tr>
<tr>
<td>HP-γ-CD</td>
<td>2-hydroxypropyl-gamma-cyclodextrin</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
</tr>
<tr>
<td>MEKC</td>
<td>Micellar electrokinetic chromatography</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>RP-TLC</td>
<td>Reverse phase-Thin layer chromatography</td>
</tr>
<tr>
<td>S-β-CD</td>
<td>Sulfated-beta-cyclodextrin</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SPE-RP</td>
<td>Solid Phase Extraction-Reverse phase</td>
</tr>
<tr>
<td>TM-β-CD</td>
<td>Heptakis (2,3, 6-tri-O-methyl)-beta-cyclodextrin</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>i.d.</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>kV</td>
<td>Kilo volt</td>
</tr>
<tr>
<td>N</td>
<td>Peak Efficiency</td>
</tr>
<tr>
<td>R_s</td>
<td>Resolution</td>
</tr>
<tr>
<td>T</td>
<td>Temperature ($^\circ$C)</td>
</tr>
<tr>
<td>μg</td>
<td>Micro gram</td>
</tr>
<tr>
<td>μL</td>
<td>Micro liter</td>
</tr>
<tr>
<td>μm</td>
<td>Micro meter</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

A great number of pharmaceuticals and drugs especially originated from natural products are chiral. It is well known that a chiral compound consists of one or more stereogenic center in which one chiral center provides two stereoisomers. Even though the stereoisomers are enantiomer pair, they usually display different biological activity, potency and mode of action. For this reason, chirality emerges as part of the important objectives in pharmaceutical, biomedical and analytical area.

Chromatography methods are one of the major analytical techniques for chiral separation. To achieve successful enantioseparation of the target analytes, chiral stationary phases or chiral mobile phases additives are used (Wang et al., 2008). However, the use of chiral stationary phase as well as the large amounts of consuming reagents of chiral mobile phases additives involve high cost. Capillary electrophoresis (CE) has shown to be a powerful and versatile technique for a wide variety of chiral drug separations (Zhou et al., 2002; Servais et al., 2005; Kitagawa et al., 2006; Liu et al., 2009). By means of CE, the use one or more chiral selectors that is introduced in the running buffer can be performed without the need of expensive chiral stationary phases. Other advantages of CE are high efficiencies, rapid, simple and since only consume small amount of chemical, the use of expensive chiral selector is affordable compared to chiral mobile phase additives of HPLC (Rizzi, 2001; Matthijs et al., 2004).
In general, enantiomer separation is based upon the formation of diastereomeric complex between the stereoisomers and a chiral selector and separation can be obtained only if these complexes have different equilibrium constants. By using CE, chiral selector is introduced to the background electrolyte (BGE). However, it does not guarantee the successful enantioseparation of all target analytes. The most important rule for enantiomer separation is that the chiral selector must be compatible in size and structure to the racemate. The chiral selectors have the ability to interact with the enantiomers stereospecifically. The interactions can be stabilized by interacts forces such as hydrogen bonding, Van der Waals, steric effects, electrostatic forces or $\pi-\pi$ interaction (Bressolle et al., 1996; Ali et al., 2006). Cyclodextrin (CD) is by far the most popular chiral selectors used in CE (Cserhati, 2008; Scriba, 2008). CD discriminates between enantiomers via inclusion into their hydrophobic cavity (Chankvetadze, 1997; Wang et al., 1998; Wan Ibrahim et al., 2009a).

Micellar electrokinetic chromatography (MEKC) is one of the CE modes that is widely applied for hydrophobic compounds to increase selectivity (Wan Ibrahim et al., 2007; Bao et al., 2008; Felhofer et al., 2009; Hui et al., 2009; Pérez-Fernández et al., 2010). Sodium dodecyl sulfate (SDS) is a well-known anionic surfactant in MEKC applications. Normally, it is added in the running buffer above its critical micellar concentration (CMC) \sim8 mM to act as a pseudostationary phase. Enantiomer separations by cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) have become a viable technique in CE (Kodama et al., 2002; Eder et al., 2006; Li et al., 2006; Kodama et al., 2007; Wan Ibrahim et al., 2007; Wan Ibrahim et al., 2009a; Wan Ibrahim et al., 2009b; Hermawan et al., 2010; Wan Ibrahim et al., 2010). By using this approach, the chiral recognition does not only rely on the partition of aqueous and micellar phase, but also on the entrapment of solute into the cavity of the CD. CD-MEKC technique is favourable due to its applicability for neutral and charge analytes. For neutral solute, it is partitioned between the micellar and the aqueous CD phases (Kodama et al., 2002; Deeb et al., 2011). For charged analyze, it will involve combination of distribution of solute in micellar and aqueous phases and also
1.2 Problem Statement

Chirality is a main issue whether in development or marketing of pharmaceutical products, therefore, chiral separations have gained a great attention in pharmaceutical and biomedical studies. Imidazole drugs has been widely used as antifungal in clinical studies and most of the drugs exist in chiral form. To date, several studies on enantioseparation of imidazole drugs have been carried out using CE (Penn and Goodall, 1993; Chankvetadze et al., 1995; Ferguson et al., 1996; Dong et al., 1998; Van Eeckhaut et al., 2000; Quaglia et al., 2002; Lin et al., 2003; Castro-Puyana et al., 2005; Castro-Puyana et al., 2007; Hermawan et al., 2010; Rousseau et al., 2011). However, no simultaneous separation of tioconazole, isoconazole and fenticonazole enantiomers were reported using CE.

Vinpocetine is well-known for various cerebrovascular diseases and the interesting point is, it is a chiral drug with two chiral centers. HPLC chiral α1–acid glycoprotein column (chiral-AGP) has been used to separate vinpocetine enantiomers. However, it is reported that the gradient elution method was not suitable for chiral separation of the drug and the analysis time is long (~40 min) (Herényi and Görög, 1992). There was only one report concerning enantioseparation of vinpocetine using CE (Sohajda et al., 2010), but the study focused on the determination of stability constants of vinpocetine and two others vinca alkaloids with several cyclodextrins (CDs). Furthermore, only resolution of two vinpocetine peaks were described. As CD-MEKC technique is feasible for chiral separation of hydrophobic compounds and this approach is claimed to have better selectivity owing to the partition of a hydrophobic compound can take place between the bulk aqueous, micellar and also entraption with CD, thus, it is our interest to develop CD-MEKC technique for enantioseparation of vinpocetine and the three selected
imidazole drugs using easily available and cheap CDs with good resolution for all separation peaks within the shortest possible time.

1.3 Aim and Objectives of Research

The aim of the research is to enantiomerically separate three selected imidazole drugs and enantiomers of vinpocetine using CD-MEKC technique. The objectives of the study are to:

1. screen general and inexpensive CDs as the most suitable chiral selector (CS) to separate the three selected imidazole drugs and the enantiomers of vinpocetine, respectively by using MEKC technique.

2. investigate and optimize the influence of different chiral selector concentrations, buffer concentrations, sodium dodecyl sulfate (SDS) concentrations, pH, addition of different organic modifiers, voltage and temperature on the enantioresolution of selected imidazole drugs and vinpocetine respectively.

3. apply the developed method to the analysis of selected imidazole drugs in pharmaceutical and biological samples.

1.4 Scope of Study

In the present work, the application of CD-MEKC technique was employed for two different types of drugs. The first application was conducted for simultaneous enantioseparation of three imidazole drugs namely tioconazole, isoconazole and fenticonazole. Single CD and dual CD systems were investigated using neutral CDs in an attempt to discriminate three pairs of selected imidazole drugs enantiomers.
Neutral CDs are used as they are cheaper and easily available. The influence of separation parameters such as chiral selector concentrations, buffer concentrations, buffer pH, and organic modifier concentrations on the enantioresolution of selected imidazole drugs were also explored. The optimized CD-MEKC method was validated and applied to human urine and cream samples. For sample pretreatment, solid phase extraction (SPE) procedure was carried out to isolate the drugs from the both samples.

The second application involves the separation of four stereoisomers of vinpocetine since it has not been achieved before. The scope of the work on vinpocetine is limited to finding optimum condition for the enantioseparation of four stereoisomers. For enantiomeric separation of vinpocetine, the evaluation of CD-EKC technique with several neutral and charged cyclodextrins as preliminary study was performed followed by CD-MEKC technique. Several neutral cyclodextrins were investigated in an attempt to discriminate the two pairs of vinpocetine enantiomers. The influence of other separation parameters were also investigated using the selected cyclodextrin as chiral selector.

1.5 Significance of Study

CD-MEKC technique is a good attempt to enantioseparate the three imidazole drugs and vinpocetine since it offers higher selectivity for hydrophobic compounds. Inexpensive neutral cyclodextrin (CD) is employed in the present work, therefore it involves low-cost separation. The elucidation of simultaneous enantioseparation of selected imidazole drugs can provide an effective and less time-consuming separation because the three imidazole drugs can be separated at the same time under the same separation conditions. The proposed method can also be potentially applied to the other drugs of similar group. Proper selection of CD as selector and easy variation of separation conditions in CD-MEKC method is expected to contribute to the best separation of four vinpocetine peaks within the shortest analysis time.
REFERENCES

Neutral β-cyclodextrin Polymer as Chiral Selector. *Fenxi Huaxue*. 32(11), 1421-1425.

Electrophoresis in Pharmaceutical Formulation and Human Serum.

http://www.lookchem.com/Fenticonazole (accessed on April 2012)
http://www.lookchem.com/Isoconazole (accessed on April 2012)
http://www.lookchem.com/Tioconazole (accessed on April 2012)