DURABILITY OF GEOPOLYMER MORTARS USING AGRO-INDUSTRIAL WASTE

NUR FARHAYU BINTI ARIFFIN

A thesis submitted in fulfilment of the requirement for the award of the degree of Master of Engineering (Material)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

OCTOBER 2012
DURABILITY OF GEOPOLYMER MORTARS USING AGRO-INDUSTRIAL WASTE

NUR FARHAYU BINTI ARIFFIN

UNIVERSITI TEKNOLOGI MALAYSIA
DEDICATION

Praise be to Allah s.w.t, the Lord of the Worlds

Who says (interpretation of the meaning):

“Give thanks to Me and to your parents. Unto Me is the final destination”

[Quraan, Luqmaan 31:14]

All glory and honor to Him

Then I dedicate this work

to my beloved mom, dad and siblings.

And also to all who supported me by Doa and work. Thanks for everything. May Allah bless you. Amin
ACKNOWLEDGEMENT

Praise Be To Allah S.W.T, the Lord of the World

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my thesis supervisors, Assoc. Prof Dr Muhammad Aamer Rafique Bhutta and Prof. Ir. Dr. Hj. Mohd Warid Hussin, for encouragement, guidance, critics and friendship. Without their continued support and interest, this thesis would not have been the same as presented here.

I am thankful to Materials and Structures laboratory, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM) for providing the facilities for my research. My thanks also go to Technicians and staff for their assistance in this research. The financial support using Grant No. 77524 from Research Management Centre (RMC), UTM is sincerely appreciated.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. I am grateful to all my family members.

To all of you, thank you for everything.
ABSTRACT

Geopolymer is a binding material produced from the reaction of silica and alumina (in a source material of geological origin or in by-product material), with alkaline solutions. The use of geopolymer as cement replacement material in concrete might be able to reduce the pollution due to the emission of carbon dioxide to the atmosphere generated from the production of Ordinary Portland Cement (OPC). This thesis presents the results of laboratory investigation on geopolymer mortar cubes in which the durability of specimens was studied. The cement replacement materials used were Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA), with a mass ratio of sand to blended ash of 3:1, while the alkaline solution was made of sodium silicate and sodium hydroxide with the mass ratio of 2.5:1 and has concentration of 14 Molar. In order to determine the optimum mix proportion at a specified compressive strength of normal mix using OPC, mortar cubes containing various ratios of POFA to PFA were tested with the target of using as much POFA as possible in the mixture. With the optimum mix proportion, that is 30:70, geopolymer mortar in the forms of 70x70x70 mm cubes were cured at room temperature of 28ºC for 28 days and heat cured at 90ºC for 24 hours, were tested for durability. The performances were measured in terms of water absorption, water permeability coefficient, drying shrinkage, sulphate resistance, acid resistance, chloride ion penetration resistance, dry-wet cyclic resistance and elevated temperature resistance. The evaluations were done through visual observation, measurement of mass change and residual compressive strength. The test result shows that the heat cured geopolymer mortars possess higher degree of durability compared to those using OPC. This suggests that geopolymer with correct proportion may be used as cement replacement material in the production of a more environment-friendly concrete.
Geopolymer adalah bahan pengikat yang dihasilkan dari tindak balas silika dan alumina (dalam bahan sumber asal geologi atau bahan produk), dan diaktifkan oleh larutan alkali. Penggunaan geopolymer sebagai bahan gantian dapat mengurangkan pencemaran yang disebabkan oleh pelepasan karbon dioksida ke atmosfera yang dijana daripada pengeluaran Simen Portland Biasa (OPC). Tesis ini membincangkan hasil kajian ketahanan ke atas kiub mortar geopolymer. Bahan gantian simen yang digunakan adalah dari campuran bahan api abu kelapa sawit (POFA) dan abu bahan api terhancur (PFA), dengan nisbah jisim pasir kepada abu campuran 3:1, manakala larutan alkali diperbuat daripada campuran sodium silikat dan sodium hidroksida dengan nisbah jisim 2.5:1 mempunyai kepekatan 14 Molar. Dalam penentuan perkadaran campuran optimum pada kekuatan tertentu mampatan campuran biasa menggunakan OPC, kiub mortar yang mengandung campuran POFA dan PFA telah diuji dengan sasaran menggunakan POFA seberapa banyak yang mungkin di dalam campuran geopolymer. Menggunakan nisbah optimum yang diperolehi iaitu 30:70, spesimen mortar geopolymer dibancuh di dalam 70x70x70 kiub mm dan dibiarkan pada suhu bilik 28ºC selama 28 hari, dan pada suhu 90ºC selama 24 jam. Penilaian diukur dari segi penyerapan air, kebolehtelapan, pengecutan pengeringan, rintangan sulfat, rintangan asid, rintangan penembusan ion klorida, rintangan kitaran kering basah dan rintangan suhu. Penilaian telah dilakukan melalui pemerhatian visual, pengukuran perubahan jisim dan kekuatan mampatan sisa. Keputusan ujian menunjukkan bahawa geopolymer mortar yang dibiarkan pada suhu 90ºC mempunyai tahap rintangan yang lebih tinggi berbanding menggunakan OPC. Ini menunjukkan bahawa geopolymer dengan kadar yang betul boleh digunakan sebagai bahan gantian simen dalam menghasilkan konkrit yang lebih mesra alam.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUTHOR DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives of the Research</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Scope of the Study</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.5 Limitations of study</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2 Geopolymer Concrete</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.1 The Polymerization Process</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3 Alkaline Solution</td>
<td>13</td>
</tr>
</tbody>
</table>
2.4 Curing Process
2.5 Palm Oil Fuel Ash (POFA)
2.6 Pulverized Fuel Ash (PFA)
2.7 Concrete Durability
 2.7.1 Sulphate Attack
 2.7.2 Acid Attack
 2.7.3 Chloride Attack
 2.7.4 Drying Shrinkage
 2.7.5 Permeability And Water Absorption
2.8 Advantage of Geopolymer Mortars/Concrete
 2.8.1 Sustainability Issues
 2.8.2 Waste Consumption
 2.8.3 Greenhouse Gases
 2.8.4 Environmental Advantage
2.9 A Practical New Way To Reduce Global Warming
2.10 Application of Geopolymer Concrete
2.11 Summary

3 RESEARCH METHODOLOGY
3.1 Introduction
3.2 Materials
 3.2.1 Palm Oil Fuel Ash (POFA)
 3.2.2 Pulverize Fly Ash (PFA)
 3.2.3 Super Plasticizer
 3.2.4 Fine Aggregates
 3.2.5 Alkaline Solutions
 3.2.6 Ordinary Portland Cement (OPC)
3.3 Mix Proportions
3.4 Preparation of Specimens
3.5 Curing Conditions
3.6 Tests
3.6.1 Compressive Strength Test
 3.6.1.1 Residual Compressive Strength
3.6.2 Water Absorption Test
3.6.3 Permeability Test
3.6.4 Drying Shrinkage Test
 3.6.4.1 Coefficient of Thermal Expansion Test
 3.6.4.2 Linear Shrinkage Calculation
 3.6.4.3 Linear Coefficient of Thermal Expansion
3.6.5 Sulphate Resistance Test
3.6.6 Acid Resistance Test
3.6.7 Chloride Ion Penetration Test
3.6.8 Dry-Wet Cyclic Resistance Test
 3.6.8.1 Ultrasonic Pulse Velocity (Upv) Test
3.6.9 Elevated Temperature Test.

4 TEST RESULTS AND DISCUSSION
 4.1 Introduction
 4.2 Selection of Optimum Mix Proportion
 4.3 Water Absorption
 4.4 Water Permeability
 4.4.1 Relationship between Water Absorption, Water Permeability Coefficient and Compressive Strength
 4.5 Drying Shrinkage
 4.5.1 Mass change (%) of Drying Shrinkage Specimens
 4.5.2 Coefficient of Thermal Expansion
 4.6 Sulphate Resistance
 4.6.1 Visual Appearance of Specimens after Immersion.
4.6.2 Mass Change (%) of Specimens in Sodium Sulphate Solution

4.6.3 Residual Compressive Strength

4.6.4 Relationship between Compressive Strength and Immersion Period

4.7 Acid Resistance

4.7.1 Visual Appearance of Specimens after Immersion.

4.7.2 Mass Change (%) of Specimens in Acid Solutions

4.7.2.1 Sulphuric Acid

4.7.2.2 Hydrochloric Acid

4.7.3 Residual Compressive Strength

4.7.4 Relationship between Compressive Strength and Immersion Period

4.8 Chloride Ion Penetration Resistance

4.8.1 Visual Appearance of Specimens after Immersion.

4.8.2 Mass Change (%) of Specimens in Sodium Chloride

4.9 Dry-Wet Cyclic Test

4.9.1 Ultrasonic Pulse Velocity (UPV) Test

4.9.2 Mass Change (%) of Dry-Wet Cycle Specimens

4.9.3 Residual Compressive Strength

4.10 Effect of Elevated Temperature on Compressive Strength

4.10.1 Mass Change (%) of Elevated Temperature Specimens

4.10.2 Relationships between Compressive Strength and Elevated Temperature
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Limitations of studies</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Application of geopolymer materials based on silica-to-alumina atomic ratio</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical composition of POFA</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical composition of PFA</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical composition of Ordinary Portland Cement.</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Mix proportions of geopolymer mortar with different PFA: POFA ratio</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Optimum mix proportions of geopolymer mortars.</td>
<td>43</td>
</tr>
<tr>
<td>3.6</td>
<td>Mix proportion for ordinary Portland cement (OPC) mortar</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Assessment criteria for absorption</td>
<td>51</td>
</tr>
<tr>
<td>3.8</td>
<td>Dry-wet cycles</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Compressive strength of geopolymer mortar.</td>
<td>68</td>
</tr>
</tbody>
</table>
4.2 Mass change (%) of geopolymer and OPC mortars in 5% sodium sulphate solution.

4.3 Residual compressive strength (%) of mortars after immersed in 5% sodium sulphate solution

4.4 Mass change (%) of mortars after immersed in 2% sulphuric acid solution

4.5 Mass change (%) of mortars after immersed in 2% hydrochloric acid solution

4.6 Residual compressive strength (%) of mortars after immersed in 2% sulphuric acid solution

4.7 Residual compressive strength (%) of mortars after immersed in 2% hydrochloric acid solution

4.8 Mass change (%) of mortars after immersed in 2.5% sodium chloride solution

4.9 UPV travel time reading of Dry-wet cyclic specimens

4.10 Residual compressive strength (%) of mortar after dry-wet cyclic test

4.11 Compressive strength (MPa) of mortars after elevated temperature test

4.12 Mass change (%) of geopolymer mortars and OPC mortar after expose to elevated temperature
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic formation of geopolymer (Davidovits, 1994; Van Jaarsveld et al, 1997)</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>A flowchart of Research Methodology</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Production of POFA</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Palm Oil Fuel Ash (POFA) after grinding</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Pulverized fuel ash (PFA)</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Rheobuild 1100 super plasticizer in powder form</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Fine aggregate use to make a geopolymer mortars</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Alkaline solutions (a) sodium silicate (Na$_2$SiO$_3$) and sodium hydroxide (NaOH) (b) Mixing of Na$_2$SiO$_3$ and NaOH at least one day before casting process</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Hobart mixer used to cast geopolymer mortars and OPC mortar</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>Fresh geopolymer mortar</td>
<td>45</td>
</tr>
</tbody>
</table>
3.10 Compaction of geopolymer mortar casted in 70 x 70 x 70 mm mould

3.11 Final product of geopolymer mortar

3.12 Heat cured at 90ºC

3.13 The apparatus and equipment for permeability test

3.14 Mortar bar mould 25x25x250 mm

3.15 Cube size mortar for compression strength test

3.16 Specimen had been marked with pen

3.17 The strut was pasted with Araldite before pasted on specimen

3.18 Placing strut on marked position

3.19 Measurement of drying shrinkage strain using mechanical extensometer

3.20 Specimen length was measured using vernier caliper

3.21 5% sodium sulphate solution used for sulphate test

3.22 Acid solutions used for acid test

3.23 2.5% sodium chloride solution used for chloride ion penetration test

3.24 Cross section for chloride test (Shaikh et al, 1999)

3.25 Ultrasonic Pulse Velocity Equipment

3.26 Different conditions that may be encountered when testing an element
3.27 Blast furnace 65
3.28 Elevated temperature exposure period 66
4.1 Compressive strength vs. percentage of PFA to POFA 69
4.2 Water absorption test of geopolymer mortars and OPC mortar 71
4.3 Permeability coefficient of geopolymer mortars and OPC mortar 72
4.4 Relationships between water absorption and water permeability coefficient 74
4.5 Relationships between compressive strength and water permeability coefficient 74
4.6 Drying shrinkage of geopolymer and OPC mortars vs. Period 75
4.7 Shrinkage behaviour between geopolymer obtained from this study and previous study (Prof. Rangan) 77
4.8 Percentage of mass change between heat cured and room temperature cured geopolymer mortars and OPC mortars 78
4.9 Geopolymer mortar after conducting thermal expansion test (a) heat cured geopolymer (b) room temperature cured geopolymer 79
4.10 The coefficient of thermal expansion of heat cured and room temperature cured geopolymer mortars and OPC mortars 80
4.11 Coefficient of thermal expansion of heat cured and room temperature cured geopolymer mortar at various heating/cooling cycle 81
4.12 Condition of specimens after immersed in 5% sodium sulphate solution 82
4.13 Mass change vs. Immersion period in 5% sodium sulphate solution 84
4.14 Residual compressive strength vs. immersion period for specimens immersed in 5% sodium sulphate 86
4.15 Relationships between compressive strength and immersion period in 5% sodium sulphate 88
4.16 Specimens after 365 days immersed in 2% of sulphuric acid solution (a) geopolymer mortar and OPC (b) OPC mortar 89
4.17 Specimens after 365 days immersed in 2% hydrochloric acid solution (a) geopolymer mortar and OPC (b) OPC mortar 89
4.18 Mass change vs. immersion period for specimens immersed in 2% sulphuric acid solution 91
4.19 Mass change vs. immersion period for specimens immersed in 2% hydrochloric acid 93
4.20 Residual compressive strength vs. immersion period for specimens immersed in 2% sulphuric acid 95
4.21 Residual compressive strength vs. immersion period for specimens immersed in 2% hydrochloric acid 96
4.22 Relationships between compressive strength and immersion period for specimens immersed in 2% sulphuric acid 98
4.23 Relationships between compressive strength and immersion period for specimens immersed in 2% hydrochloric acid 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.24</td>
<td>Specimens immersed in 2.5% sodium chloride solution</td>
</tr>
<tr>
<td>4.25</td>
<td>Mass change vs. immersion period of mortars immersed in 2.5% sodium chloride</td>
</tr>
<tr>
<td>4.26</td>
<td>Test result of geopolymer mortars and OPC mortars sprayed with 0.1N silver nitrate solution</td>
</tr>
<tr>
<td>4.27</td>
<td>UPV travel time vs. Cyclic</td>
</tr>
<tr>
<td>4.28</td>
<td>Mass change of dry-wet cycle geopolymer mortar and OPC mortar</td>
</tr>
<tr>
<td>4.29</td>
<td>Residual compressive strength vs. cyclic</td>
</tr>
<tr>
<td>4.30</td>
<td>(a) Specimen before put in blast furnace (b) Specimens after taken out from blast furnace</td>
</tr>
<tr>
<td>4.31</td>
<td>Compressive strength vs. Temperature at elevated temperature</td>
</tr>
<tr>
<td>4.32</td>
<td>Mass change of geopolymer mortars and OPC mortar</td>
</tr>
<tr>
<td>4.33</td>
<td>Relationship between compressive strength and elevated temperature</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\sigma_c \) Compressive strength
\(P \) Pressure
\(A \) Area
\(\varepsilon \) shrinkage strain
\(t \) time
\(L \) length
\(k \) linear coefficient of thermal expansion
CHAPTER 1

INTRODUCTION

1.1 Introduction

The demand for concrete used has been increasing in line with national developments. Development of a country brings an expansion of construction industry as more building are constructed nowadays. Concrete is the most prevalent building material and the world would be pretty flat without it. There can be no tall buildings and structures without concrete. It is estimated that the production of the cement will increase from 1.5 billions tons in 1995 to 2.2 billions in 2010 (Maholtra 1999). According to Lafarge (2012), a global cement production in 2012 is approaching to 4 billion tons which is can be consider as a bigger amount.

The ordinary Portland cement (OPC) still continues to be the most commonly material used in infrastructure construction, because OPC is available and all the ready mixed cement companies using it as their product. Even though reports of earlier study with regard to its resistance to acid and sulphates indicated poor performance and hence render it as unsuitable in such adverse conditions, it always one of the main materials
used in construction. Besides, the biggest disadvantage of OPC is that carbon dioxide (CO₂) gas is released while producing it. In fact, CO₂ gas can be harmful for human when exposed to it in bigger amount.

Nowadays, people are realizing the effect of OPC on the environment and for that reasons, they have started to find new solutions to overcome this problem. One of the solutions is by introducing geopolymer technology to reduce the use of OPC mortar. In the past few decades, geopolymer has emerged as one of the possible alternative to OPC as it gives higher early strength and excellent durability performance and for being environmental friendly.

Geopolymer is a new material that can be used for construction as a replacement of OPC. Davidovits (1994a) proposed that an alkaline liquid could be used to react with the silicon (Si) and the aluminum (Al) in a source material of geological origin or in by-product material such as fly ash and rice husk ash to produce binders. The chemical reaction that takes place in this case is known as polymerization process, thus the term ‘Geopolymer’ is used to represent these binders. The geopolymer technology have been used at most of the country for example, in Australia (June 2008) a path was constructed in the grounds of Curtin University using cast-insitu geopolymer concrete. Other than that, ‘HySSIL’, a technology company that develops and commercializes innovative building materials and products that based in Australia, has developed a range of cellular geopolymer precast panels and roof tiles which have almost similar durability and strength with conventional product.

As a new material, not much information is available on the durability of geopolymer concrete. The durability of concrete is an important requirement for the performance in aggressive environments throughout its design life period. This research studies the durability of geopolymer mortars made from the combination of blended ash
and activated by alkaline solution. The test conducted for durability performance are water absorption test, permeability test, drying shrinkage test, sulphate resistance, acid resistance, chloride ion penetration, dry-wet cyclic, and the effect of elevated temperature on geopolymer mortars.

1.2 Problem Statement

The durability performance of concrete is important as it needs to have an ability to resist any weather attack and retain its original form, quality and serviceability when exposed to aggressive environment. It also needs to perform satisfactorily under anticipated exposure conditions during its service life span. No concrete structure material is inherently durable as a result of environmental interactions and the properties of materials change with time. A material is assumed to reach the end of service life when its properties are changed or deterioration after exposure to aggressive condition.

The OPC concrete always is a first material to choose when building is constructed. The problem regarding the resistance of OPC concrete toward aggressive environment had been widely discussed. Rangan (2008a) reported that OPC concrete have low durability resistance and has poor ability to resist any chemical attack. Geopolymer are a class of new binder generally manufactured by activating an aluminosilicate source material in a highly alkaline medium. Davidovits et al (1990) reported that geopolymer possesses high early strength, better durability and has no dangerous alkali-aggregate reaction.
The geopolymer binder is a low CO\textsubscript{2} cementious material. It does not rely on the calcination of limestone that generates CO\textsubscript{2}. This technology can save up to 80\% of CO\textsubscript{2} emissions caused by the cement and aggregate industries. The emission of CO\textsubscript{2} gases and the low durability performance of OPC are the main reasons why the geopolymer technology was introduced. So far, investigations in geopolymer mostly deal with the manufacturing processes and effects of synthesizing parameters on physical and mechanical properties. Very few studies have been carried out with regard to durability of geopolymer materials.

1.3 Objectives of the Research

The objectives of the research are:

i) To determine optimum mix proportions of geopolymer mortar using blended ash (PFA+POFA) along with an appropriate ratio of sodium hydroxide to sodium silicate as an activator.

ii) To investigate the durability of geopolymer mortars.

1.4 Scope of the Study

The research utilizes POFA as the base material for making geopolymer mortar. The POFA was obtained from only one source, because the main focus of this study was the durability of POFA geopolymer mortar. The same technology and equipment
currently used to test the durability of OPC mortar will be used to check the durability performance of geopolymer mortar.

The study focuses on the durability performance based on the resistance of geopolymer mortar to water absorption test, permeability test, drying shrinkage, sulphate resistance, acid resistance, chloride ion penetration, dry-wet cyclic and elevated temperature test. The optimum mix proportion will be used to check the durability performance and be compared with OPC mortar. The size of specimens used was 70x70x70 mm and tested for 28 days and subjected to heat cured at 90ºC and room temperature cured (28ºC).

1.5 Limitations of Studies

The selection of mix proportion was first made in order to obtain the optimum mix proportions. The specimens were cast in 70x70x70mm cubic moulds for both geopolymer mortar and OPC mortar. Geopolymer mortar specimens were subjected to heat cure at 90ºC and room temperature cure (28ºC). OPC mortar specimens were cured in water for 28 days. After initial curing, all specimens were exposed to different durability tests up to one year. Limitations of this research works are summarized in Table 1.1.
Table 1.1: Limitation of Studies

<table>
<thead>
<tr>
<th>Specimen size (mm)</th>
<th>Curing condition</th>
<th>Test</th>
<th>Duration</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>70x70x70</td>
<td>i) 24 hours heat cured at 90°C + 6 days at room temperature (28°C)</td>
<td>Optimum Mix Proportion</td>
<td>1 day</td>
<td>Compressive strength</td>
</tr>
<tr>
<td></td>
<td>i) Room temperature (28°C) cured for 28 days</td>
<td>Water Absorption (JIS A 6203)</td>
<td>48 hours</td>
<td>Mass change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Permeability Coefficient (BS 1881-5:1970)</td>
<td>1 day</td>
<td>Flow of water into specimens</td>
</tr>
</tbody>
</table>
| | | Drying Shrinkage and Thermal Coefficient (ASTM C 531) | 5 days | i) Linear shrinkage
| | | | | ii) Coefficient of thermal expansion |
| | | Sulphate Resistance (ASTM C 267-01) | 28, 56, 90, 120, 180 and 365 days | i) Visual observation
| | | | | ii) Mass change
| | | | | iii) Residual compressive strength |
| | | Acid Resistance (ASTM C 267-01) | 28, 56, 90, 120, 180 and 365 days | i) Visual observation
| | | | | ii) Mass change
| | | | | iii) Residual compressive strength |
| | | Chloride Ion Penetration (ASTM C 1202) | 28, 56, 90, 120, 180 and 365 days | i) Visual observation
| | | | | ii) Mass change
| | | | | iii) Residual compressive strength |
| | | Dry-Wet Cyclic (Kajio. S et al, 2004) | 180 days | i) UPV time travel
| | | | | ii) Mass change
| | | | | iii) Residual compressive strength |
| | | Elevated Temperature (GB/T 9978-1999) | 3 hours | i) Mass change
| | | | | ii) Compressive strength |
REFERENCES

ACI 201.2R – (1991), “Guide to Durable Concrete,” ACI Committee 201 on Durability of Concrete.

American Society for Testing and Materials. ASTM C 1202. Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration.

British Standards Institution. BS1881-Part 116, 1982 Compressive Strength of Concrete Cube.

Japanese Industrial Standard. JIS A 6203 (2008), Polymer dispersions and redispersible polymer powders for cement modifiers.

