REMOVAL OF SULFAMETHOXAZOLE AND CEPHALEXIN FROM WATER
BY CATALYTIC OZONATION PROCESS

JAVAID AKHTAR

UNIVERSITI TEKNOLOGI MALAYSIA
REMOVAL OF SULFAMETHOXAZOLE AND CEPHALEXIN FROM WATER
BY CATALYTIC OZONATION PROCESS

JAVAID AKHTAR

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

OCTOBER 2011
Specially dedicated to my beloved mother and father
ACKNOWLEDGEMENT

Alhamdulillah, Praise to Allah, first, I would like to express my sincere, and deep appreciation to my supervisor, Prof. Dr Nor Aishah Saidina Amin for her advice, mentoring, guidance and support in my research. I hereby acknowledge her valuable contribution to my educational achievements and quality assurance. She always encouraged me in difficult times and helped me to surpass through challenges during three-year tenure. I hereby also acknowledge valuable support from Prof. Madya Dr. Zulkafi Buntat from Faculty of Electrical Engineering to solve my experimental issues related to ozone measurement. Finally, I would like to thank Prof. Madya Dr. Azmi Aris for his co-operation during analysis of my experimental samples.

I would like to thank all CREG members for their support and friendship over these years. In particular, to Fauzi, Maryam, Zaki, Mahdir, Linda, and Yani are greatly acknowledged for their helpful discussions and suggestions. I also acknowledge the technical support from Dr. Muhammad Khurram Zahoor from faculty of petroleum and renewable energy engineering. I wish them all the success in their future endeavors.

I would like to thank all laboratory technicians in particular Mr. Latfi, Siti Zalita and laboratory staff form FKA, for their assistance and cooperation throughout the research work to all the administration personnel in the Faculty of Chemical Engineering, Universiti Teknologi Malaysia. I would like to thank especially to Siti Zalita from Makmal Bioprocess for her support to run HPLC analysis of my samples. Her support enabled me to complete my research in time. Lastly, thanks to everyone that I have previously mentioned and to everyone who I may have unintentionally not recognized.
ABSTRACT

This study describes the removal of sulfamethoxazole and cephalexin by catalytic ozonation process in two types of reactors i) batch stirred type and ii) water circulation type. The first step was to screen a suitable catalyst during ozonation of sulfamethoxazole in a batch type reactor. It was observed that loading of Fe₂O₃/CeO₂ did not suppress the adsorption capacity of PAC and that adsorption process was by physisorption for Fe₂O₃/CeO₂ loaded PAC or PAC. Moreover, the loading of Fe₂O₃/CeO₂ synergized the effectiveness of powdered activated carbon (PAC), for removal of sulfamethoxazole during catalytic ozonation. Complete removal of sulfamethoxazole was observed using Fe₂O₃/CeO₂ loaded PAC catalyst within 5 min of ozonation on batch reactor. Further screening of catalyst suggested granular activated carbon (GAC) was a better catalyst compared to CeO₂, MnO₂, and MnO₂-CeO₂ metal oxides. In the presence of GAC as catalyst, approximately 90% of cephalexin was removed in 5 min during batch ozonation process. GAC assisted ozonation of two antibiotics was conducted in a newly developed circulating reactors. Circulating batch reactor removed > 98% of sulfamethoxazole and > 80% of COD using GAC as catalyst in 15 min duration. Similarly, 80-100% of cephalexin was removed using circulation batch reactor. Biodegradability was increased to more than 90% and 98% for cephalexin and sulfamethoxazole antibiotics respectively using circulating batch ozonation. Finally, a separate study was performed for solid phase regeneration of GAC to emulate the effectiveness of in-situ regeneration during ozonation process. In situ ozonation regenerated GAC efficiently. BET analysis, TPD-N₂ and TGA profiles of regenerated GAC resembled more of virgin GAC and differed from saturated GAC sample.
ABSTRAK

Kajian ini menerangkan penyingkiran sulfamethoxazole dan sefaleksin di dalam proses ozonisasi pemangkin di dalam dua jenis reaktor, iaitu (i) berkelompok teraduk dan (ii) edaran air. Langkah pertama adalah memilih mangkin yang sesuai semasa ozonisasi sulfametoksazol dalam reaktor berkelompok teraduk. Pemerhatian menunjukkan bahawa pemuatan Fe₂O₃/CeO₂ tidak menyekat keupayaan penjerapan serbuk karbon teraktivasi (PAC) dan proses penjerapan adalah berupa physisorption untuk Fe₂O₃/CeO₂ dimuatkan PAC atau PAC sendiri. Tambah pula, pemuatan Fe₂O₃/CeO₂ mensinergikan keberkesanan PAC, untuk penyingkiran sulfamethoxazole semasa ozonisasi sebagai pemangkin. Penyingkiran sulfamethoxazole yang lengkap telah diperhatikan apabila menggunakan mangkin Fe₂O₃/CeO₂ dimuatkan PAC dalam masa 5 minit ozonisasi pada reaktor kelompok. Pemeriksaan lanjut pemangkin mencadangkan karbon berbutiran diaktifkan (GAC) sebagai pemangkin yang lebih baik berbanding untuk CeO₂, MnO₂, dan oksida logam MnO₂-CeO₂. Dengan kehadiran GAC sebagai pemangkin, kira-kira 90% cephalaxin dikeluarkan dalam 5 minit semasa proses ozonisasi kumpulan. GAC ozonisasi dibantu dua antibiotik telah dijalankan dalam reaktor berputar yang baru dibangunkan. Reaktor kelompok berputar mengeluarkan > 98% sulfamethoxazole dan > 80% COD menggunakan GAC sebagai pemangkin dalam tempoh 15 min. Begitu juga, 80-100% cephalaxin telah diisingkiran menggunakan reaktor kelompok berputar. Biodegradasi telah meningkat kepada lebih daripada 90% dan 98% bagi antibiotik cephalaxin dan sulfamethoxazole, masing-masing menggunakan kumpulan ozonisasi berputar. Akhir sekali, satu kajian berasingan telah dilaksanakan untuk penjanaan semula fasa pepejal GAC untuk mengikuti keberkesanan penjanaan semula in-situ semasa proses ozonisasi. Ozonisasi in-situ menjana semula GAC dengan cekap. Analisis BET, TPD-N₂ dan profil TGA untuk GAC yang dijana semula didapati menyerupai GAC asal dan berbeza dari sampel GAC tepu.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATIONS</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Pharmaceuticals as Water Pollutant 1
1.2 Removal of Pharmaceuticals at Point Source 2
1.3 Problem of Statement 6
1.4 Research Objectives 8
1.5 Scope of Research 8

2 LITERATURE REVIEW 9

2.1 Introduction 9
2.2 Sulfamethoxazole 12
2.3 Cephalexin 13
2.4 Occurrence of Sulfamethoxazole and Cephalexin in Water 14

2.5 Removal Options 15

2.5.1 Adsorptive Detoxification 16

2.5.1.1 Physical Adsorptions 16

2.5.1.2 Interactive Sorption 17

2.5.1.3 Functional Group Interactions 18

2.5.1.4 Dissociative Adsorption 20

2.5.2 Effect of Parameters on Adsorption 22

2.5.2.1 pH of Solution 22

2.5.2.2 Liquid phase concentration of PhCs 25

2.5.2.3 Ionic strength 26

2.5.3 Adsorptive Ozonation 27

2.5.4 Ozone as Oxidant 28

2.5.5 Mechanism for Adsorptive Ozonation 29

2.5.6 Ozonation of Sulfamethoxazole 33

2.5.7 Isothermal Equilibrium Models 35

2.5.7.1 Langmuir Model 35

2.5.7.2 Freundlich Model 35

2.5.7.3 Error Analysis 35

2.5.8 Theory of Adsorption Kinetic Models 36

2.5.8.1 Pseudo First Order Model 36

2.5.8.2 Pseudo Second Order Model 37

2.5.8.3 Intra-particle Diffusion Model 37

2.5.9 Theory of RSM 37

2.5.9.1 Statistical Model Fitting and Analysis 39

3 RESEARCH METHODOLOGY 40

3.1 Materials 40

3.2 Catalyst Preparation 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 General Research Methodology</td>
<td>42</td>
</tr>
<tr>
<td>3.4 Rectors Types used in this Study</td>
<td>44</td>
</tr>
<tr>
<td>3.4.1 Batch Ozonation Reactor</td>
<td>44</td>
</tr>
<tr>
<td>3.4.2 Circulating Reactor</td>
<td>45</td>
</tr>
<tr>
<td>3.4.3 Preparation of Antibiotic Solution</td>
<td>46</td>
</tr>
<tr>
<td>3.4.4 Sample Preparation</td>
<td>46</td>
</tr>
<tr>
<td>3.5 Experimental Procedure</td>
<td>47</td>
</tr>
<tr>
<td>3.5.1 Batch Adsorption Studies</td>
<td>47</td>
</tr>
<tr>
<td>3.5.2 Ozonation Experiments</td>
<td>48</td>
</tr>
<tr>
<td>3.6 Catalyst Characterization</td>
<td>49</td>
</tr>
<tr>
<td>3.6.1 X-Ray Diffraction (XRD)</td>
<td>50</td>
</tr>
<tr>
<td>3.6.2 BET Surface Area</td>
<td>51</td>
</tr>
<tr>
<td>3.6.3 Thermogravimetric analysis (TGA)</td>
<td>52</td>
</tr>
<tr>
<td>3.6.4 Temperature programmed desorption analysis</td>
<td>53</td>
</tr>
<tr>
<td>3.7 Analytical</td>
<td>53</td>
</tr>
<tr>
<td>3.7.1 Measurement of Dissolved Ozone Concentration</td>
<td>53</td>
</tr>
<tr>
<td>3.7.2 Ozone Utilization Efficiency</td>
<td>55</td>
</tr>
<tr>
<td>3.7.3 HPLC Analysis</td>
<td>55</td>
</tr>
<tr>
<td>3.7.4 Solid Phase Extraction (SPE)</td>
<td>56</td>
</tr>
<tr>
<td>3.7.5 GC-MS Analysis</td>
<td>57</td>
</tr>
<tr>
<td>3.7.6 TOC Analysis</td>
<td>58</td>
</tr>
<tr>
<td>3.7.7 COD Analysis</td>
<td>58</td>
</tr>
<tr>
<td>3.7.8 BOD Analysis</td>
<td>59</td>
</tr>
<tr>
<td>4 CHARACTERIZATION OF CATALYSTS</td>
<td>60</td>
</tr>
<tr>
<td>4.1 Catalyst Characterization</td>
<td>60</td>
</tr>
<tr>
<td>4.2 XRD Analysis</td>
<td>60</td>
</tr>
<tr>
<td>4.3 BET Surface Area</td>
<td>63</td>
</tr>
<tr>
<td>4.4 Regeneration of Granular Activated Carbon</td>
<td>65</td>
</tr>
<tr>
<td>4.5 Summary</td>
<td>67</td>
</tr>
</tbody>
</table>
5 BATCH OZONATION STUDIES

5.1 Introduction

5.2 Batch Ozonation of Sulfamethoxazole using Fe$_2$O$_3$/CeO$_2$ Loaded Activated Carbon

<table>
<thead>
<tr>
<th>5.2.1 Effect of Adsorbent Dosage</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2 SMX Adsorption Kinetics</td>
<td>70</td>
</tr>
<tr>
<td>5.2.3 Intraparticle Diffusion Model</td>
<td>73</td>
</tr>
<tr>
<td>5.2.4 Isothermal Adsorption of SMX</td>
<td>75</td>
</tr>
<tr>
<td>5.2.5 Thermodynamic Parameters of Adsorption</td>
<td>77</td>
</tr>
<tr>
<td>5.2.6 Ozonation of SMX</td>
<td>78</td>
</tr>
<tr>
<td>5.2.7 Comparison among Catalyst Types for Removal Mechanism of SMX</td>
<td>82</td>
</tr>
</tbody>
</table>

5.3 Effect of Operating Conditions on Catalytic Ozonation of Sulfamethoxazole

5.3.1 Effect of Catalyst Types	84
5.3.2 Effect of Concentration of SMX	86
5.3.3 Effect of pH of Solution	88
5.3.4 Ozone Utilization Efficiency	91
5.3.5 Effect of Water Matrix Types	93

5.4 Effect of Operating Conditions on Removal of Cephalexin in Batch Reactor

5.4.1 Effect of GAC Dosage on Adsorption of Cephalexin	95
5.4.2 Effect of pH of Solution on Removal of Cephalexin	96
5.4.3 Effect of CEX Concentration on Removal of Cephalexin	97
5.4.4 Effect of GAC Dosage on Removal of Cephalexin	98
5.4.5 Biodegradability of Cephalexin (BOD/COD)	99
5.4.6 Effect of GAC dosage on COD removal 101
5.4.7 Effect of CEX Concentration on COD removal 102
5.4.8 Effect of pH of Solution on COD removal 103
5.4.9 GC-MS Analysis for Degradation Products of Cephalexin 104

5.5 Optimization Studies for Catalytic Ozonation of Cephalexin Antibiotic in a Batch Reactor 105
5.5.1 Response Surface Optimization for CEX Removal 105
5.5.2 Model Development 106
5.5.3 Surface Graphs and Contours 108
5.5.4 Response Surface Optimization for COD Removal 109
5.5.5 Effect of parameters on COD removal 111

5.6 Summary 112

6 REMOVAL OF SULFAMETHOXAZOLE AND CEPHALEXIN IN CIRCULATING REACTOR 114
6.1 Introduction 114
6.2 Effect of Operating Conditions for Catalytic Ozonation of Sulfamethoxazole 114
6.2.1 Effect of Circulation Flow Rate on SMX Removal 114
6.2.2 Effect of Concentration on SMX Removal 115
6.2.3 Effect of O₃ dosage on SMX Removal 117
6.2.4 Effect of Circulation Rate on COD removal 118
6.2.5 Effect of GAC Dosage on COD removal 119
6.2.6 Effect of O₃ Dosage on COD Removal 120
6.2.7 Effect of Ozonation time on COD Removal 121
6.2.8 Biodegradability 122

6.3 Optimization Studies for Catalytic Ozonation of Sulfamethoxazole 124
6.3.1 Empirical Model for SMX Removal 125
6.3.2 Surface Graphs 126
6.3.3 Four-parameter Optimization for COD Removal during Ozonation of SMX 128
6.3.4 Surface Graph 129

6.4 Effect of Operating Conditions for Removal of Cephalexin Antibiotic in a Circulating Reactor 131
6.4.1 Effect of O3 Dosage 131
6.4.2 Effect of GAC Dosage 131
6.4.3 Effect of Initial Concentration 133
6.4.4 Effect of Time Duration on COD Removal 133
6.4.5 Effect of Circulation Flow Rate on COD Removal 135
6.4.6 Effect of O3 Dosage 135
6.4.7 Biodegradability of Cephalexin Solution 136

6.5 Four-parameter Optimization for Removal of Cephalexin by Catalytic Ozonation in a Circulation Reactor 138
6.5.1 Model for CEX Removal 138
6.5.2 Surface Graphs 141
6.5.3 Model Equation for COD Removal in Four Parameter Optimization of CEX 142
6.5.4 Surface Graph 143

6.6 Assessment of Solid Phase Regeneration of GAC using O3 as Oxidant 145

6.7 Comparison for Batch and Circulating Reactors 147
6.8 Summary 150

7 CONCLUSIONS AND RECOMMENDATIONS 151
 7.1 Conclusion 151
 7.2 Contribution 152
 7.3 Recommendations 153

REFERENCES 154

Appendices A-E 172-198
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Occurrence of commonly detected pharmaceuticals in different water sources</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Standard for COD and BOD in effluents of different industry in Malaysian waters [62]</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Experimental design for three independent variables</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Materials used in the study</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Process conditions for analysis of sulfamethoxazole on HPLC using Synergi hydro C-18 column</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Process conditions for analysis of cephalexin on HPLC using Synergi hydro C-18 column</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Operating conditions for GC-MS analysis</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>BET surface area of PAC and MOPAC catalysts</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>BET surface area of VGAC, SGAC, and RGAC samples</td>
<td>66</td>
</tr>
<tr>
<td>5.1</td>
<td>Kinetic model for adsorption of SMX on PAC and MOPAC</td>
<td>72</td>
</tr>
<tr>
<td>5.2</td>
<td>Freundlich and Langmuir isotherms for adsorption of SMX on PAC and MOPAC</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>Thermodynamic parameters for adsorption of SMX on PAC and MOPAC</td>
<td>78</td>
</tr>
<tr>
<td>5.4</td>
<td>Increase in biodegradability of CEX solution during ozonation</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Complete experimental design of uncoded values and experimental response variables</td>
<td>106</td>
</tr>
<tr>
<td>5.6</td>
<td>ANOVA table for removal of CEX from solution</td>
<td>108</td>
</tr>
<tr>
<td>5.7</td>
<td>Table ANOVA table for removal of COD from solution</td>
<td>110</td>
</tr>
<tr>
<td>6.1</td>
<td>Increase in biodegradability of CEX solution during ozonation</td>
<td>123</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental design for four-parameter optimization of sulfamethoxazole during GAC catalyzed ozonation</td>
<td>124</td>
</tr>
<tr>
<td>6.3</td>
<td>ANOVA table for SMX removal during four-parameter optimization</td>
<td>126</td>
</tr>
<tr>
<td>6.4</td>
<td>ANOVA table for COD removal during four-parameter optimization</td>
<td>128</td>
</tr>
<tr>
<td>6.5</td>
<td>Increase in biodegradability of CEX solution during ozonation</td>
<td>138</td>
</tr>
<tr>
<td>6.6</td>
<td>Four-parameter experimental design for removal of CEX from solution and experimental response variables</td>
<td>139</td>
</tr>
<tr>
<td>6.7</td>
<td>ANOVA table for removal of CEX from solution in four-parameter optimization</td>
<td>140</td>
</tr>
<tr>
<td>6.8</td>
<td>ANOVA table for removal of COD during four-parameter optimization of CEX</td>
<td>143</td>
</tr>
<tr>
<td>D.1</td>
<td>Peak area for initial and depleted samples of SMX during effect of O₃ dosage on ozonation of SMX</td>
<td>192</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Pathways for pharmaceutical compounds in the aquatic environment</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Sulfamethoxazole (a) structural formula (b) pH speciation</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Cephalexin antibiotic</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Effect of pH of solution on adsorption of different antibiotics</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Effect of pH of solution on adsorption of antibiotic</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Mechanism for removal of pollutant compound from water by ozone and hydroxyl radical reactions in the presence of activated carbon surface</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Procedure for preparation of metal oxides and impregnated metal oxide catalysts</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>General research methodology (a) batch ozonation studies (b) Ozonation in circulating reactor</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Batch ozonation set up; reactor and accessories</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Circulating ozonation set up; reactor and accessories</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>BET surface area graph for calculation of W_m</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>XRD analysis of mix MOPAC, PAC, and Fe$_2$O$_3$/CeO$_2$ samples</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>XRD analysis (a) CeO$_2$, (b) MnO$_2$, (c) MnO$_2$-CeO$_2$ samples</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>BET analysis for PAC, MOPAC, and GAC catalyst samples</td>
<td>64</td>
</tr>
</tbody>
</table>
4.4 Pore size distributions of PAC, MOPAC and GAC samples
4.5 Single point BET surface areas for VGAC, RGAC, and SGAC samples
4.6 TGA analyses for VGAC, RGAC, and SGAC samples
4.7 TPD-N₂ analyses for VGAC, RGAC, and SGAC sample
5.1 Effect of adsorbent dosage on SMX removal
5.2 Change in pH of solution during adsorption process
5.3 Amount of TOC adsorbed on individual catalysts as a function of time
5.4 Intraparticle diffusion model for SMX removal
5.5 Equilibrium isotherms for adsorption of SMX
5.6 Effect of catalyst type and pH of solution on removal of SMX from solution
5.7 Catalytic ozonation of SMX: % TOC removal during ozonation of SMX solution as a function of initial concentration
5.8 Ozone utilization curve and percentage ηₒ₃ during catalytic ozonation of SMX
5.9 Effect of MOPAC on products of ozonation
5.10 Decomposition byproducts of SMX ozonation (a) PAC catalyst (b) No catalyst
5.11 % removal SMX and COD (SMX, 150-160 mg/L, pH 7)
(a) Adsorption, 60 min (b) Catalytic ozonation, 20 min
5.12 Adsorption on GAC (●) COD, 200 mg/L and GAC/O₃ ozonation (■) COD, 340 mg/L; (▲) COD, 250 mg/L; (♦) COD, 150 mg/L; pH = 5.
5.13 % removal SMX and COD (SMX, 150-160 mg/L, pH 7)
(a) Adsorption, 60 min (b) Catalytic ozonation, 20 min
5.14 Removal of COD by GAC/O₃, CODᵢ (290 mg/L) (a) 90
Effect of initial pH of solution (b) change in pH of solution during GAC/O₃ ozonation

5.15 Variations in dissolved ozone concentration at different pH values Conditions same as in Figure 5.14a 91

5.16 Amount of ozone consumed during ozonation under different pH of solution. Operating conditions same as in Figure 5.14a. 92

5.17 Effect of water matrix on removal of SMX and COD Operating conditions: pHᵢ = 4, SMX, 200 mg/L 93

5.18 Effect of water matrix on removal of SMX and COD Operating conditions: pHᵢ = 4 (b) CODᵢ (290-310 mg/L) 94

5.19 Effect of GAC dosage on adsorption of CEX Conditions: Time 1 hour; Temperature 26 ± 1 °C, CEX concentration, 200 mg/L 96

5.20 Effect of pH of solution on removal of CEX concentration Conditions: CEX concentration 200 mg/L, O₃ dosage 21 mg/L, GAC dosage 4 g/L, Temp. 26 ± 1 °C. 97

5.21 Effect of initial concentration of CEX on removal of CEX. Conditions: GAC dosage 4 g/L, O₃ dosage 21 mg/L, Temperature 26 ± 1°C, pH 7-7.5 98

5.22 Effect of initial concentration of CEX on removal of CEX Conditions: GAC dosage 4 g/L, O₃ dosage 21 mg/L, Temperature 26 ± 1°C, pH 7-7.5 99

5.23 Increase in biodegradability of CEX solution during ozonation 100

5.24 Effect of GAC dosage on removal of CEX and COD during ozonation Condition: CEX conc. 200 mg/L, pH 7-7.5, O₃ dosage 21 mg/L, Time CEX 5 min, COD 15 min, Temperature 26 ± 1°C 102
5.25 Effect of CEX concentration on removal of CEX and COD during ozonation Condition: GAC dosage 3 g/L, pH 7-7.5, O₃ dosage 21 mg/L, Time CEX 5 min, COD 15 min, Temperature 26 ± 1°C

5.26 Effect of pH of solution on removal of CEX and COD during ozonation Conditions CEX conc. 200 mg/L, GAC dosage 3 g/L, O₃ dosage 21 mg/L, Time CEX 5 min, COD 15 min, Temperature 26 ± 1°C

5.27 Decomposition byproducts of CEX ozonation in presence of GAC

5.28 Effect of ozone dosage and CEX conc. on removal of CEX

5.29 Surface graph for removal of COD as a function of CEX conc. and O₃ dosage

6.1 Effect of circulation rate on removal of SMX from solution Conditions: SMX conc. 100 mg/L, GAC dosage 4 g/L, pH 7-7.5, O₃ dosage 21 mg/L

6.2 Effect of SMX concentration on removal of SMX from solution Conditions GAC dosage 4 g/L, pH 7-7.5, O₃ dosage 21 mg/L, Circulation rate 8 L/min, Sample volume 1100 mL.

6.3 Effect of O₃ dosage on removal of SMX from solution conditions: SMX conc. 200 mg/L GAC dosage 4 g/L, pH 7-7.5, Circulation rate 8 L/min

6.4 Effect of circulation rates on removal of SMX from solution: SMX conc. 200 mg/L GAC dosage 4 g/L, pH 7-7.5, O₃ dosage 21 L/min, and sample volume 1100 mL, Ozonation time COD 15 min, SMX 5 min

6.5 Effect of GAC dosage on removal of SMX from solution Conditions: SMX conc. 200 mg/L GAC dosage 4 g/L, pH 7-7.5, Circulation rate 8 L/min, Sample volume 1100 mL, ozonation time COD 15 min, SMX 5 min
6.6 Effect of O₃ dosage on removal of SMX from solution. Conditions: SMX conc. 200 mg/L, GAC dosage 4 g/L, pH 7-7.5, Circulation rate 8 L/min, Sample volume 1100 mL.
6.7 Amount of COD removed as a function of time. Conditions: SMX conc. 200 mg/L, GAC dosage 4 g/L, pH 7-7.5, Circulation rate 8 L/min, Sample volume 1100 mL.
6.8 Increase in biodegradability as a function of time. Conditions: SMX conc. 200 mg/L, GAC dosage 4 g/L, pH 7-7.5, Circulation rate 8 L/min, Sample volume 1100 mL.
6.9 Surface graphs for removal of SMX during ozonation.
6.10 Surface graphs for removal of COD during ozonation of SMX solution.
6.11 Effect of O₃ dosage on removal of CEX from solution.
6.12 Effect of GAC dosage on removal of CEX from solution.
6.13 Effect of CEX concentration on removal of CEX from solution.
6.14 Removal of COD during ozonation of CEX.
6.15 Removal of COD during ozonation of CEX as function of circulation flow rate.
6.16 Removal of COD during ozonation of CEX as function of O₃ dosage.
6.17 Increase in biodegradability of CEX solution as a function of time.
6.18 Surface graph for removal of CEX from solution.
6.19 Surface graphs for removal of COD during ozonation of CEX on circulation reactor.
6.20 Saturation curve for adsorption of CEX and COD onto VGAC.
6.21 Saturation curve for adsorption of CEX and COD onto VGAC and RGAC. Initial CEX = 300 mg/L, gentle stirring, 26 ± 1°C.
6.22 Amount of COD adsorbed at equilibrium on RGAC and VGAC.

6.23 Amount of CEX adsorbed at equilibrium conditions on RGAC and VGAC

6.24 Change in biodegradability and COD values of CEX solution using two reactors. CEX concentration 200 mg/L, pH 7-7.5, Time 30 min, Initial COD 190, O₃ dosage 21 mg/L, Volume of reactor; 200 mL (stirred batch), 1100 mL (circulating batch)

A.1 Batch type ozonation reactor used in this study

A.2 Circulating type reactor developed in CREG laboratory for catalytic ozonation of selected pharmaceuticals

C.1 Removal of SMX and secondary products during ozonation of SMX solution in the presence of GAC. SMX solution was prepared in deionized water. (Conditions: pH = 4, SMXᵢ = 200 ppm, O₃ dosage = 50 mg/L).

C.2 Removal of cephalexin and secondary products during ozonation of cephalexin solution in the presence of GAC. Cephalexin solution was prepared in deionized water. Operating conditions: pH = 4, SMXᵢ = 200 ppm, O₃ dosage = 50 mg/L

C.3 Representative curve for GC-MS analysis of SMX in the presence of MOPAC catalyst. Samples were drawn according to procedure given in section 3.5.2.

C.4 Disinfection by-products during ozonation of sulfamethoxazole in the presence of MOPAC catalyst. (a) Sulfanilamide (b) 6-Aminobenzoxazole (c) Propylmaleamic acid (d) 2-Acetylthiazole (e) 2-Propythiazole (f) Sulfathiazole (g) Sulfonyl phenyl aminol (h) 5-methyl Thiazole
C.5 Representative curve for GC-MS analysis of CEX in the presence of granular activated carbon. Samples were drawn according to procedure given in section 3.5.2.

C.6 Disinfection by-products during ozonation of Cephalexin in the presence of granular activate carbon catalyst. (a) dimethyl furyl pridine (b) 1-phenyl propanediole, (c) isonitrosoacetophenone (d) Benzenactic acid, methylester (e) Pyrozole, 5-amin 3-methyl phenyl

D.1 Van’t Hoff plot for calculation of thermodynamic parameters during adsorption of sulfamethoxazole on MOPAC and PAC Results are given in Table 5.3.

D.2 Langmuir adsorption isotherms for SMX onto PAC (see section 5.1.7)

D.3 Freundlich adsorption isotherms for SMX onto MOPAC (see section 5.1.7)

D.4 Freundlich adsorption isotherms for PAC (see section 5.1.7)

D.5 Freundlich adsorption isotherms for PAC (see section 5.1.7)

D.6 Ozone consumption efficiency and total amount of O₃ consumed during ozonation of SMX in the presence of two catalysts

E.1 Comparison of experimental and predicted values

E.2 Surface contours for CEX removal. Effect of ozone dosage and pH

E.3 Comparison of experimental and predicted values for COD removal

E.4 Contour plot for removal of COD removal in batch ozonation

E.5 Comparison of experimental and predicted response for SMX removal
E.6	Contour plot for removal of SMX during ozonation Effect of circulation flow rate and GAC dosage	195
E.7	Comparison for experimental and predicted values for COD removal	195
E.8	Contour plots for removal of COD during ozonation of SMX solution	196
E.9	Experimental vs. predicted response for removal of CEX in four-parameter optimization	196
E.10	Contour plot for removal of CEX from solution during four-parameter optimization of CEX	197
E.11	Experimental values vs. predicted response for COD removal in ozonation	197
E.12	Contour plot for removal of COD during ozonation of CEX in circulating reactor	198
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>Aluminum dioxide</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOPS</td>
<td>Advanced oxidation process</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological oxygen demand</td>
</tr>
<tr>
<td>CEX</td>
<td>Cephalexin</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>CTNs</td>
<td>Carbon nanotubes</td>
</tr>
<tr>
<td>DBPs</td>
<td>Disinfection byproducts</td>
</tr>
<tr>
<td>GAC</td>
<td>Granular activated carbon</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography mass spectroscopy</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>MOPAC</td>
<td>Metal oxide impregnated powdered activated carbon</td>
</tr>
<tr>
<td>MPS_BET</td>
<td>Multipoint surface area</td>
</tr>
<tr>
<td>MPSD</td>
<td>Marquardt’s percent standard deviation</td>
</tr>
<tr>
<td>MWNTs</td>
<td>Multiwal nanotubes</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl radicals</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>PAC</td>
<td>Powdered activated carbon</td>
</tr>
<tr>
<td>PCAC</td>
<td>Petroleum coke based activated carbon</td>
</tr>
<tr>
<td>PhCs</td>
<td>Pharmaceutical compounds</td>
</tr>
<tr>
<td>RGAC</td>
<td>Regenerated activated carbon</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>SGAC</td>
<td>Saturated activated carbon</td>
</tr>
<tr>
<td>SMX</td>
<td>Sulfamethoxazole</td>
</tr>
<tr>
<td>SOGs</td>
<td>Surface active group</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>SPS\text{BET}</td>
<td>Single point surface area measured at P/P_0 = 0.02535</td>
</tr>
<tr>
<td>SSE</td>
<td>sum of error squares</td>
</tr>
<tr>
<td>SWNTs</td>
<td>Single wall nanotubes</td>
</tr>
<tr>
<td>TBAM</td>
<td>Tetrabutylammonium montmorillonite</td>
</tr>
<tr>
<td>TiO\text{2}</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic contents</td>
</tr>
<tr>
<td>VGAC</td>
<td>Virgin granular activated carbon</td>
</tr>
<tr>
<td>V_{\text{mes}}</td>
<td>Mesoporous volume</td>
</tr>
<tr>
<td>V_{\text{micro}}</td>
<td>Microporous volume</td>
</tr>
<tr>
<td>V_{\text{Total}}</td>
<td>Total volume</td>
</tr>
<tr>
<td>WWTPs</td>
<td>Wastewater treatment plant</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Reactor types used in this study</td>
<td>171</td>
</tr>
<tr>
<td>B</td>
<td>SPE extraction protocols</td>
<td>173</td>
</tr>
<tr>
<td>C</td>
<td>Brief overview of HPLC and GC-MS obtained results</td>
<td>177</td>
</tr>
<tr>
<td>D</td>
<td>Graphs and calculations</td>
<td>185</td>
</tr>
<tr>
<td>E</td>
<td>Graphs for statistical optimization</td>
<td>181</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Pharmaceuticals as Water Pollutant

Advancements in personal care sector injected numerous varieties of pharmaceuticals in modern day health facilities. Although medications served as life saving drugs both for human and animals, their indirect addition to ecosystem has raised many questions to the environment protection [1]. Medicines are stable structures chemically to prolong medication time within the body, which sense non-degradability of such items [2]. Persistence of pharmaceuticals in industrial and municipal water streams is one of environmental hazards polluting ecosystem. Clotrimazole, Mefenamic, diclofenac, erythromycin, colifibric acid [3], Ibuprofen [4], sulfamethoxazole [5] are examples of pharmaceuticals frequently detected in municipal and waste water treatment plant effluents. Researchers have raised concerns about the transportation of pharmaceutically polluted water resources as drinking water supplies or long-term implications to the aquatic life. Although direct effect of pharmaceutical polluted water is less susceptible since concentration of pharmaceuticals in water, streams far lower than prescribed dosages level. Pharmaceuticals are design to interact with biological matter in living organisms and in their physico-chemical behavior. Many of the pharmaceuticals are lipophilic to ease their passage through cell membranes and are reactive to specific types of metabolic interactions only; otherwise remain persistent in the body cells. In a way these pharmaceuticals easily bioaccumulate within the body and induce the harmful effects of terrestrial or aquatic organisms. Figure 1.1 illustrates the exposure, fate, and long-term effects of medical compounds on aquatic organisms. Pharmaceuticals
undergo biodegradation into metabolites during the fate of such substances in the environment. Occurrence of pharmaceutical active compounds and metabolites in the environment depends upon their resistance to the biodegradability. However, presence of these pharmaceutically active substances in ground water, surface, or ocean water shows their persistence for longer time duration and mobile nature.

![Diagram of pharmaceutical pathways](image)

Figure 1.1 Pathways for pharmaceutical compounds in aquatic environment [6]

1.2 Removal of Pharmaceuticals at Point Source

Major sources for induction of in the aquatic environment are urban wastewater, hospitals, pharmaceutical manufacturing facilities, and treatment plants. Proper treatment of these substances at the exit of their source points may reduce the significant volume of pharmaceuticals in the aquatic environment. Treatment at the
exit point seems one viable option if we are to save our water supplies from such pollutants.

Several methods have been adopted in water treatment ranging from conventional filtration [7], biological treatments [8], coagulation [8] to activated carbon [9], electrochemical and advanced oxidation processes [10-11]. These processes differ in treatment capability, operational cost, selectivity and removal efficiency. Biological methods like biofilters, activated sludge are quite effective for biodegradable pollutants. Physical techniques like adsorption, coagulations flocculation, and precipitations are suitable to remove insoluble suspended particles. Activated carbon can effectively remove dissolved organic contaminations. Reverse osmosis, micro, and nano filtrations are other methods for selective removal of micro pollutants. Other than these, advanced oxidation processes such as ozonation, UV, \(H_2O_2/O_3 \), UV/O\(_3\), chlorination are capable of oxidizing soluble, insoluble organic and inorganic contaminants [5]. However, it is true most of the organic and inorganic toxins are removable through water treatment techniques, none of techniques is solely appropriate to handle all types of contaminations. Biological methods cannot grasp synthetic and inorganic pollutions; coagulations and flocculation are inefficient to dissolved micro pollutants; membranes are costly, chock able, and unable to treat macro pollutants; production of DBPs in advanced oxidation processes question usefulness of such operations. Presence of pharmaceuticals in wastewater treatment plants (WWTPs) effluents and water streams also confirms inefficiency of traditional techniques like coagulations, flocculation, and sedimentations [3, 5, 12]. Though it is true, the most WWTPs are equipped to handle various types of contaminations by integration of techniques in series. Bar screening, preliminary clarification, trickling filter, active sludge and UV treatment scheme is an example of such integrations applied in Howdon water treatment works [3]. It is believed that inclusion of ozonation or advanced oxidation processes within this integration may reduce soluble contaminations. Some researchers have reported removal of soluble pollutants using ozone and ozone-assisted oxidations [13-16]. Thus, advanced oxidation processes may be capable of reducing pharmaceuticals and synthetic dyes in wastewater streams.
Advanced oxidation processes (AOPs) have been employed for removing pharmaceuticals active compounds [17-19]; dyes and dyestuff [14, 20-21]; bacterial disinfection [22-23]; pesticides degradation [24-25] and soil decontaminations [26-27]. AOPs rely on production of hydroxyl radicals (OH) through chemical, photochemical and photo catalytic energy that is capable of converting organics into dehydrogenated products [28]. Conventional oxidants within AOPs category include ozone, H$_2$O$_2$, chlorine, chlorine dioxide, Hydroxyl ions [29]. These are called aqueous phase oxidants, which attach almost all types of organic and inorganic contaminations. Oxidation potential is one criterion to judge pollutants removal efficiency in such treatments like ozone OH (2.86), O (2.42), O$_3$ (2.07), H$_2$O$_2$ (1.78), Cl (1.36), ClO$_2$ (1.27). Performance of individual process is also dependent upon generation of hydroxyl ion (OH\') which is the most powerful oxidant of this group. For this reason, ozone and H$_2$O$_2$ are preferable due their ability to oxidize contaminations directly and through OH ion generation [30]. Due to this ability, ozone has emerged as one major pollutant oxidizer for microorganism’s inactivation, metals and suspended solids oxidation, dyes and pigments discoloration, dissolved organic matter and humic acids oxidation, micro pollutants removal. Whilst chlorine and its derivates are enough to disinfect bacteria present in water their ability to generate lethal chlorinated organic compounds by reacting organic species has limited their role as disinfectants [31]. Electrochemical, Fenton, Photo-Fenton [32], TiO$_2$/UV [33] are names of AOPs oxidation processes in which induce energy is utilized to generate radicals and ions. Fenton reagents and TiO$_2$ mediums generate radicals by absorbing near-UV radiations within 300-400 nm range. Electrochemical oxidation involves anodic reactions at high voltage electrodes thus breaking water molecule into hydroxyl radical (OH). In literature, Pt, PbO$_2$, doped PbO$_2$, doped SnO$_2$ have been employed dominantly as anode. Ion generation reaction in equation 2.1 [28].

$$H_2O \rightarrow OH^- + H^+ + e^- \quad \text{(1.1)}$$

AOPs are suitable to waste water treatments containing chemically stable, lethal, and/or non-biodegradable pollutants. AOPs have property to degrade any type of contaminations indiscriminately without producing any toxic intermediates at
room temperatures [20]. AOPs effluents are biodegradable due radical’s ability to replace chlorines attached to ring structures of organic compounds. Rate constant of organic molecules destruction remains in order of 10^6-109 M$^{-1}$ S$^{-1}$, thus minimizing process residence times [29]. AOPs have certain advantages over conventional water treatment methods. AOPs are not refractory to wide varieties of feed contaminations and disinfection byproducts are not usually produced which simplifies operations. AOPs are better than bioremediation and chemical coagulations because later produce sludge waste materials and operate selectively on specific types of pollutants. Post processing is costly in membrane processes due to choking problem while AOPs completely mineralize organic matter and avoid any further processing of organic materials. Carbon catalyst poisoning is the major drawback in activated carbon absorption whereas no such problems are associated with AOPs (Spartan water treatment). However, high capital and operating cost of AOPs is a major drawback when compared to biological treatments and chemical coagulations. Literature usually recommends integration of different oxidants for treatment process like O$_3$/UV, O$_3$/H$_2$O$_2$, Photo/Fenton, TiO$_2$/UV [30, 34] mainly due their inability to produce high concentrations of hydroxyl ions (OH) individually. One of the commonly used advanced oxidant (ozone) is highly energy intensive consumes high voltages in order of 4-20 kV. As ozone is degradable to simpler oxygen at room temperatures, high concentrations of ozone need continuous ozone generation. Other AOPs, Fenton/H$_2$O$_2$ systems produce considerable amounts of iron sludge wastes [35]. Electrochemical processes usually involve costly electrodes.

Irrespective of the practical limitations, advanced oxidation processes continued their penetration in water and wastewater treatments. Ozone has emerged as one of the popular oxidant in recent times [13, 15, 17, 19, 21, 36-38]. Probably this is because i) ozone is easily soluble in water (0.57 g/L 20 °C), ii) ozone decomposes readily into hydroxyl ion (OH), iii) oxidation potential is high (2.87 V) [38]. Major pollutants divisions which have been tested for ozone dosages are i) metals and inorganic substances removal ii) Oxidation of suspended and dissolved organic matter iii) bacterial and viral disinfection iv) Discoloration and v) detoxification of harmful chemicals [13, 39]. Camel and Bermond, [39] divided existing literature on ozonation in three dosage levels pre-oxidation, intermediate
ozonation and final disinfection. Ozone is added at pre-oxidation stage to remove colorants and odors, inorganic and suspended materials; to increase coagulations-decantation. Micro pollutants and DBPs are generally removed in second stage dosage, which also enhances biodegradability of organic matter. Final disinfection stage is capable of removing all types of microorganisms, micro pollutants and reducing DBPs [39]. Number of citations notified effects of ozonation on pharmaceuticals degradation from wastewater streams [17, 36, 40-43]. Thus, ozonation processes are widely accepted techniques in removal of micro pollutants like pharmaceuticals from water streams.

1.3 Problem of Statement

Organic compounds such as pharmaceuticals, active personal care products (PPCPs), industrial and household chemicals are potential threat to human health and aquatic ecosystem. These organic chemical collectively called mircopollutants involve endocrine disrupting effects and chronic effects on long-term exposure [44]. Some of the pharmaceuticals have shown ineffectiveness to advance treatment technologies such as membrane separation, activated carbon adsorption, ultraviolet radiations, and ozonation [45]. Pharmaceutical compounds are even more likely in effluents of conventional treatment plants. Therefore, it seems necessary to investigate on modern technologies to treat these new types of pollutants in water resources. Moreover, due to low concentration of these micropollutants, conventional treatments based on physical or biological treatments fail to eliminate these compounds from water properly. It may be helpful to investigate on modern treatment methods for treatment of micropollutants.

Ozonation is one attractive option to degrade pharmaceuticals at the exit of point source. Simple procedure can be the reaction of dissolved ozone with pharmaceutical compound. Pharmaceuticals are relatively active species due to the presence of different functional groups that are designed to interact with metabolism. Therefore, it is presumable that main pharmaceutical compound can degrade in short exposure to dissolved ozone. However, degree of mineralization might be low.
Simple ozonation also may not be effective in achieving high ozone mass transfer efficiency. Coupling of simple ozonation with a suitable adsorptive catalyst such as activated carbon might perform effective role in removing pharmaceutical compounds from water. Activated carbon acts as an adsorbent and catalyst during the process. Activated carbon can absorb sufficient amount of pharmaceuticals on its surface in origin and oxidized byproducts form due to its porous structure and non-selective nature. At the same time, activated carbon can decompose the dissolved ozone into oxidants such as OH/O radicals. Decomposition of dissolved ozone also induces the transfer of ozone mass from gas to liquid.

In general, sufficient amount of ozone pass through the reactor column in unutilized form during ozonation process. That might be due to many reasons such as excess amount of ozone in the feed gas, incapability of system to dissolve gas phase ozone into the solution or inefficient reasons between pharmaceutical and ozone. Addition of catalyst as activated carbon may help the better utilization of input ozone gas. Various studies highlighted such an issue where outgoing gas retains sufficient quantity of ozone gas which either need to trap in solutions or to destroy [22, 29]. Extended post processing of gas adds capital and operation cost of ozonation processes besides wasting costly O\textsubscript{3} into atmosphere. Proper utilization of generated O\textsubscript{3} is challenging in ozonation processes that may be solved by utilizing proper absorber design, catalyzed ozonation, and ozone diffusers.

In this research we focused on the maximizing the ozone utilization during the ozonation process. Options that we tried include the usage of activated carbon as catalyst and adsorbent. Secondly, we proposed the circulating absorber column reactor with using venturi mixture. Two antibiotics were selected (sulfamethoxazole and cephalexin) as model compounds. These two are commonly prescribed medicines in daily healthcare activities across the world and are often detected in the urban water and in effluents of wastewater treatment plants. Secondly, these two belong to different class of antibiotics and represent major prescribed antibiotic classes. By using these two antibiotics, it is assumed, ozonation can be applied to other antibiotics or pharmaceuticals as well.
1.4 **Research Objectives**

Major objectives of the research are as follows

1. To study the degradation of two antibiotic compounds (sulfamethoxazole and cephalexin) during catalytic ozonation process.
2. To screen suitable catalyst for removal of antibiotics during ozonation,
3. To compare the performance of stirred batch reactor and circulating reactor for removal of two antibiotic compounds.

1.5 **Scope of Research**

1. Initial screening of catalyst is performed for degradation of sulfamethoxazole antibiotic. Initial screening is performed by comparing the performance of activated carbons, metal oxides and metal loaded activated carbon catalysts. The selected catalyst is investigated further to assess the effect of operating parameters and kinetics of sulfamethoxazole. Removal of cephalexin is investigated with screened catalyst only.
2. Dissolved ozone concentration is investigated to compare the ozone decomposition behavior of catalysts. Dissolved ozone concentration is measured in case of selected catalyst for both sulfamethoxazole and cephalexin. Some experiments are conducted to measure ozone utilization efficiency for both antibiotics.
3. Performance comparison of two reactors is investigated by degrading cephalexin and sulfamethoxazole antibiotics in circulating reactor and comparing the results with that of stirred batch reactor.
4. Analysis of the antibiotics is performed using high performance liquid chromatography (HPLC) to measure their concentration during experiments. Degree of mineralization is measured by TOC and COD analysis. While for cephalexin is analyzed by COD and biological oxygen demand (BOD) analysis. Secondary byproducts for two antibiotics are analyzed in gas chromatography mass spectroscopy (GC-MS).
REFERENCES

80. Liu, H., Liu, W., Zhang, J., Zhang, C., Ren, L. and Li, Y. (2011). Removal of cephealexin from aqueous solutions by original and cu(ii)/fe(iii) impregnated

