CLONING AND CHARACTERIZATION OF α-GLOBULIN PROMOTER INTO AN EXPRESSION VECTOR

ABUBAKAR SADIK MUSTAFA

A dissertation submitted in partial fulfillment of the requirement for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
This dissertation is dedicated to the Islamic Development Bank (IDB) and to my beloved family for their endless support and encouragement.
ACKNOWLEDGEMENT

First and foremost, I would like to express my heartfelt gratitude and genuine thankfulness to the Islamic Development Bank (IDB), Saudi-Arabia for having financed my study and entire expenses over which I have been able to attain my degree and complete this project successfully. I would also like to extend my deepest appreciation to my supervisor, Dr. Alina Binti Wagiran for her constant support, guidance, continuous back-up and inspiration during the entire course of this project. I am fortunate to have her as my mentor and supervisor. I would also like to express my sincere gratitude to Dr. Faizah Mohd. Salleh for her tireless support, troubleshooting tips and consultations which contributed to the success of this project. Last but not least, I would like to thank Dr. Claudia Vickers (Queensland University, Australia) for her generous and kind donation of the starting material (pmCACA:GFP), her time and consultations. Lastly, I would like to extend my warm thankfulness to each and everyone who contributed to this project whether directly or indirectly.
ABSTRACT

The world population is expected to rise by an addition of 2 billion by 2030 and rice consumers are projected to increase by 1.8% annually. Hence, rice production must be increased between 25-45% to match-up the growing population since it is a staple food to more than half of the world’s population. The manipulation of targeted gene in endosperm is a reliable tissue for the production of recombinant proteins over other tissues because it is more cost-effective, it is easier to scale-up agricultural yield, provides a larger storage ability and safe long-term storage. However only a few endosperm-specific promoters have been identified. The present research, successfully constructed the recombinant plasmid, pCAMGpro from the expression vector, pCAMBIA1305.2 containing the strong endosperm-specific α-globulin promoter (AsGpro). The AsGpro was successfully amplified from pmCACA:GFP using the forward primer, AsGproF_HindIII (5’ CACAAACGTGCAAAGCTTAATTCG 3’) and the reverse primer, AsGproR_BamHI (5’ GACGGATCCGAGATTGTAGAAGG 3’) at 55°C. The size of the promoter fragment was approximately 848 bp. Sequencing and subsequent bioinformatics analysis, confirmed 98% homology of nucleotides to A. sativa (Glo1) gene, promoter region (Accession number: AY795082.1). This fragment was then cloned into pMR104a to generate the recombinant plasmid pMRGpro. Subsequent cloning of the recombinant cassette into the expression vector, pCAMBIA1305.2 to create the new recombinant plasmid, pCAMGpro was achieved. These finding can be used to genetically modify rice to express high levels of endosperm specific nutritional proteins of interest that would increase food production and help in alleviating the food crisis facing the world.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/SYMBOLS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of study 1
1.2 Problem statement 3
1.3 Objectives of study 3
1.4 Scope of study 4
1.5 Significance of study 4
2 LITERATURE REVIEW 5
2.1 Current food security status 5
2.2 Plant molecular farming 6
2.3 Global perspective on Genetically Modified Products (GMP) 6
2.4 Seed storage proteins 7
2.5 Emerging interest in seeds as bioreactors 8
2.6 Rice 9
 2.6.1 Advances in biotechnology: Biofortification of rice 10
 2.6.1.1 Iron deficiency 13
 2.6.1.2 Iodine deficiency 13
 2.6.1.3 Vitamin A deficiency 13
 2.6.1.4 Increased levels of essential amino acids 15
 2.6.2 Pharmaceutical recombinant proteins 17
 2.6.3 Edible vaccines 19
2.7 Endosperms 20
2.8 Promoters 21
 2.8.1 Non-tissue-specific constitutive promoters 22
 2.8.2 Endosperm-specific promoters 22

3 METHODOLOGY 27
3.1 Experimental design 27
3.2 Materials 31
 3.2.1 Bacterial strain 31
 3.2.2 Preparation of growth media 31
 3.2.3 The plasmids used for cloning 32
 3.2.3.1 The pmCACA:GFP plasmid construct 32
 3.2.3.2 The intermediate vector, pMR104a 33
 3.2.3.3 The Expression vector, pCAMBIA1305.2 33
 3.2.4 Preparation of Tris-Acetate-EDTA (TAE) Buffer 33
3.2.4.1 Preparation of 50X TAE
3.2.4.2 Preparation of 1X TAE
3.2.5 Preparation of 20 μM of primers
3.2.6 Preparation of antibiotics
3.2.7 Preparation of Ethidium bromide
3.2.8 Preparation of the DNA ladders
 3.2.8.1 Preparation of 1 Kb DNA Ladder
 3.2.8.2 Preparation of Lambda DNA-HindIII Digest Ladder
3.2.9 Preparation of 1 % (w/v) agarose gel
3.2.10 Preparation of 3 M Acetic acid and 3 M Sodium acetate (pH 5.2)
3.2.11 Preparation of 0.1 M CaCl$_2$ in 15% (v/v) glycerol and 1 M MgCl$_2$
3.2.12 Preparation of E. coli DH5α competent cells
3.2.13 Preparation of reagents used to perform blue-white screening

3.3 Methods and cloning procedures
3.3.1 Preparation of pmCACA:GFP plasmid as a source of α-globulin promoter
 3.3.1.1 Transformation of pmCACA:GFP construct
 3.3.1.2 Growth of recombinant E. coli DH5α containing pmCACA:GFP
 3.3.1.3 Extraction of pmCACA:GFP plasmid
 3.3.1.4 Determination of pmCACA:GFP plasmid concentration
3.3.2 Amplification of the Avena sativa globulin promoter (AsGpro) fragment
 3.3.2.1 Primer design
 3.3.2.2 Amplification of AsGpro
 3.3.2.3 Gel electrophoresis of the PCR product (AsGpro fragment)
3.3.2.4 Purification of PCR product (AsGpro) 46
3.3.2.5 Double digestion of AsGpro fragment 47
3.3.2.6 Purification of AsGpro fragment 47
3.3.2.7 Determination of concentration of AsGpro fragment 48

3.3.3 The preparation of the intermediate vector, pMR104a 48
3.3.3.1 Extraction of pMR104a 48
3.3.3.2 Determination of concentration of pMR104a plasmid 49
3.3.3.3 Double digestion of pMR104a with HindIII and BamHI 49
3.3.3.4 Gel purification of the pMR104a/HindIII/BamHI 49
3.3.3.5 Ligation of pMR104a/HindIII/BamHI with AsGpro/HindIII/BamHI 50
3.3.3.6 Transformation of the new recombinant plasmid, pMRGpro 51
3.3.3.7 Screening of recombinant plasmid (pMRGpro) by colony PCR 51
3.3.3.8 Confirmation of pMRGpro by multiple restriction digestion 52
3.3.3.9 Confirmation of pMRGpro by PCR 53

3.3.4 Preparation of the expression vector 54
3.3.4.1 Extraction of pCAMBIA1305.2 54
3.3.4.2 Determination of concentration 54
3.3.4.3 Double digestion of pMRGpro with HindIII and EcoRI 54
3.3.4.4 Gel purification of AsGpro:NOS/HindIII/EcoRI cassette 55
3.3.4.5 Determination of the concentration of AsGpro:NOS/HindIII/EcoRI cassette 55
3.3.4.6 Double digestion of pCAMBIA1305.2 56
with HindIII and EcoRI

3.3.4.7 Gel purification of pCAMBIA1305.2/HindIII/EcoRI fragment 56

3.3.4.8 Determination of the concentration of pCAMBIA1305.2/HindIII/EcoRI 56

3.3.4.9 Ligation of pCAMBIA1305.2/HindIII/EcoRI and AsGpro:NOS/HindIII/EcoRI cassette 57

3.3.4.10 Transformation of recombinant plasmid, pCAMGpro 58

3.3.4.11 Confirmation of pCAMGpro by blue-white screening 58

3.3.4.12 Screening of pCAMGpro by PCR of AsGpro 59

3.3.4.13 Confirmation of pCAMGpro through multiple restriction digestion 59

3.3.4.14 Confirmation of pCAMGpro through amplification of the GUSPlus gene 60

3.4 In-silico characterization of AsGpro 61

3.4.1 Sequencing of AsGpro 61

3.4.2 Cleaning up the sequencing results and assembly of the full length AsGpro 61

3.4.3 Bioinformatics analysis 62

3.4.4 Construction of Phylogenetic tree 62

4 RESULTS AND DISCUSSION 63

4.1 Ligation of the Avena sativa α-globulin promoter (AsGpro) into the intermediate vector, pMR104a. 63

4.2 Replication of pmCACA:GFP construct 64

4.3 Amplification of the α-globulin promoter (AsGpro) fragment 65

4.4 Digestion of AsGpro fragment 66
4.5 Digestion of pMR104a with restriction enzymes.

4.6 Transformation of the new recombinant plasmid, pMRGpro

4.7 Screening of the recombinant colonies for positive transformants
 4.7.1 Colony PCR
 4.7.2 Screening of the recombinant plasmid, pMRGpro by PCR
 4.7.3 Confirming of pMRGpro through digestion with restriction enzymes

4.8 Recombinant plasmid pMRGpro

4.9 Ligation of the AsGpro:NOS cassette into the expression vector pCAMBIA1305.2

4.10 Digestion of pCAMBIA1305.2 with HindIII and EcoRI

4.11 Digestion of pMRGpro with HindIII and EcoRI

4.12 Transformation of recombinant plasmid, pCAMGpro.

4.13 Screening of the transformants for the new recombinant plasmid pCAMGpro
 4.13.1 Blue-white screening
 4.13.2 Amplification of α-globulin promoter from pCAMGpro
 4.13.3 Confirmation of pCAMGpro with HindIII and EcoRI
 4.13.4 Confirmation of pCAMGpro by multiple restriction digestions

4.14 Amplification of β-glucuronidase gene (GUSPlus) from pCAMGpro

4.15 Recombinant plasmid, pCAMGpro

4.16 Bioinformatics analysis

4.17 Sequencing of AsGpro

4.18 Constructing the full-length AsGpro

4.19 Phylogenetic study of the AsGpro
 4.19.1 Homology search using BLAST
Constructing the Phylogenetic tree 94

5 RESULTS AND DISCUSSION 98
5.1 Conclusion 98
5.2 Future works 100

REFERENCES 101

APPENDICES A - J 109
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Current biotechnological advances to improve the nutritional value of rice</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of some of the pharmaceutical proteins produced in different cereals</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparing the quality of forward and reverse primers used</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>The PCR reaction components used to amplify AsGpro</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>The PCR cycling conditions used to amplify AsGpro fragment</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Double digestion of AsGpro fragment</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Ligation reaction mixture for formation of the recombinant plasmid pMRGpro</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Double digestion of pMRGpro with HindIII and EcoRI</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Digestion of the recombinant plasmid, pMRGpro with HindIII</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>Ligation of pCambia1305.2/HindIII/EcoRI and AsGpro/HindIII/EcoRI</td>
<td>58</td>
</tr>
<tr>
<td>3.9</td>
<td>The PCR cycling conditions for GUSPlus gene.</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Top six BLAST results closest to AsGpro obtained from NCBI</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The vision of the nutritionally enhanced ‘wonder rice’ grains genetically modified to contain high levels of several vital micronutrients, amino acids, metabolites and without alteration of their agronomic performance and eating quality</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Histochemical localization of GUS activity driven by the LPAAT-promoter and its deletions in matured seeds of transgenic rice. En endosperm, Em embryo</td>
<td>24</td>
</tr>
<tr>
<td>3.1 (A)</td>
<td>Flow chart of experimental design for the amplification and restriction digestion of Avena sativa globulin promoter.</td>
<td>28</td>
</tr>
<tr>
<td>3.1 (B)</td>
<td>Flow chart of experimental design used to obtain the recombinant plasmid, pMRGpro.</td>
<td>29</td>
</tr>
<tr>
<td>3.1 (C)</td>
<td>Flow chart of experimental design used to obtain the recombinant plasmid, pCAMGpro.</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>The ligation of pMR104a/HindIII/BamHI and AsGpro/HindIII/BamHI to give the new recombinant plasmid, pMRGpro.</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Transformation of E. coli DH5α competent cells with pmCACA:GFP.</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Gel electrophoresis (1% w/v) shows the amplification of (\alpha)-globulin fragment from pmCACA:GFP plasmid.</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Gel electrophoresis (1% w/v) shows restriction enzyme digestion of AsGpro with HindIII and BamHI.</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Gel electrophoresis (1% w/v) of pMR104a digested with HindIII and BamHI.</td>
<td>68</td>
</tr>
<tr>
<td>4.6</td>
<td>Illustration of possible E. coli DH5α transformants with the recombinant plasmid, pMRGpro.</td>
<td>69</td>
</tr>
<tr>
<td>4.7</td>
<td>Gel electrophoresis (1% w/v) shows screening of possible pMRGpro by colony PCR.</td>
<td>71</td>
</tr>
<tr>
<td>4.8</td>
<td>Gel electrophoresis (1% w/v) shows screening of the recombinant clone, pMRGpro through PCR.</td>
<td>72</td>
</tr>
</tbody>
</table>
Gel electrophoresis (1% w/v) shows the comparative restriction analysis of the intermediate vector (pMR104a) and the recombinant plasmid (pMRGpro).

Illustration of the new recombinant plasmid (pMRGpro) obtained from ligation of pMR104a/HindIII/BamHI and AsGpro/HindIII/BamHI.

Diagrammatic representation of the ligation of AsGpro:NOS cassette into the expression vector pCAMBIA1305.2 to obtain the new recombinant plasmid, pCAMGpro (12,981 bp).

Gel electrophoresis (1% agarose w/v) showing the digestion of pCAMBIA1305.2 with HindIII and EcoRI.

Gel electrophoresis (1% w/v) of the pMRGpro digested with HindIII and EcoRI.

Transformation of E. coli DH5α competent cells with recombinant plasmid, pCAMGpro.

Gel electrophoresis (1% w/v) shows amplification of AsGpro fragment from recombinant plasmid (pCAMGpro) extracted from colony 2, 3, 5, 6, 9 and 10.

Gel electrophoresis (1% w/v) shows the digestion of pCAMGpro with HindIII and EcoRI.

Gel electrophoresis (1% w/v) of the comparative restriction analysis of pCAMBIA1305.2 and the recombinant plasmid (pCAMGpro) with HindIII, BamHI and EcoRI.

Gel electrophoresis (1% w/v) shows screening of pCAMGpro by amplification of the β-glucuronidase gene.

Schematic illustration of the pCAMGpro recombinant plasmid containing the α-globulin promoter (AsGpro).

The full-length AsGpro sequence obtained after analysis and construction by the Bioedit software and the chromatograms.

Evolutionary relationship of AsGpro fragment and six other taxa.

The Distance pairwise alignment of AsGpro and the six relatives.
LIST OF SYMBOLS/ABBREVIATIONS

AsGpro - Avena sativa globulin promoter fragment
NOS - Nopaline synthase terminator
AsGpro:NOS - Avena sativa globulin promoter+Nopaline synthase terminator cassette
pMRGpro - Recombinant plasmid from pMR104a containing AsGpro
pMRGpro - Recombinant plasmid from pCAMBIA1305.2 containing AsGpro:NOS cassette
E. coli DH5α - Escherichia coli strain DH5α
A. tumefaciens - Agrobacterium tumefaciens
A. sativa - Avena sativa
°C - Degree Celcius
hrs - Hours
min - Minutes
sec - Seconds
dNTPs - Deoxyribo Nucleotide TriPhosphates
PCR - Polymerase Chain Reaction
DNA - Deoxyribonucleic Acid
g - Gram
mg - Milligram
μg - Microgram
ng - Nanogram
gmol⁻¹ - Grams per mole
gcm⁻¹ - Grams per cubic centimeter
bp - Base pair
Kb - Kilo base
β - Beta
α - Alfa
L - Liter
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml</td>
<td>Mililiter</td>
</tr>
<tr>
<td>μl</td>
<td>Microliter</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Deionized water</td>
</tr>
<tr>
<td>CaMV35S pro</td>
<td>Cauli Flower Misaic Virus 35S promoter</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani medium</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl Thiogalactosidase</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Bromo-4-Chloro-3-Indolyl-Beta-D-Galactopyranoside</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra-Acetic acid</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple Cloning Site</td>
</tr>
<tr>
<td>AMP</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>~</td>
<td>Approximately</td>
</tr>
<tr>
<td>5’</td>
<td>5 prime-end</td>
</tr>
<tr>
<td>3’</td>
<td>3 prime-end</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotations per minute</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>TAE buffer</td>
<td>Tris-acetate -EDTA buffer</td>
</tr>
<tr>
<td>TE buffer</td>
<td>Tris-EDTA buffer</td>
</tr>
<tr>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>T</td>
<td>Thymine</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>MEGA</td>
<td>Molecular Evolutionary</td>
</tr>
<tr>
<td>ES</td>
<td>Endosperm</td>
</tr>
<tr>
<td>ESP</td>
<td>Endosperm Specificity Palindrome</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>M. W.</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>GOI</td>
<td>Gene of Interest</td>
</tr>
<tr>
<td>GMP</td>
<td>Genetically Modified Products</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The pmCACA:GFP full sequence</td>
<td>109</td>
</tr>
<tr>
<td>B</td>
<td>The map of pmCACA:GFP plasmid</td>
<td>111</td>
</tr>
<tr>
<td>C</td>
<td>The map of the intermediate vector, pMR104a</td>
<td>112</td>
</tr>
<tr>
<td>D</td>
<td>The map of the expression vector, pCAMBIA1305.2</td>
<td>113</td>
</tr>
<tr>
<td>E</td>
<td>The Avena sativa full sequence from NCBI (Accession number: AY795082.1)</td>
<td>114</td>
</tr>
<tr>
<td>F</td>
<td>Chromatogram results for the forward sequence</td>
<td>115</td>
</tr>
<tr>
<td>G</td>
<td>Chromatogram results for the reverse sequence</td>
<td>116</td>
</tr>
<tr>
<td>H</td>
<td>Alignment of forward and reverse sequencing results of AsGpro obtained from First Base Sdn. Bhd. using the Bioedit software</td>
<td>117</td>
</tr>
<tr>
<td>I</td>
<td>Figure showing the BLAST results for AsGpro from NCBI database</td>
<td>118</td>
</tr>
<tr>
<td>J</td>
<td>Constructing the Phylogenetic tree by using MEGA5</td>
<td>119</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

The seeds of cereals such as rice, wheat, barley and maize are the main source of food, animal feeds and the raw materials of food and fiber-based industries worldwide. The most important part of the seed acting as a food reservoir for both mankind and during plant growth and development is the endosperm (Berger, 2003).

According to reports from the Food and Agricultural Organization (2011), the world population is expected to rise by an additional 2 billion by 2030. The statistical reports also show that by October 2008, thirty-six countries from Africa, Asia and Latin America were in food crisis. The current world food production cannot support our escalating population.
Rice is a staple food to more than half of the world’s population and therefore stands out as the best candidate for biofortification and biotechnological improvements. This will play a pivotal role in alleviating the world’s nutritional deficiency challenges. The demand for rice by rice consumers is projected to increase by 1.8% annually.

The control of powerful endosperm-specific promoters may provide answers to how seed-specific proteins can be increased. A sound understanding of the seed initiation and the control of early endosperm development will be important for increasing cereal crop yield and improving grain quality (Li, 2011). Tissue-specific promoters have the potential to increase recombinant protein stability and deliver targeted gene expression to only specific parts of the plant (Facy, 2009). Different research outcomes have illuminated the importance and role of several endosperm-specific promoter regions to engineer transgenic crops with improved endosperm-specific biosynthesis (Furtado et al., 2009, Hwang et al., 2002, Kawakatsu and Takaiwa, 2010, Furtado et al., 2008, Sunilkumar et al., 2002, Vickers et al., 2006).

Construction of the α-globulin promoter (AsGpro) into the expression vector pCAMBIA1305.2 will allow other researchers to further use this plasmid construct to understand the promoter activity more deeply. In their research, Vickers et al. (2006) showed that α-globulin promoter maintained its endosperm-specific activity in both wheat and barley and its endosperm-specific activity is attributed to the Endosperm Specificity Palindrome (ESP) element (ACATGTCATCATGTCAT) at position -91 while the expression strength was attributed to the GCN4 element. Mutation of GCN4 decreased expression to ~60% while ESP mutation led to loss of endosperm-specific expression. Mutation of both ESP and GCN4 led to total loss of expression. The activity of the α-globulin promoter has not been tested in rice. This new recombinant vector, pCAMGpro bearing the α-globulin promoter and a gene of interest, can be transformed into rice and the expression quantified in relation to other endosperm-
specific promoters and the constitutive promoters. If α-globulin endosperm-specific promoter shows significantly higher endosperm-specific expression activity, it can be employed in industrial biosynthesis of food and pharmaceutical proteins. This will alleviate the food crisis facing the globe.

1.2 Problem statement

Rice is a staple food to more than half of the world’s population and over 600 million human beings suffer from hunger on a daily basis. The world’s rice production cannot support both the world’s growing population which is expected to rise by an additional 2 billion by 2030 and the rice demand by rice consumers which is projected to increase by 1.8% annually.

1.3 Objectives of study

i. To amplify the endosperm-specific α-globulin promoter (AsGpro) from pmCACA:GFP plasmid.
ii. To clone the PCR product (AsGpro fragment) into pMR104a and clone the AsGpro:NOS cassette into the expression vector, pCAMBIA1305.2.
iii. To analyze the α-globulin promoter sequencing results through bioinformatics and construction of Phylogenetic tree.
1.4 Scope of study

The scope of this research encompassed amplification and subsequent cloning of the endosperm-specific α-globulin promoter fragment (~823 bp) into the intermediate vector, pMR104a. The AsGpro:NOS cassette (~1,111 bp) will be ligated into the pCAMBIA1305.2 expression vector to produce the recombinant plasmid, pCAMGpro (~12,981 bp) followed by Bioinformatics analysis of the AsGpro fragment.

1.5 Significance of study

The endosperm represents approximately 60% of the world’s food supply (Xu et al., 2010) yet only a few strong endosperm-specific promoters have been identified. This research is significant in availing a strong endosperm-specific promoter (Avena sativa α-globulin promoter) that will increase the production of endosperm-specific proteins in transgenic rice that would consequently contribute to improving the nutritional value and quantity of rice which must be increased between 25 - 45% to match-up the growing population of rice consumers (1.8% annually). This will also alleviate the food crisis facing the entire world.
References

Drakakaki, G., Christou, P., Ouml, St., and Ger, E. 2000. Constitutive expression of soybean ferritin cDNA intraspecific wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Research, 9, 445-452.

Hu, Y. F., Li, Y., Zhang, J., Liu, H., Chen, Z., and Huang, Y. 2011. PzsS3a, a novel endosperm specific promoter from maize (Zea mays L.) induced by ABA. Biotechnology Letters, 33, 1465-1471.

Qiagen 2009. QIAgenes E. coli Handbook.

