INTEGRATED FARE PAYMENT SYSTEM IN MULTI OPERATORS
SINGLE MARKET PUBLIC BUS NETWORK

SAFIZAHANIN BINTI MOKHTAR

UNIVERSITI TEKNOLOGI MALAYSIA
FEBRUARY 2011
INTEGRATED FARE PAYMENT SYSTEM IN MULTI OPERATORS SINGLE MARKET PUBLIC BUS NETWORK

SAFIZAHANIN BINTI MOKHTAR

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Transport Planning)

Faculty of Built Environment
Universiti Teknologi Malaysia

FEBRUARY 2011
Specially dedicated to

To my beloved father, mother and sisters,
Mohamad Yusoff and all my friends,
my entire lecturers,
for the support and cares.
ACKNOWLEDGEMENT

Without the blessing and grace of Allah S.W.T nothing that we attempt will ever be realised. With sincere appreciation I would like to share my gratefulness to all individuals and group of people that have been very helpful since the beginning of my study.

Firstly, I would like to express my thanks to Dr Muhammad Zaly Shah bin Muhammad Hussein for the valuable guidance and advice with significant ideas and suggestions until the end of this study. Without his guidance, much of the important information in this research would be rumpled.

My sincere appreciation also extends to my colleagues, Aslam, Faridah, Jabu, Razman, Syida, Nadwa, Husna and others who have provided assistance at various occasions. The view and tips are useful indeed. To the respondents and government officials, thank you for your kind assistance and cooperation.

Lastly, to my beloved family members and Mohamad Yusoff, thank you very much for your love and support. I would like to wish everyone happy always.
ABSTRACT

Several research have dealt with the need for the planning of an efficient public transportation system in Johor Bahru. However, these research did not look into the need for efficiency of public transportation from the perspective of the users’ and operators’ and the efficiency of the fare payment system among the stage bus operators. Studies have identified that fare integration is a way to enhance public bus system. Therefore the aim of this study is to determine if the fare integration would enhance public bus system in Johor Bahru. The objectives of the study were to review the current operational, network and market structures of public bus system in Johor Bahru, to determine users and operators acceptance level to the integrated fare payment system, to determine the appropriate methods of fare integration and to review the benefits of the integrated fare payment system. Seventy stage bus users and three bus operators were interviewed. The research hypotheses (alternative hypothesis H_1) stated the population parameter (age, education and income level) and travel characteristic (changes of bus line) have influence to the acceptance of the integrated fare payment system against the study hypotheses (null hypothesis H_0) that the population parameter and travel characteristic have no influence to the acceptance of the integrated fare payment system. Hypotheses test failed to reject the null hypotheses (for age, income level and changes of bus line) and accepted the alternative hypothesis for education level. For the operators, the research hypothesis was on the population proportion (P) where the alternative hypothesis H_1: $P > 0.5$ tested the operators willingness (willingness to share information and merge) against null hypothesis H_0: $P = 0.5$. Hypotheses test accepted the null hypothesis for both of the proportion hypotheses. The proportion test value ($P = 0.2776$) revealed there is inadequate evidence to conclude that operators are willing to share the information and merge ($P > \alpha$). The result is inconclusive as the study only evaluated three population parameter (age, education and income level) and one travel characteristic (changes of bus line). Further research in population and travel characteristics is needed for more complete understanding on users’ and operators’ acceptance level to the proposed integrated fare payment system in Johor Bahru.
ABSTRAK

Beberapa kajian telah mendapati keperluan untuk merancang pengangkutan awam yang efisien di Johor Bahru. Namun kajian tersebut tidak melihat keperluan pengangkutan awam yang efisien dari perspektif penumpang dan operator bas mahupun dari sudut tambang diantara operator bas. Kajian telah mengenalpasti aplikasi tambang bersepadu adalah salah satu kaedah untuk memperbaiki pengangkutan awam di Johor Bahru. Objektif kajian ini adalah untuk mengenalpasti operasi, rangkaian dan stuktur pasaran semasa pengangkutan awam di Johor Bahru, untuk menentukan tahap penerimaan penumpang dan operator terhadap sistem tiket bersepadu, untuk mengenalpasti kaedah tambang bersepadu yang bersesuaian, dan untuk mengenalpasti kebaikan penggunaan tambang bersepadu. Tujuh puluh penumpang dan tiga operator bas disoalselidik. Kajian hipotesis (hipotesis alternatif \(H_1 \)) menyatakan ciri-ciri penduduk (umur, taraf pendidikan dan pendapatan) dan ciri-ciri perjalanan (pertukaran bas) mempunyai pengaruh kepada tahap penerimaan sistem tambang bersepadu bertentangan dengan hipotesis nol (hipotesis nol \(H_0 \)) yang menyatakan ciri-ciri penduduk dan perjalanan tidak mempengaruhi tahap penerimaan sistem tambang bersepadu. Ujian hipotesis gagal menolak hipotesis nol (untuk umur, pendapatan dan pertukaran bas) dan menerima hipotesis kajian untuk taraf pendidikan. Untuk operator bas, hipotesis kajian adalah berdasarkan ujian perkadaran dimana \(H_1: P > 0.5 \) untuk mengetahui kesanggupan operator bas (kesanggupan berkongsi maklumat dan bergabung) bertentangan dengan hipotesis nol \(H_0: P = 0.5 \). Ujian hipotesis menerima hipotesis nol untuk kedua-dua ujian hipotesis perkadaran tersebut. Nilai perkadaran \(P = 0.2776 \) mendedahkan ujian hipotesis tersebut kekurangan bukti untuk membuat kesimpulan bahawa operator bas sanggup untuk berkongsi maklumat dan bergabung \((P > \alpha) \). Keputusan kajian ini tidak memberikan keputusan kerana skop kajian terhad kerana hanya merangkumi tiga ciri-ciri penduduk (umur, taraf pendidikan dan pendapatan) dan satu ciri-ciri perjalanan (pertukaran bas). Kajian lanjutan dalam ciri-ciri penduduk dan perjalanan diperlukan untuk lebih memahami tahap penerimaan penumpang dan operator bas terhadap sistem tiket bersepadu di Johor Bahru.
TABLE OF CONTENTS

CHAPTER CONTENTS PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xv
LIST OF SYMBOLS xvii
LIST OF APPENDICES xviii

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 3
1.3 Research objectives 5
1.4 Research questions 6
1.5 Research methodology 7
1.5.1 Literature review 7
1.5.2 Data collection 7
1.5.3 Data analysis 8
1.5.4 Findings and conclusion 8
1.6 Research hypotheses 9
1.7 Scope of research 10
1.8 Significance of research 11
LITERATURE REVIEW

2.1 Introduction

2.2 Current network structure

2.3 Economic model
 2.3.1 Current market share

2.4 The current fare payment in Johor Bahru
 2.4.1 Public transportation in Malaysia

2.5 Introduction to smart card
 2.5.1 Definition of smart card
 2.5.2 Types of smart cards
 2.5.2.1 Magnetic strip card
 2.5.2.2 Contact type integrated circuit smart cards
 2.5.2.3 Proximity cards
 2.5.2.4 Capacitive coupled cards

2.6 Definition of integrated fare payment system
 2.6.1 Transit passes
 2.6.2 Stored value fare cards
 2.6.3 Fare based passengers account
 2.6.4 Multi use electronic coin purses
 2.6.5 Cashless purchase of fare media
 2.6.6 T-Money system

2.7 Fare integration and challenges in Malaysia

2.8 The experiences of Korea and Singapore

2.9 Benefits of smart card usage in transit
 2.9.1 Reduce corruption
 2.9.2 Financial security
 2.9.3 Generation of traffic information
3 RESEARCH METHODOLOGY

3.1 Introduction 52
3.1.1 Flowchart of research methodology 53
3.2 Study area 55
3.3 Primary data 57
3.4 Secondary data 64
3.5 Sampling design 65
3.5.1 Sampling unit 65
3.5.2 Determining sample size 66
3.6 Simple random sampling method 68
3.7 Questionnaire structure 69
3.8 Data analysis techniques 70
3.8.1 Analysis of bus acceptance level 71
3.8.2 The statistical package for social science 73
3.8.3 Gamma analysis 74
3.8.4 Test of proportion 74
3.9 Conclusion 77
4 DATA AND ANALYSIS

4.1 Introduction 78
4.2 Bus passengers’ analysis 79
 4.2.1 Demographic characteristics 79
 4.2.2 Passengers trip characteristics 82
 4.2.3 Usage of integrated fare payment system 84
 4.2.4 Analysis of passengers acceptance level 88
 4.2.4.1 Age level and the usage of integrated fare payment system 88
 4.2.4.2 Education level and the usage of integrated fare payment system 90
 4.2.4.3 Income and the usage of integrated fare payment system 92
 4.2.4.4 Changes of bus line and the usage of integrated fare payment system 94
4.3 Bus operators analysis 96
4.4 Proportion analysis 99
 4.4.1 Proportion of willingness to share information 100
 4.4.2 Proportion of willingness to merge 102
4.5 Conclusion 105

5 CONCLUSION AND RECOMMENDATIONS

5.1 Summary of study 108
 5.1.1 The current Johor Bahru public bus 108
 5.1.2 The acceptance level 109
 5.1.3 The appropriate integrated fare method 111
 5.1.4 The benefits of integrated fare payment 111
5.2. Recommendations

5.2.1 Contribution to transport planning 111

5.2.2 Further research 112

5.3 Conclusion 113

REFERENCES 115-122

Appendices A - E 123-130
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristics of market structures</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Bus operators operating revenue and balance brought forward</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Sectoral regulation in Malaysia</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Characteristics of magnetic strip card</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Characteristics of radio frequency card</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>System performance indicator</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>Types of traffic information</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary of study variables</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Errors in hypothesis testing</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Gamma value</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency and percentage of respondents’ usage of fare integration</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of passengers who willing to pay higher fare and the reasons for not used the integrated fare system</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>Age of respondents and the usage of fare integration system</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>Result of analysis between age and usage of fare integration system</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Education level of respondents and the usage of fare integration system</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Result of analysis between education level and usage of fare integration system</td>
<td>91</td>
</tr>
<tr>
<td>4.7</td>
<td>Income level of respondent and the usage of fare integration system</td>
<td>92</td>
</tr>
</tbody>
</table>
4.8 Result of analysis between income level and usage of fare integration system 93
4.9 Changes of bus line and the usage of fare integration system 94
4.10 Result of analysis between changes of bus line and usage of fare integration system 95
4.11 Frequency and percentage of operators receive capital fund 96
4.12 Frequency and percentage of operators will implement fare integration system and the reasons for not implement 97
4.13 Frequency and percentage of types of fare system 98
4.14 Frequency and percentage of operators’ willingness to share information 98
4.15 Frequency and percentage of operators’ willingness to merge 99
4.16 Frequency and percentage of operators’ willingness to share information 100
4.17 Frequency and percentage of operators’ willingness to merge 102
4.18 Bus passengers’ hypotheses result 106
4.19 Bus operators proportion analysis 107
5.1 Summary of passengers analyses result 110
5.2 Summary of proportion analysis 110
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Percentage of registered private car and the public bus in Malaysia from year 1996 to year 2005</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Average waiting time along Jalan Skudai</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Average waiting time along Jalan Pandan to Jalan Tebrau</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Johor Bharu current public bus road network</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Johor Bahru public bus operators market share</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>The magnetic strip card</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Contact type integrated circuit smart cards</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Proximity cards (Radio frequency proximity cards)</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Transit passes card</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Stored value fare cards</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Overview of the T-Money system</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>The UTAUT model</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of research methodology</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Study area map</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>Percentage of respondents’ age</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of respondents’ education level</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Percentage of respondents’ income level</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Percentage of respondents’ travel per week</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Percentage of respondents’ purpose of trip</td>
<td>83</td>
</tr>
<tr>
<td>4.6</td>
<td>Percentage of respondents’ change bus line</td>
<td>84</td>
</tr>
<tr>
<td>4.7</td>
<td>Percentage of passenger who willing to pay higher fare and the reasons for not used the integrated fare</td>
<td>86</td>
</tr>
<tr>
<td>4.8</td>
<td>Percentage of types of payment preferred</td>
<td>87</td>
</tr>
<tr>
<td>4.9</td>
<td>Illustration the area beyond $z = 0.59</td>
<td>102</td>
</tr>
<tr>
<td>4.10</td>
<td>Illustration the area beyond $z = 0.59</td>
<td>104</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARS</td>
<td>Automatic Response Systems</td>
</tr>
<tr>
<td>ATM</td>
<td>Automated Teller Machine</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CD</td>
<td>Usage Data</td>
</tr>
<tr>
<td></td>
<td>Co-operative Development</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CVLB</td>
<td>Commercial Vehicle Licensing Board</td>
</tr>
<tr>
<td>DART</td>
<td>Delaware Authority Regional Transportation</td>
</tr>
<tr>
<td>DB</td>
<td>Data base</td>
</tr>
<tr>
<td>DCS</td>
<td>Depot Computer System</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrical Erasable Program</td>
</tr>
<tr>
<td>EIFS</td>
<td>Enhance Integrated fare system</td>
</tr>
<tr>
<td>EMV</td>
<td>Europay, Mastercard and Visa</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GTM</td>
<td>General Ticketing Machine</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>IDFC</td>
<td>Integrated Drivers Fare Console</td>
</tr>
<tr>
<td>IFPS</td>
<td>Integrated Fare Payment system</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transport system</td>
</tr>
<tr>
<td>KL</td>
<td>Kuala Lumpur</td>
</tr>
<tr>
<td>KTM</td>
<td>Keretapi Tanah Melayu</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>MARTA</td>
<td>Metropolitan Atlanta Rapid Transit</td>
</tr>
<tr>
<td>MECO</td>
<td>Ministry of Entrepreneur and</td>
</tr>
<tr>
<td>MOT</td>
<td>Ministry of Transport</td>
</tr>
<tr>
<td>MOW</td>
<td>Ministry of Work</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>NYCT</td>
<td>-</td>
</tr>
<tr>
<td>O.M.O</td>
<td>-</td>
</tr>
<tr>
<td>PDA</td>
<td>-</td>
</tr>
<tr>
<td>PR</td>
<td>-</td>
</tr>
<tr>
<td>RAM</td>
<td>-</td>
</tr>
<tr>
<td>RF</td>
<td>-</td>
</tr>
<tr>
<td>ROM</td>
<td>-</td>
</tr>
<tr>
<td>S.M.G</td>
<td>-</td>
</tr>
<tr>
<td>SDI</td>
<td>-</td>
</tr>
<tr>
<td>SMG</td>
<td>-</td>
</tr>
<tr>
<td>TBS</td>
<td>-</td>
</tr>
<tr>
<td>TMAs</td>
<td>-</td>
</tr>
<tr>
<td>TSM</td>
<td>-</td>
</tr>
<tr>
<td>UTAUT</td>
<td>-</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

- \hat{p}: The sample proportion
- x: The characteristics of interest
- n: Sample size
- α: Type I error, significant level
- β: Type II error
- P: The population proportion
- H_0: The null hypothesis
- H_1: The alternative hypothesis
- z: The normal test statistic
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bus passenger’s survey questionnaire</td>
<td>123</td>
</tr>
<tr>
<td>B</td>
<td>Table of areas under standard normal curve</td>
<td>126</td>
</tr>
<tr>
<td>C</td>
<td>Table of random numbers</td>
<td>127</td>
</tr>
<tr>
<td>D</td>
<td>Bus operators survey questionnaire</td>
<td>128</td>
</tr>
<tr>
<td>E</td>
<td>Table of areas under standard normal curve</td>
<td>130</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION TO RESEARCH

1.1 Background

Public bus is seen as a practical answer to the current traffic congestion woes in major Malaysian cities. The daily congestion in cities like Kuala Lumpur, Johor Bahru and Georgetown are the results of the heavy reliance on private vehicles as the main transportation mode among the citizens. Statistics from Road Transport Department showed a percentage of steady increase of private car ownership by Malaysian all over the country from the year 1999 until the year 2005 (Figure 1.1).

![Figure 1.1: Percentage of registered private car and the public bus in Malaysia from year 1996 to year 2005](image-url)

Source: Road Transport Department (2006)
The undesirable impacts from this congestion include the increase in travelling time and cost, higher probability of crashes, escalating environmental pollution, and many others including the increase in unsightly infrastructure development. Hence, the authorities know that a more sustainable form of transportation like the public bus must be given higher priority over private vehicles usage, if all these negative impacts are to be reduced.

There are no shortcuts in the success stories on public bus usage in major world cities. They are Kyoto in Japan, Seoul in South Korea and Curitiba in Brazil. Some of these successes do not come easy, fast nor cheap. Most successes include a major reform on the way of thinking among city officials, bus operators, financial institutions and the public. This reform requires great will to succeed from all these stakeholders. But, their effort can be made easier with the help of technology. In fact, in most cases, the use of technology is crucial and instrumental in getting the support of the people who ultimately must decide whether to shift to the public bus or to continue to rely on their trusted private vehicles.

There are many technologies available these days to help and support the implementation of a public bus service. These technologies include Advanced Traveller Information System (ATIS), Advanced Traffic Management System and Advanced Public Transportation System (APTS) that could facilitate the planning of a bus operation in a big city that admittedly can be very complicated (Lam and Toan, 2006). These technologies help to reduce over dependencies on human or manual judgment when managing large network as well as to improve users experience when using the public buses. Putting them together require great skill and intelligence but the success is sweet and rewarding as all these efforts help to encourage more sustainable development and more quality living.
1.2 Problem Statement

The current implementation of the public bus systems in Malaysia can be categorized as a multi operator single market system where several bus operators competing for the same market segment. For example, in Johor Bahru, the residents of Taman Universiti are spoilt for choices as almost all operators in Johor Bahru such as Causeway Link, Triton, Maju, Transit Link and others offer their services to Taman Universiti. As there are many operators, the competition among them can be rough. This phenomena result in a host of other problems including services provided and network disintegration which will not benefit each competing operator.

However, save for the above problems, there is still one common ground that holds all these operators together which is the fare system. In Malaysia, fare is highly regulated and it is the function of the government through the Commercial Vehicle Licensing Board to control it. Individual operator does not have the legal rights to change their fare or alter the fare structure. Hence, if other things remain status quo (e.g. operation, market and network structures), then improving the fare payment system is a possible solution to improve the attractiveness of the public bus system especially when the government, either federal or local, has full control over it.

All public transport operators ought to follow Section 19 Commercial Vehicle Licensing Board Act 1987. The Act is as follows:-

19. (1) Subject to this Act, the Board may attach to any license granted under this Act such conditions as it think fit and in particular –
 (a) in relation to a specified class of public service vehicles license –
 (i) that specified fares shall be charged;
 (ii) that where desirable in the public interest, the fares shall be so fixed as to prevent wasteful competition with alternative means of transport, if any, along the route or any part thereof or in proximity thereto;
 (iii) that the service shall be operated within the specified areas or routes and in accordance with specified hours of operation and specified frequency;
(iv) that copies of the time-table and fare table and in the case of excursion hoses also the itinerary, shall be carried and displayed in vehicles used on the service and shall be liable for inspection;
(v) that passengers shall not be taken up or set down except at points specified in the license or shall not be taken up or set down between specified points;
(vi) that passengers in excess of a specified number shall not be carried;
(vii) that the holder of the license or certain specified persons only shall drive or operate the vehicle;

Source: Commercial Vehicle Licensing Board Act (1987)

No consideration has been given to the fare payment system when it comes to planning the public transportation in Johor Bahru. The current fare payment system in Johor Bahru still uses the one man operation (O.M.O) system that far from the latest fare technology and more convenient to the passengers. Based on the premise that the fare system is government-controlled, therefore it would be the easiest way to perform any improvement to the fare payment system. Hence, the integrated fare payment system among various public bus operators could be seen as the good improvement to enhance Johor Bahru public bus system.
1.3 Research Objectives

The objectives of this research are:

i. To review the current operational, network and market structures of the public bus services in Johor Bahru.

This research sought to describe clearly the present public bus daily service operations, the bus network and current method of fare collection. It also seek to examine the characteristics of market structure in order to determine the current market structure for public bus in Johor Bahru.

ii. To determine the acceptance level of the users and the operators of public bus services regarding the integrated fare payment system.

Upon knowing the acceptance level from operators and passengers, recommendations can be made to implement the proposed integrated fare payment system.

iii. To determine the appropriate method of fare payment integration.

There are many ways to implement the integrated fare payment system. Each of the methods has its advantages and disadvantages that should be reviewed to obtain the suitable system of fare payment integration suitable for the current Johor Bahru bus operations.

iv. To review the benefits of an integrated fare payment system.

There are many advantages that could be gained by the operators and passengers such as shorter travelling time, faster boarding and alight time, etc. However, this research does not only seek to determine the benefits to the passengers and operators, but also the benefits to the government and the environment.
1.4 Research Questions

The following questions arise from the research problem stated earlier:

i. What are the current operation, market and network structures of the public bus services in Johor Bahru?

ii. What are the experiences in other countries in implementing their integrated fare payment system?

iii. What will be the best integrated fare payment system for the public bus services in Johor Bahru?

iv. Will the users and the operators accept the proposed integrated fare payment system?

v. How can an integrated fare payment system be implemented in Johor Bahru’s public bus systems?

vi. Will the integrated fare payment system benefit the operators and the users?
1.5 Research Methodology

Based on the research problem and research questions, this study was involved the following activities:

1.5.1 Literature Review

Articles on the integrated fare payment system are a good source to know the impetus for their implementation as well as understand the various issues surrounding their implementation. Also, these articles highlighted the different types of integrated fare payment systems as well as highlighted their benefits and shortcomings. This step, therefore help to identify the best solution for the public bus systems in Johor Bahru as well as guide the activities of the research.

1.5.2 Data Collection

It is envisioned that the data for this study come from two sources, primary and secondary. The primary data was obtained from both the users as well as from the operators of the public bus services. The main tools for obtaining the primary data are pre-prepared questionnaire forms. For the users of public bus services, a random sample were selected, the size of sample was determined later in the research. As for the public bus operators in Johor Bahru, a census involving all the operators was conducted as their number is small (less than 10 operators).

The secondary data in this research was obtained from various published sources like from the Department of Road Transportation, Commercial Vehicles Licensing Board, Ministry of Transportation, Local Authorities such as Johor Bahru City Council and Central Johor Bahru Municipal Council and also the Statistics Department.
1.5.3 Data Analysis

This step was analyzing the data obtained both from the primary and secondary sources. The data from the secondary sources was mainly involved with descriptive statistics as their roles were chiefly to explain the current operation, network and market structures.

The primary data however was analyzed using either the parametric or non-parametric inferential statistics. Also, some form of measures of association like the contingency coefficient which was used to explain the bivariate relationships that might exist between two variables. These statistical analyses were important to test the hypotheses stated in this research.

1.5.4 Findings and Conclusion

The last stage of the research is to provide the summary of the research, the conclusion and create some recommendations for future research. The research will draw to the attention to the improving the fare payment system.

Furthermore, this chapter also provided several aspects for future research such as integrated fare payment system between different modes of transportation in Johor Bahru, the different aspects of passenger characteristics to be evaluated, the study of policies and strategies needed by the authorities in implementing the integrated fare payment system, the study on the fare structure, the charging the fare pricing, the fare revenue collection and the revenue allocation among the different operators involve with the integrated fare payment system.
1.6 Research Hypotheses

Based on the research questions outlined in the previous section, this research examined the following two hypotheses:

i. Most users will accept the integrated fare payment system.

The null hypothesis \((H_0)\) indicated that it is not true that the majority of bus users accept the integrated fare payment system at \(p = 0.5\) and it tested against the alternative hypothesis \((H_1)\) where it is true that the majority of bus users accept the integrated fare payment system at \(p > 0.5\). Therefore:

\[
H_0: p = 0.5 \\
H_1: p > 0.5
\]

where \(p\) is the proportion of the users that accept the integrated fare payment system.

ii. Most operators will agree to the integrated fare payment system.

The null hypothesis \((H_0)\) indicated that it is not true that the majority of bus operators agree to the integrated fare payment system at \(p = 0.5\) and it tested against the alternative hypothesis \((H_1)\) where it is true that the majority of bus operators agree to the integrated fare payment system at \(p > 0.5\). Therefore:

\[
H_0: p = 0.5 \\
H_1: p > 0.5
\]

where \(p\) is the proportion of the operators who agree with the proposed integrated fare payment system.

1.7 Scope of Research

Proper scoping of the research is required as it is important that the research only provides answers that are sought after. Therefore, the following research scope has been identified:

i. The research was conducted in Johor Bahru. In Johor Bahru Structure Plan 2001 - 2020, the city plans to have an integrated public transportation system in the southern region of Malaysia. Therefore, the area selected is valuable to set up the city to the future planned system.

ii. The research was limited to identifying the best solution to implement the integrated fare system but it did not go into the mechanics of how to put the systems into operation. The parts that involved with the technical aspects are not in researcher knowledge. As such, this research was limited to find the best solution to implement the proposed integrated fare payment system in Johor Bahru.

iii. The integration of the fare payment was only involved bus services and not other modes of transportation like taxi or rail services. Focus was only given to the public bus due to the small number of bus operators in Johor Bahru. The public bus was the best mode of public transportation in Johor Bahru in order to encourage local people to switch from using private car to the public transportation by shifting the fare payment method.
1.8 Significant of Research

This research is significant as its attempts is not only to understand the operational, network and market structures of the public bus systems in a multi-operator-single-market environment but also to explore the acceptance of the users and the operators on the proposed integrated fare payment system. Besides, this research tries to quantify the benefits of such an integrated fare payment system, and also doing to influences the authorities and the operators to adopt the integrated fare payment system.
REFERENCES

