ENHANCEMENT OF SCHEDULING SYSTEM INTERFACES AND FUNCTIONALITIES

CASE STUDY: ASIAN INSTITUTE OF MEDICAL, SCIENCE AND TECHNOLOGY (AIMST) SCHEDULING SYSTEM

NORDAHLIA BINTI ABDUL JALAL

UNIVERSITI TEKNOLOGI MALAYSIA
ENHANCEMENT OF SCHEDULING SYSTEM INTERFACES AND FUNCTIONALITIES
CASE STUDY: ASIAN INSTITUTE OF MEDICAL, SCIENCE AND TECHNOLOGY (AIMST) SCHEDULING SYSTEM

NORDAHLIA BINTI ABDUL JALAL

A technical report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Computer Science – Real Time Software Engineering)

Centre for Advanced Software Engineering (CASE)
Universiti Teknologi Malaysia

APRIL, 2008
For my beloved Mother and Father,
Kakak, Abang Khairul, Abang, Kak Fizah,
Sikin and Daniel.
ACKNOWLEDGEMENT

In the Name of Allah

A highest gratitude to Allah the Almighty for His generosity and kindness for giving me the strength and the knowledge to complete the technical report for “Enhancement of Scheduling System Interfaces and Functionalities – Case Study: - Asian Institute of Medical, Science and Technology (AIMST) Scheduling System“.

I would like to express my appreciation to my academic mentor, Mr. Othman bin Mohd Yusop for his support and guidance through the whole duration of Industrial Attachment until this technical report is produced.

I would also like to thanks the Mahkota Research Sdn. Bhd. (MRSB) for the opportunity and the cooperation given during the Industrial Attachment, especially to Mr. Muthusamy Subramaniam and Mr. Ho Wai Men for their knowledge and opinions for the project.

To the reader of this report, thank you for your willingness to spend time to read and evaluate this technical report. Let us share the knowledge that we have and may Allah bless us all.
ABSTRACT

The purpose of the AIMST project is to produce a scheduling system for AIMST that allows the user to setup scheduling time for selected control unit and monitoring the control unit based on the scheduling time given. The issue that arises is that the AIMST system was developed based on the requirements by AIMST. Therefore the system might have some difficulties to be adapted for other organization or places because different organization might have different needs. Other issue is that the AIMST system interfaces are not well organized and might confuse the users. The intention of the project is to produce a scheduling system based on the AIMST system by enhancing the interfaces and functionalities. The project also intends to tackle the weaknesses of the AIMST system for the enhanced scheduling system. The enhanced scheduling system was developed using Visual Basic programming language and Microsoft Office Access as the system database. The functionalities of the system were modeled and recorded using Unified Modeling Language (UML) and system documents were produced based on DOD-STD-2167-A. The enhanced scheduling system provides users with a standard Window application interfaces such as menu bar and toolbox. The enhanced scheduling system also offering users with the control to system functions based on the user’s need. Users also provided with functions and interfaces to alter the system data such as add, edit and delete function. Documents that have been produced are Software Development Plan (SDP), Software Requirement Specification (SRS), Software Design Document (SDD) and Software Test Description (STD).
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Project Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Project Mission</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.4 Project Vision</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5 Project Objective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.6 Project Scope</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.7 Project Description</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.8 Project Plan</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.9 Company Background</td>
<td>5</td>
</tr>
</tbody>
</table>

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiii
LIST OF APPENDICES xv
1.9.1 Mahkota Technologies Sdn. Bhd. 5
1.9.2 Mahkota Research Sdn. Bhd. 6

2 LITERATURE REVIEW 7

2.1 Existing System 7
 2.1.1 AIMST Project 7
 2.1.2 Enhanced Scheduling System 9
 2.1.3 Justification Between Existing System and Enhanced System 11

2.2 Software Process Model 12
 2.2.1 Waterfall Model 12
 2.2.2 Spiral Model 14
 2.2.3 V Model 15
 2.2.4 Justification 17

2.3 Modeling Language 18
 2.3.1 Unified Modeling Language (UML) 18
 2.3.2 Description of UML Diagram 19
 2.3.2.1 Use Case Diagram 19
 2.3.2.2 Class Diagram 20
 2.3.2.3 Interaction Diagram 20
 2.3.2.4 State Transition Diagram 22
 2.3.2.5 Activity Diagram 22
 2.3.2.6 Deployment Diagram 24
 2.3.3 Why Unified Modeling Language (UML)? 25

2.4 Programming Language 25
 2.4.1 Visual Basic 6.0 25
 2.4.2 Visual Basic Environment 26
 2.4.3 Why Visual Basic? 27

2.5 Database 28
2.5.1 Access Database 28
2.5.2 Why MS Access? 29
2.6 Document Standard 30
 2.6.1 DOD-STD-2167-A 30
 2.6.2 MIL-STD-498 30
 2.6.3 Why DOD-STD-2167-A? 31

3 SOFTWARE METHODOLOGY 32
 3.1 Process Model 32
 3.1.1 V Model 32
 3.1.1.1 Requirement Analysis Phase 33
 3.1.1.1.1 Requirement Gathering Activity 34
 3.1.1.2 System Design 35
 3.1.1.2.1 Analyze the User Requirements 36
 3.1.1.2.1 Software Requirement Specification (SRS) 40
 3.1.1.3 Architecture Design 40
 3.1.1.3.1 High Level Design 40
 3.1.1.3.2 Software Design Document (SDD) for Architecture Design 42
 3.1.1.4 Module Design 43
 3.1.1.4.1 Class Design 43
 3.1.1.4.2 Database Table 48
 3.1.1.4.3 Software Design Document (SDD) for Module Design 50
3.1.1.5 Coding 50
 3.1.1.5.1 Code Development 50
3.1.1.6 Unit Testing 54
 3.1.1.6.1 Unit Testing 54
 Techniques
 3.1.1.6.2 Unit Testing Test Cases 59
3.1.1.7 System Testing 62
 3.1.1.7.1 System Testing Techniques 62
 3.1.1.7.2 System Testing Test Cases 63
3.2 Summary 69

4 PROJECT DISCUSSION 71
4.1 System Interface 71
 4.1.1 System Controls 71
 4.1.1.1 Menus 72
 4.1.1.2 Toolbar Buttons 72
 4.1.2 Setup Module 73
 4.1.2.1 System Setup 74
 4.1.2.2 User Setup 75
 4.1.2.3 Equipment Setup 76
 4.1.3 Library Module 76
 4.1.3.1 Level Setting 77
 4.1.3.2 Control Unit Setting 78
 4.1.4 Holiday Module 78
 4.1.4.1 Public Holiday Setting 79
 4.1.4.2 Semester Break Setting 80
4.1.5 Schedule Module 80
 4.1.5.1 Setup Time All 81
 4.1.5.2 Setup Time Multiple 82
 4.1.5.3 Setup Time Control Unit 83

4.1.6 Report 83
 4.1.6.1 Weekly Report 84
 4.1.6.2 Monthly Report 85

4.2 System Output 85

4.3 Naming Convention 87

5 CONCLUSION 89
 5.1 Summary 89
 5.2 Difficulties 90
 5.3 Lesson Learnt 90
 5.4 Conclusion 91

REFERENCES 92

Appendices A-G 95-101
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Justification Between AIMST System and Enhanced System</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Scheduling System Database</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>Document and Output of Development Phase</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>List of System Menus and Functionality</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>List of Toolbar Buttons and Functionality</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>List of Submodules of Setup</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>List of Submodules of Library</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>List of Submodules of Holiday</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>List of Submodules of Schedule</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>List of Submodules of Report</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>Text File Format</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>Naming Convention for Visual Basic Controls</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Example Interface of AIMST System</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Waterfall Model</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Spiral Model</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>V Model</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Example of Use Case Diagram</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Example of Class Diagram</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Example of Sequence Diagram</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>Example of Collaboration Diagram</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Example of State Transition Diagram</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Example of Activity Diagram</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>Example of Deployment Diagram</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>Visual Basic Environment</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>V Model</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>Use Case Diagram of Scheduling System</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>Setup Schedule Use Case</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>Normal Flow for Setup Schedule Use Case</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>Context Diagram of Scheduling System</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>Package Diagram of Scheduling System</td>
<td>42</td>
</tr>
<tr>
<td>19</td>
<td>Package Main</td>
<td>44</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>20</td>
<td>Package SysLibrary</td>
<td>45</td>
</tr>
<tr>
<td>21</td>
<td>Package SysReport</td>
<td>46</td>
</tr>
<tr>
<td>22</td>
<td>Package BasicApp</td>
<td>47</td>
</tr>
<tr>
<td>23</td>
<td>Scheduling System Database</td>
<td>49</td>
</tr>
<tr>
<td>24</td>
<td>White Box Testing Techniques – Flow Graph</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>Black Box Testing Techniques</td>
<td>63</td>
</tr>
<tr>
<td>26</td>
<td>System Menus and Toolbar Buttons</td>
<td>73</td>
</tr>
<tr>
<td>27</td>
<td>System Setup Interface</td>
<td>74</td>
</tr>
<tr>
<td>28</td>
<td>User Setup Interface</td>
<td>75</td>
</tr>
<tr>
<td>29</td>
<td>Equipment Setup Interface</td>
<td>76</td>
</tr>
<tr>
<td>30</td>
<td>Setup Level Interface</td>
<td>77</td>
</tr>
<tr>
<td>31</td>
<td>Setup Control Unit Interface</td>
<td>78</td>
</tr>
<tr>
<td>32</td>
<td>Public Holiday Setup Interface</td>
<td>79</td>
</tr>
<tr>
<td>33</td>
<td>Semester Break Setup Interface</td>
<td>80</td>
</tr>
<tr>
<td>34</td>
<td>Setup Scheduling Time All Interface</td>
<td>81</td>
</tr>
<tr>
<td>35</td>
<td>Setup Scheduling Time Multiple Interface</td>
<td>82</td>
</tr>
<tr>
<td>36</td>
<td>Setup Time Control Unit Interface</td>
<td>83</td>
</tr>
<tr>
<td>37</td>
<td>Weekly Report Interface</td>
<td>84</td>
</tr>
<tr>
<td>38</td>
<td>Monthly Report Interface</td>
<td>85</td>
</tr>
<tr>
<td>39</td>
<td>Example of Text File</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Project Gantt Chart</td>
<td>95</td>
</tr>
<tr>
<td>B</td>
<td>Alternative Flow 1 for Setup Schedule Use Case.</td>
<td>96</td>
</tr>
<tr>
<td>C</td>
<td>Alternative Flow 2 for Setup Schedule Use Case.</td>
<td>97</td>
</tr>
<tr>
<td>D</td>
<td>Software Development Plan (SDP)</td>
<td>98</td>
</tr>
<tr>
<td>E</td>
<td>Software Requirement Specification (SRS)</td>
<td>99</td>
</tr>
<tr>
<td>F</td>
<td>Software Design Document (SDD)</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td>Software Test Description (STD)</td>
<td>101</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Project Background

One of the Mahkota Research Sdn. Bhd project is AIMST project where Mahkota Research were given responsibility to build a scheduling system to be used at AIMST University. The system consists of the software and the hardware part. The software part of the system is to control the interaction between the system and the user while the hardware part is to control the interaction between the system and the equipment.

The project is to build a new scheduling system based on the AIMST scheduling system and the project only involved the software part of the system. The system requirements are based on the AIMST system requirements and alter the requirements so that the new scheduling system can be suitable enough to be used on any different kind of organization. The system allow the user to control the system data before the system be used to schedule the equipment. The purpose of the new scheduling system is also to provide the user with a better user interface than the previous scheduling system.
1.2 Problem Statement

The issues arise from the existing system are:-

a. The system was built specifically from requirements of one organization. If the company wishes to reuse the existing system for different organization, major changes have to be made to the existing system.

b. The system data can be altered only at the system database and not through the system interfaces itself. Users are only allowed to add or change the schedule time data. Users are not allowed to add or delete any equipment data.

c. The system interfaces was not well-organized. All system buttons and functions were placed on one single form. Users may confuse with the organization of the system controls.

1.3 Project Mission

The mission of the project is to develop a standard system for scheduling equipment such as Air Handling Unit and the system have to be appropriate for various kind of building. The purpose is to develop a scheduling system that can be used at various organization and different places.
1.4 Project Vision

The vision of the project is to build a basic scheduling system where the requirements of the system are not specific for any specific project. The user of the system will have chance to control on the number of the building, the number of floor and the number of equipment to be entered to the system. It is also to avoid the company from developing a different system for different clients that has same purpose with AIMST System.

1.5 Project Objective

There are three objectives recognized for the project and the objectives are as the followings:

a. To produce a scheduling system based on specification of AIMST Project.

b. To build a scheduling system which will offer the user to control the number of building or equipment based on their own needs.

c. To develop a scheduling system with the better user interface than the existing system.
1.6 Project Scope

The scopes of this project are:-

a. The project specification is general to allow the system to be used by many other projects or organization that ask for scheduling system from Mahkota Research Sdn. Bhd.

b. The system only includes the interaction between the user of the system and the system itself and will not involve the interaction between the system and the hardware.

c. Deliverables planned to be produced are Software Development Plan (SDP), Interface Requirement Specification (IRS), Software Requirement Specification (SRS), Software Design Document (SDD) and Software Test Description (STD).

d. The documentation standard that will be use is DOD-STD-2167-A.

1.7 Project Description

The system is an extended system from the previous scheduling system which is currently used for AIMST project. The system requirements mostly gathered from the previous system because the system is build based on the previous system. This system allow user to select the level of which the equipment will control, select the holiday type, do the setting for each level they chose and setting the equipment schedule.
The scheduling system has to be generic thus it can be installed and used by various kind of organization. If there are any changes needed, only minimal modification need to be perform on the system. The system shall take into consideration the type of building and equipment that might use the system.

1.8 Project Plan

Please refer to APPENDIX A for the Gantt chart.

1.9 Company Background

1.9.1 Mahkota Technologies Sdn. Bhd

Mahkota Technologies Sdn Bhd stated in Petaling Jaya, Selangor was formerly known as the General Electric Company (GEC) of Malaysia. Mahkota Technologies Sdn. Bhd is one of Malaysia’s leading engineering companies and has sales across South East Asia region. In 1997 the company name has been changed from GEC Malaysia into Mahkota Technologies Sdn Bhd. showing that Mahkota Technologies is heading toward to becoming one of the largest companies in Malaysian engineering industry. Mahkota Technologies Sdn. Bhd then is divided into subsidiaries consists of Mahkota Research Sdn. Bhd., Mahkota Manufacturing
Sdn Bhd, Mahkota Protection and Control Sdn Bhd and Mahkota Engineering and Power Systems Sdn Bhd.

The company was incorporated in 1960 and until today, the company continues to serving the nation with new technology of engineering industry and utilities infrastructure. Mahkota Technologies Sdn. Bhd is specializing in providing the engineering industries with the integrated turnkey systems solution in infrastructure development, engineering solutions and providing engineering services and products. Mahkota Technologies has more than 200 engineers and staffs who shared same goal with the company to enhance the electrical and mechanical engineering solution and combined the engineering solution with the newer technologies offered by the digital revolution.

1.9.2 Mahkota Research Sdn. Bhd

Mahkota Research Sdn. Bhd. is one of the Mahkota Technologies subsidiary and responsible as the in-house research and development unit of Mahkota Technologies. Mahkota Research Sdn. Bhd. responsibility is to support the company with strong engineering presence and its continuous positioning of the Mahkota Technologies products and services. Mahkota Research Sdn. Bhd. involved in developing several Mahkota projects such as AIMST project and TNB project. Mahkota Research Sdn. Bhd. continues to evolve as one of the primary division of Mahkota Technologies Sdn Bhd by generating new technologies and products.
REFERENCES

Christopher M. Lott. September 1997 *Breathing New Life into the Waterfall Model; IEEE Software.* Morristown NJ.

Mahkota Technology Online, Website, http://www.mahkotatech.com

Mahkota Research Online, Website, http://www.mahkota.biz

