A HYBRID CLONAL SELECTION ALGORITHM WITH CONFLICT BASED STATISTICS FOR UNIVERSITY COURSE TIMETABLELING

SALISU MUSA BORODO

UNIVERSITI TEKNOLOGI MALAYSIA
A HYBRID CLONAL SELECTION ALGORITHM WITH CONFLICT BASED STATISTICS FOR UNIVERSITY COURSE TIMETABLING

SALISU MUSA BORODO

A dissertation submitted in partial fulfillment of the
requirements for the award of the degree of
Master of Science (Computer Science)

Faculty of Computer Science and Information Systems
Universiti Teknologi Malaysia

JANUARY 2013
This dissertation is dedicated to my parents Prof M. M. Borodo and Hajia Bilkisu.
ACKNOWLEDGEMENT

First and foremost, I would like to express heartfelt gratitude and my sincere appreciation to my supervisor Professor Dr. Safaai Deris for his constant support, encouragement, guidance and understanding. His consistent inputs greatly assisted in the realization of this dissertation despite his tight schedule. His willingness to motivate me contributed tremendously to the success of the theisis.

I would like to express my sincere gratitude to my parents, Prof M.M. Borodo and Hajia Bilkisu for their constant courage and prayers which have no doubt aided my success in my studies. I also acknowledge the support of my brothers Dr Auwal, Sani, Rabiu, Abdullahi, Khalil and Sadiq. The support and prayers of my sisters Aisha and Abida would not be forgotten during the study.

Finally, I would like to thank all my friends for their constant support, encouragement and prayers that assisted me during the study.
ABSTRACT

The University course timetabling problem involves the allocation of courses to rooms and timeslots subject to satisfaction of hard and soft constraints. The hard constraints must be satisfied, while the soft constraints are desired to be satisfied. The problem also has an objective function that need to be maximised. Several methodologies have been used for solving timetabling problem such as the sequential methods, graph coloring, cluster methods, constraint based and meta heuristic methods. The Hybrid Clonal Selection Algorithm with Conflict Based Statistics (Hybrid CLONALG-CBS) was chosen based on CLONALG's positive track record in optimization tasks and the ability of CBS in avoiding conflicting value assignments to a variable. The Hybrid CLONALG-CBS start with an initial solution, the initialized solution then undergo selection, cloning and mutation; the mutated solutions are used for the generation of improved solutions. The dataset is from Faculty of Computer Science and Information System, Universiti Teknologi Malaysia. The experimental results showed the Hybrid CLONALG-CBS fared better than the manual method and CLONALG algorithm in timeslot utilization, room utilization, Lecture spread and objective function.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.0 Introduction 1
1.1 Problem Background 2
1.2 Problem Statement 3
1.3 Aim and Objectives of the Study 4
1.4 Scope of the Study 5
1.5 Significance of the Study 6
1.6 Summary 6

2 LITERATURE REVIEW
2.0 Academic Timetabling 8
2.1 Course Timetabling Algorithms 12
2.2 Course Timetabling Techniques 25
2.2.1 Sequential Methods 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2</td>
<td>Cluster Methods</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Constraint Based Techniques</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Meta Heuristic Methods</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>The Immune System</td>
<td>26</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Background of Artificial Immune Systems</td>
<td>28</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Artificial Immune Systems Basic Model</td>
<td>30</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Artificial Immune Systems Theories</td>
<td>32</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Artificial Clonal Selection</td>
<td>32</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Immune Networks</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3.3</td>
<td>Artificial Immune Network</td>
<td>34</td>
</tr>
<tr>
<td>2.3.3.4</td>
<td>Artificial Negative Selection</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>State of Development of Artificial Immune Systems</td>
<td>35</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Negative Selection Algorithms</td>
<td>35</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Artificial Immune Networks</td>
<td>36</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Clonal Selection Algorithms</td>
<td>38</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Danger Theory inspired algorithms</td>
<td>39</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Dendritic cell algorithms</td>
<td>40</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Newly Developed Immune Models</td>
<td>41</td>
</tr>
<tr>
<td>2.4.6.1</td>
<td>Conserved Self Pattern Recognition Algorithms (CSPRA)</td>
<td>41</td>
</tr>
<tr>
<td>2.4.6.2</td>
<td>Toll-like Receptor (TLR) Algorithm</td>
<td>42</td>
</tr>
<tr>
<td>2.4.6.3</td>
<td>Complex Artificial Immune System</td>
<td>42</td>
</tr>
<tr>
<td>2.4.6.4</td>
<td>Hybrid Approaches</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Artificial Immune Systems Applications</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Artificial Immune Systems and Timetabling Problems</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary</td>
<td>48</td>
</tr>
</tbody>
</table>
3 RESEARCH METHODOLOGY
3.0 Introduction 49
3.1 Research Framework 50
 3.1.1 Literature Review 51
 3.1.2 Problem Formulation and Technique Selection 51
 3.1.3 Modeling and the Design of the Hybrid CLONALG-CBS 52
 3.1.4 Implementation and Testing Of FSKSM Timetabling Data 55
 3.1.5 Analysis, Discussion and Comparison of Result 57
 3.1.6 Report Writing 58
3.2 Timetabling Data Used 59
3.3 Software and Hardware Used 59
3.4 Summary 60

4 MODELING AND DESIGN
4.0 Introduction 61
4.1 The Timetabling Problem at FSKSM-UTM 62
4.2 Modeling the Timetabling Problem Using the Hybrid CLONALG-CBS 65
 4.2.1 Variable Ordering 69
 4.2.2 Value Ordering 75
4.3 Hybrid CLONALG-CBS for Course Timetabling 78
 4.3.1 Initialization 81
 4.3.2 Selection 82
 4.3.3 Cloning 82
 4.3.4 Mutation 83
4.3.5 Reselection and Diversity Introduction 85

4.4 Constraints Checking Algorithms 86
 4.4.1 Room Capacity Checking 88
 4.4.2 Checking Student Group Availability 89
 4.4.3 Checking Free Room and Time 90
 4.4.4 Checking Low Quality Solutions 92
 4.4.5 Checking Lecturer Constraints 93
 4.4.6 Arrays Used For Modeling 94

4.5 Conflict Based Statistics 96

4.6 Summary 100

5 EXPERIMENTAL RESULTS AND DISCUSSION
 5.0 Introduction 102
 5.1 Hybrid CLONALG-CBS 102
 5.2 Hybrid CLONALG-CBS Parameters 106
 5.3 Executing the Hybrid CLONALG-CBS 107
 5.3.1 Timeslot Utilization 108
 5.3.2 Room Utilization 110
 5.3.3 Lecture Spread 111
 5.3.4 Lecturer Timetable 114
 5.4 Objective function 115
 5.5 Comparison Between Hybrid CLONALG-CBS,
 CLONALG and Manual Method 116
 5.5.1 Room Utilization 117
 5.5.2 Time Utilization 118
 5.5.3 Lecture Spread 119
5.5.4 Objective function 120

5.6 Discussing the Hybrid CLONALG-CBS 123

5.7 Summary 124

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion 125

6.2 Research Contribution 126

6.3 Future Work 126

REFERENCES 128

APPENDIX 138
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Brief Dataset Description</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>The Student Groups</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Some of the courses offered</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Some of the Lecturers with their</td>
<td></td>
</tr>
<tr>
<td></td>
<td>corresponding subjects</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>The rooms with their respective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>preference scores</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>The timeslots with their respective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>preference scores</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>Mapping between the immune system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and timetabling</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Hybrid CLONALG-CBS Parameters</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>Subject Allocation including Average</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>Lecturer Timetable</td>
<td>114</td>
</tr>
<tr>
<td>5.5</td>
<td>Time and Objective function for Hybrid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and CLOANLG</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Research Framework Stages</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>The FSKSM weekly timeslot</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Course allocation satisfying constraints</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Algorithm for checking Room Capacity</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>Checking Student Group Availability</td>
<td>90</td>
</tr>
<tr>
<td>4.5</td>
<td>Algorithm for finding free rooms and timeslots</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Finding number of solutions that need improvement</td>
<td>92</td>
</tr>
<tr>
<td>4.7</td>
<td>Algorithm for checking lecturer availability</td>
<td>94</td>
</tr>
<tr>
<td>4.8</td>
<td>Arrays Used for Modelling</td>
<td>95</td>
</tr>
<tr>
<td>4.9</td>
<td>CBS Pseudocode</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>Hybrid CLONALG-CBS pseudo code</td>
<td>103</td>
</tr>
<tr>
<td>5.2</td>
<td>The CLONALG Flowchart</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Hybrid CLONALG-CBS Flowchart</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>Timeslot Utilization</td>
<td>109</td>
</tr>
<tr>
<td>5.5</td>
<td>Room Utilization</td>
<td>111</td>
</tr>
<tr>
<td>5.6</td>
<td>Subject Allocation to Student Groups</td>
<td>113</td>
</tr>
<tr>
<td>5.7</td>
<td>Objective function points for five Executions</td>
<td>115</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.8</td>
<td>Time Taken for five Executions</td>
<td>116</td>
</tr>
<tr>
<td>5.9</td>
<td>Preferred Room Utilization for the three techniques</td>
<td>117</td>
</tr>
<tr>
<td>5.10</td>
<td>Preferred Time Utilization for the three techniques</td>
<td>118</td>
</tr>
<tr>
<td>5.11</td>
<td>Lecture Spread for the three techniques</td>
<td>119</td>
</tr>
<tr>
<td>5.12</td>
<td>Objective function point for the three techniques</td>
<td>121</td>
</tr>
<tr>
<td>5.13</td>
<td>Time taken for execution</td>
<td>121</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>AIS</td>
<td>Artificial Immune System</td>
<td></td>
</tr>
<tr>
<td>CBS</td>
<td>Conflict Based Statistics</td>
<td></td>
</tr>
<tr>
<td>CSP</td>
<td>Constraint Satisfaction Problem</td>
<td></td>
</tr>
<tr>
<td>CLONALG</td>
<td>Clonal Selection Algorithm</td>
<td></td>
</tr>
<tr>
<td>FSKSM</td>
<td>Faculty of Computer Science and Information System</td>
<td></td>
</tr>
<tr>
<td>UCTP</td>
<td>University Course Timetabling Problem</td>
<td></td>
</tr>
<tr>
<td>UTM</td>
<td>Universiti Teknologi Malaysia</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Timetabling Courses</td>
<td>138</td>
</tr>
<tr>
<td>A2</td>
<td>Lecturers</td>
<td>143</td>
</tr>
<tr>
<td>A3</td>
<td>Student Groups</td>
<td>147</td>
</tr>
<tr>
<td>B1</td>
<td>Manual Method</td>
<td>148</td>
</tr>
</tbody>
</table>
1.0 Introduction

The University Course Timetabling Problem (UCTP) is a type of timetabling problem, there are numerous other timetabling problems such as the transport timetabling problem (i.e. train and bus timetabling), healthcare institutions timetabling problem (i.e. surgeon and nurse timetabling) and sport timetabling problem (i.e. timetabling of matches between pairs of team). The UCTP involves assigning Lectures to a number of rooms and timeslots based on some constraints that must be satisfied (Hard constraints) and other constraints that are desired to be satisfied (soft constraints) in the allocation of the timetable subjects. The problem also has an objective function that needs to be maximized in order for the time table solution to be of higher quality. The objective function usually involves assigning points to each soft constraints of the problem; the more soft constraints are satisfied by the timetabling solution, the higher the value of the objective function.
1.1 Problem Background

The UCTP which is a subset of scheduling is a recurring challenge faced by academic institutions at the inception of each semester. The problem involves assigning courses to be offered in the semester to the available rooms and timeslots while satisfying all the hard constraints. The hard constraints are usually similar across board in different academic institutions. Hard constraints involves not assigning a course to more than one room at the same timeslot, courses offered by students of the same group (students with courses in common) should not be assigned at the same timeslot, the lecturer taking a course should also not be allocated more than a single course at the same timeslot, the number of students offering a course should not exceed the room capacity of the allocated room. There are also the soft constraints of the UCTP that need to be satisfied as much as possible; there are usually different across separate institutions, there are based on the need of each particular academic institution. The soft constraints can involve a specific course to be allocated to a certain timeslot, students should not be assigned more than a certain number of courses in a day, Professors’ may prefer to teach in a particular room or on a particular time of a day and a course may need to be scheduled ahead or before another course.

The university course timetabling problem is known to be a NP complete problem because it is a cumbersome problem with many
constraints to be solved and a huge search space to be explored if the problem size increases (Deris et al., 2000).

1.2 Problem Statement

The timetabling process at FSKSM is carried out manually, it takes a number of days for designing and several other days for fine tuning. Mistakes also take place in the timetabling process because a human is involved. Due to these problems, an automated timetabling solution is needed to overcome the shortcomings of the manual method.

The prime question for this research study is:

“Could the Hybrid Clonal selection algorithm with conflict based statistics be used for producing a feasible and a higher quality solution for the University Course Timetabling problem?”

For the above prime question of the research to be answered some salient questions needed to be pondered over:

- How would the UCTP be modeled with the Hybrid Clonal Selection Algorithm with Conflict Based Statistics?
• How would the Clonal Selection Algorithm be integrated with all the UCTP constraints?
• How would the Conflict Based Statistics complement the Clonal Selection Algorithm functionality?
• How can a feasible timetable be generated?
• What is the objective function of the problem which would be a guide for producing better and higher quality solutions?
• What parameters would guide the execution of the designed system because the UCTP is a NP complete problem with unknown bounded polynomial time for its execution?
• How would the generated timetable solution be measured for its quality?

The hypothesis of the this research study can be formulated as follows

“By using the Hybrid clonal selection algorithm with conflict based statistics it can achieve a feasible as well as a higher quality of the University course timetabling Problem.”

1.3 Aim and Objectives of the Study

The aim of this research is to develop a Hybrid Clonal Selection Algorithm with Conflict Based Statistics for finding a feasible and better
quality University course timetable solution that satisfies all the constraints of the problem. The objectives of the study are

a) To model the Clonal Selection Algorithm
b) To model and develop a Hybrid Clonal Selection Algorithm with Conflict Based Statistics for University Course Timetabling
c) To evaluate the Performance of the Hybrid Clonal Selection Algorithm with Conflict Based Statistics in terms of the Timetabling solution quality

1.4 Scope of the Study

The thesis would focus on designing a Hybrid Clonal Selection Algorithm with Conflict Based Statistics for University course timetabling problem based on the following:

- The Semester 1 2012/2013 academic session timetable of Faculty of Computer Science and Information System is the Dataset.
- The Hybrid Clonal Selection Algorithm with Conflict Based Statistics would be applicable to the intended domain only.
- The study will design an offline running system (stand alone application) rather than online application (web page).
The Java 1.7 programming language would be used for designing the application

The ECLIPSE software development kit would be used for the application development

The computer system used for the experiment has the following specification: 4GB RAM, Dual core 2.27 GHZ processor, 64 Bit Windows 7 operating system.

1.5 Significance of the study

a) The timetabling problem of FSKSM, UTM is solved using the Hybrid Clonal Selection Algorithm with Conflict Based Statistics
b) The Hybrid Clonal Selection Algorithm with Conflict Based Statistics designed can be tweaked and used for other scheduling problems

1.6 Summary

The chapter started with an introduction of timetabling and also provided the problem statement. Subsequently the objective, scope as
well as significance of the research study were provided at the end of the chapter.
REFERENCES

Computational Intelligence Approach. *Immune Research Journal* pp. 1-9
De Castro, L. N. and Timmis, J. (2002c). Hierarchy And Convergence Of Immune
Networks: Basic Ideas And Preliminary Results. In *Proceedings Of The 1st
For Data Analysis. *Ieee Transactions On Evolutionary Computation*, 231-
259.
De Castro, L. N. and Von Zuben, F. J. (2002). Learning And Optimization Using
The Clonal Selection Principle. *Ieee Transactions On Evolutionary
Computation*, 6, 239-251.
Di Gaspero, L. and Schaerf, A. (2001). Tabu Search Techniques For Examination
Timetabling. In: E Burke, E. E. (Ed.) *Practice And Theory Of Automated
Timetabling (Patat)* Berlin: Springer.
The 4th Int. Conf. On The Practice And Theory Of Automated Timetabling
Adaptation, And Machine Learning. *Physica D: Nonlinear Phenomena*, 22,
187-204.
 Discrimination In A Computer. In *Proceedings Of The Ieee Computer Society
Symposium On Research In Security And Privacy*, 202-212.
Immune Systems: A Problem-Oriented Perspective. *Lecture Notes In

Muller, T., Hana, R. and Murray, K. (2009). Interactive Course Timetabling. *Journal of Purdue University* pp. 1-10

Tailored To Protein Function Prediction. *In 7th International Conference On Artificial Immune Systems*. Phuket, Thailand. pp. 454-460

