DEVELOPMENT OF A SOCIAL SUSTAINABILITY MODEL IN INDUSTRIAL BUILDING SYSTEM

ROOHOLLAH TAHERKHANI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY 2013
DEDICATION

“I am going to appoint a successor on the Earth”
(Surah Al- Baqarah ayat 30)

“I’m neither worried about tradition, nor modernity, civilization, culture or any other similar abstract concepts. I’m just worried about human beings made of flesh and blood, who come to life, suffer, and depart. I don’t care what happens to global economy, culture, civilization, modernity, tradition and etc. It’s the humans and their fate which are of utmost importance to me. I have never understood the benefits of contributions towards civilizations, while humanity, the very kernel of existence, is neglected. I care about this essence. I believe we must just think about people who are born, suffer and perish and we have to ease the difficulties for our fellow human beings, those whom their lives are filled with despair and misery. Therefore, to occurrence of this vision try, the humans face realities more, suffer less and gravitate to philanthropy and righteousness. In order to obtain these goals, they should gain advantage of everything beneficial, including religion, science, philosophy, music, art, literature and any other human achievements” (Mostafa Malekian).

I dedicate this thesis to
The human who is the successor of God on the Earth
The human who demonstrated to me the succession of God
Those who I was born from (my parents)
Those who live with me (my family and sisters)
Those who taught me (my supervisors and teachers)
Those who were beside me in hardship and joy (my friends)
Those who were kind to me and who was unkind to me
And to all human beings who come to life, suffer, and depart like me.
ACKNOWLEDGEMENT

This study is successfully completed with the assistance and support of my honorable supervisor, Associate Professor Dr. Abd. Latif Saleh. Without, his unwavering confidence and his genuine personal interest in me, I am sure I would never have completed this thesis. I would like to take this opportunity to thank him and Dr. Shaiful Amri Mansur for all their time, effort, advice, and guidance throughout this journey. Their dedication will always be remembered.

Let me say “thank you” here to many friends and colleagues. Discussions with them have given me much inspiration on the research.

Last, but not least, I am very grateful to my beloved parents, sisters and family for their endless prayers, love and encouragement to pursue my interest all these years.
ABSTRACT

Industrialization of building systems is a key country-level strategy toward sustainable development. Due to sustainability international concerns, the concept of Industrial Building System (IBS) has received significant attention toward sustainable construction in Malaysia. Therefore, the transformation from traditional construction methods to the sustainable IBS methods is crucial for the country. In this regard, a control mechanism of building systems is necessary to monitor the economic, environmental and social aspects of sustainability. The previous researches indicate the social dimension as the fundamental part of sustainability has received far less attention. To date, despite growing researches on IBS and sustainability, there is no social sustainable framework and model in IBS at the country level. Therefore, this research proposes to develop a social sustainability model in IBS and advances the concept of social sustainability by presenting an applicable framework which is approved through Confirmatory Factor Analysis (CFA). Based on this framework the Analytic Hierarchy Process (AHP) was implemented to determine the most suitable social sustainability model in building systems. In compare with the social sustainability factors ranking obtained from AHP model, variety of ranking methods has been investigated to assess the priority of IBS social sustainability factors. Then, a hybrid model, using AHP and Neural Network (NN) methods, is developed to assess IBS Social Sustainability Power Ratio (SSPR). The result from this hybrid model shows SSPR is 0.7212 which is categorized in acceptable level. Nevertheless IBS as a primary step towards sustainable construction must perform careful planning to upgrade its social sustainability factors. The result suggests that development of IBS need to be more concentrated toward social sustainability. The presented social sustainability hybrid model can use as an assessment and a guideline within IBS supply chain players.
ABSTRAK

Perindustrian kepada sistem bangunan adalah kunci utama bagi strategi negara ke arah pembangunan yang lestari. Disebabkan oleh kebimbangan antarabangsa berkenaan dengan perlestarian, Sistem Bangunan Berindustri (IBS) telah menerima perhatian ketara ke arah pembinaan lestari. Oleh itu, transformasi dari kaedah tradisional kepada kaedah perlestarian IBS adalah penting bagi negara ini. Oleh itu, mekanisma kawalan dalam sistem bangunan adalah perlu untuk memantau aspek perlestarian ekonomi, persekitaran dan sosial. Kajian terdahulu menunjukkan dimensi sosial sebagai bahagian asas pelestarian menerima perhatian yang sangat sedikit. Sehingga kini, walaupun kajian semakin meningkat tentang IBS dan pelestarian, tidak ada rangka kerja dan model sosial lestari dalam IBS di peringkat nasional. Oleh itu, kajian ini bercadang untuk membangunkan model perlestarian sosial dalam IBS dan memajukan konsep perlestarian sosial dengan membentangkan satu rangka kerja berkaitan yang diluluskan melalui Pengesahan Analisis Faktor (CFA). Berdasarkan rangka kerja ini, Proses Hieraki Analitik (AHP) telah dilaksanakan untuk menentukan model perlestarian sosial yang paling sesuai dalam sistem binaan. Dengan membandingkan faktor kedudukan perlestarian sosial yang diperolehi daripada model AHP, pelbagai kaedah kedudukan telah disiasat untuk menilai keutamaan faktor perlestarian sosial IBS. Kemudian model hibrid, menggunakan kedah AHP dan Rangkaian Neural (NN), dibangunkan untuk menilai Kuasa Nisbah Perlestarian Sosial (SSPR) IBS. Hasil daripada model ini menunjukkan SSPR hibrid adalah 0.7212 yang dikategorikan dalam tahap yang boleh diterima. Walau bagaimanapun IBS sebagai langkah utama ke arah pembinaan lestari perlu melaksanakan perancangan yang teliti untuk meningkatkan faktor perlestarian sosial. Hasil menunjukkan bahawa pembangunan IBS perlu menjadi lebih tertumpu ke arah perlestarian sosial. Model perlestarian sosial hibrid yang dibentangkan boleh digunakan sebagai penilaian dan garis panduan oleh rangkaian pemain IBS.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of the Study 1
1.2 Problem Statement 3
1.3 Research Question 7
1.4 Research Objective 8
1.5 Significance of study 8
1.6 Hypothesis 9
1.7 Scope of Study 11
1.8 Research Methodology 14
1.9 Structure of Report 15

2 LITRATURE REVIEW 16
2.1 Introduction 16
2.2 Industrial Building System (IBS) 17
 2.2.1 Introduction 17
 2.2.2 IBS Definition 18
 2.2.3 IBS: A Product, Process or System? 23
 2.2.4 The Characteristic of IBS 24
 2.2.5 Other Term Used to Describe IBS 27
 2.2.6 IBS Classifications 29
 2.2.7 IBS in Other Countries 33
 2.2.8 The Current State of IBS in Malaysia 39
 2.2.9 Advantages of IBS 44
 2.2.10 Disadvantages of IBS 49
 2.2.11 Drivers and Barriers of IBS 50
 2.2.12 IBS Supply Chain Sectors 52

2.3 Social Sustainability 53
 2.3.1 Introduction 54
 2.3.2 Background and History of Sustainable Development 55
 2.3.3 Definition of Sustainable Development 56
 2.3.4 Themes of Sustainable Development 58
 2.3.5 Interrelationship between Sustainable Development Themes 61
 2.3.6 Sustainability as an Integrative Concept 62
 2.3.7 The Forgotten Dimension of Sustainability 63
 2.3.8 Definitions and Features of Social Sustainability 64
 2.3.9 Current Situation of Social Sustainability 70
 2.3.10 Framework of Social Sustainability 73
 2.3.11 Assessment and Measurement Methods of Social Sustainability 73
 2.3.12 Social Sustainability Models 75

2.4 The Necessity of Addressing Social Dimension in IBS 78
 2.4.1 Introduction 78
 2.4.2 The Necessity of Addressing Construction Industry 79
 2.4.3 The Necessity of Addressing Industrial Building System 81
 2.4.4 The Necessity of Addressing Sustainability in IBS 82
2.4.5 The Necessity of Addressing Social Dimension through Sustainability 87
2.4.6 The Necessity of Addressing Social Sustainability in IBS 89

2.5 Theoretical Framework 91
2.5.1 Parsons’ Structural Functionalism Theory 92
2.5.2 Parsons’ Social Action Theory 92
2.5.3 Parsons’ Sub-systems and their Functions 93
2.5.4 Why Parson’s Theory? 95
2.5.5 Current Research Theoretical Framework 96

3 RESEARCH METHODOLOGY 97
3.1 Introduction 97
3.2 Research Method Classification 98
3.2.1 Current Research Classification 100
3.3 Research Hypothesis 103
3.4 Research Variables 104
3.4.1 Discrete and Continuous Variables 104
3.4.2 Independent and Dependent Variables 105
3.4.3 Current Research Variables 106
3.5 Research Data Collection 107
3.5.1 Primary research 107
3.5.2 Secondary research 117
3.6 Methods of Analysis 119
3.6.1 Qualitative Research Methods 119
3.6.2 Quantitative Research Methods 124
3.7 Research Ranking Method 136
3.7.1 Average Ranking (AR) Method 136
3.7.2 Fuzzy Weighted Average (FWA) 138
3.7.3 Friedman Test 142
3.7.4 TOPSIS Technique (Technique of Order Preference by Similarity to Ideal Solution) 143
3.8 Research Tools 146
3.8.1 EXPERT CHOICE (EC) 146
3.8.2 MATLAB (Matrix Laboratory) 147
4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Social Sustainability in IBS Current Situation
 4.2.1 IBS SWOT Analysis
 4.2.2 IBS PEST Analysis
 4.2.3 IBS as A Strategy toward Sustainable Construction
 4.2.4 IBS Supply Chain and Bullwhip Effect

4.3 Social Sustainability Framework Designing

4.4 Social Sustainability Model Designing
 4.4.1 Conducting to IBS Existing Model (Confirmatory Factor Analysis)
 4.4.2 Conducting to IBS Desired Model (AHP Model)

4.5 Social Sustainability Factors Ranking:
 4.5.1 AHP Ranking (IBS Desired Ranking)
 4.5.2 Average Ranking (IBS Existing Ranking)
 4.5.3 Friedman Ranking (IBS Existing Ranking)
 4.5.4 Friedman Ranking (IBS Existing Ranking)
 4.5.5 Comparison of IBS Existing and Desired Ranking

4.6 Social Sustainability Model Designing and Implementing in IBS
 4.6.1 System Identification (SI)-AHP Hybrid Model
 4.6.2 Neural Network (NN) - AHP Hybrid Model

4.7 Model Validation
 4.7.1 Internal Validity
 4.7.2 External Validity

5 CONCLUSION

5.1 Introduction

5.2 Current Situation

5.3 Desired Situation

5.4 Recommendations for Future Researches
REFERENCES

Appendices A-K
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research Hypothesis Classifications</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>The Scope of the Research</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>The Scope of the Research</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>The Definitions of IBS</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>The Ontology of Industrial Building System</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Characteristics of IBS</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>The Characteristics of IBS among Literatures</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Categorization of Terminologies by Pan (2006)</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>IBS Classification According to Material</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>IBS Classification According to Structural System by Warszawski (1999)</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>IBS Classification According to Relative Weight of Component by Majzub (1977)</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Comparative Table of IBS Classifications</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>Prefabricated housing market share in Japanese Fiscal Year 1999 (Nagahama, 2000)</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Key Advantages of IBS</td>
<td>46</td>
</tr>
<tr>
<td>2.12</td>
<td>A Tabular Representation of Sustainable Development Themes</td>
<td>83</td>
</tr>
<tr>
<td>2.13</td>
<td>Parsons Social Subsystems</td>
<td>94</td>
</tr>
<tr>
<td>3.1</td>
<td>6P Research Classification</td>
<td>99</td>
</tr>
<tr>
<td>3.2</td>
<td>Research 6P Classification</td>
<td>102</td>
</tr>
<tr>
<td>3.3</td>
<td>Research Hypothesis Classification</td>
<td>104</td>
</tr>
<tr>
<td>3.4</td>
<td>Dependent and Independent Variables of Current Research</td>
<td>106</td>
</tr>
<tr>
<td>3.5</td>
<td>Social Sustainability Groups, Factors and the Number of Their Related Questions in Survey</td>
<td>113</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.6</td>
<td>Internal Consistency in Cronbach's Alpha</td>
<td>115</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of Data Collection Methods by Houser (2011)</td>
<td>118</td>
</tr>
<tr>
<td>3.8</td>
<td>SWOT Matrix</td>
<td>121</td>
</tr>
<tr>
<td>3.9</td>
<td>The Saaty Rating Scale (T. L. Saaty, 1995)</td>
<td>125</td>
</tr>
<tr>
<td>3.10</td>
<td>Five Ordinal Measures of Likert Scale Contributing Factors</td>
<td>137</td>
</tr>
<tr>
<td>4.1</td>
<td>The Strengths of IBS (Internal Factor)</td>
<td>155</td>
</tr>
<tr>
<td>4.2</td>
<td>The Weaknesses of IBS (Internal Factor)</td>
<td>156</td>
</tr>
<tr>
<td>4.3</td>
<td>The Opportunities of IBS (External Factor)</td>
<td>157</td>
</tr>
<tr>
<td>4.4</td>
<td>The Threats of IBS (External Factor)</td>
<td>158</td>
</tr>
<tr>
<td>4.5</td>
<td>IBS Political Factors</td>
<td>160</td>
</tr>
<tr>
<td>4.6</td>
<td>IBS Economical Factors</td>
<td>161</td>
</tr>
<tr>
<td>4.7</td>
<td>IBS Social Factors</td>
<td>162</td>
</tr>
<tr>
<td>4.8</td>
<td>IBS Technological Factors</td>
<td>163</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary of the Weighting for Obligations under PEST Analysis</td>
<td>165</td>
</tr>
<tr>
<td>4.10</td>
<td>Fuzzy Ranking Mean Scores for Factors</td>
<td>165</td>
</tr>
<tr>
<td>4.11</td>
<td>Summary of PEST Analysis Ranking for Conventional and Industrial Building System</td>
<td>166</td>
</tr>
<tr>
<td>4.12</td>
<td>Bullwhip Effect in Conventional and Industrial Building System’ Supply Chain</td>
<td>168</td>
</tr>
<tr>
<td>4.13</td>
<td>Social Sustainability Factors’ Description</td>
<td>172</td>
</tr>
<tr>
<td>4.14</td>
<td>Reliability Test for 15 Pilot Questionnaires</td>
<td>174</td>
</tr>
<tr>
<td>4.15</td>
<td>Reliability Test for Questionnaires</td>
<td>175</td>
</tr>
<tr>
<td>4.16</td>
<td>Hypothesis within Research Framework</td>
<td>176</td>
</tr>
<tr>
<td>4.17</td>
<td>T-value, Standardized, and Estimated Coefficients for 57 Questions</td>
<td>178</td>
</tr>
<tr>
<td>4.18</td>
<td>Goodness of Fit Statistics for Factor a1</td>
<td>180</td>
</tr>
<tr>
<td>4.19</td>
<td>T-value, Standardized, and Estimated Coefficients for 12 Factors</td>
<td>181</td>
</tr>
<tr>
<td>4.20</td>
<td>T-value, Standardized and Estimated Coefficients for 5 Groups</td>
<td>182</td>
</tr>
<tr>
<td>4.21</td>
<td>Goodness of Fit Statistics for Social Sustainability Groups</td>
<td>183</td>
</tr>
<tr>
<td>4.22</td>
<td>Building Systems’ Desired Models of Social Sustainability in Different Disciplines of Construction Industry</td>
<td>187</td>
</tr>
<tr>
<td>4.23</td>
<td>The Desired Model of Social Sustainability in Building Systems</td>
<td>190</td>
</tr>
</tbody>
</table>
4.24 AHP Ranking for 12 Social Sustainability Factors in Desired Building Systems 191
4.25 AHP Ranking for 5 Social Sustainability Groups in Desired Building Systems 192
4.26 Average Ranking for 12 Social Sustainability Factors in IBS 192
4.27 Average Ranking for 5 Social Sustainability Groups in IBS 193
4.28 Friedman Ranking for 12 Social Sustainability Factors in IBS 193
4.29 Friedman Ranking for 5 Social Sustainability Groups in IBS 194
4.30 TOPSIS Ranking for 12 Social Sustainability Factors in IBS 194
4.31 TOPSIS Ranking for 5 Social Sustainability Groups in IBS 195
4.32 Comparing Different Rankings of Social Sustainability Factors 195
4.33 Comparing Different Rankings of Social Sustainability Groups 196
4.34 Percentages of IBS Differentiation from Desired Level of Social Sustainability Factors 199
4.35 Percentages of IBS Differentiation from Desired Level of Social Sustainability Groups 200
4.36 Social Sustainability Factors Model by System Identification 208
4.37 Social Sustainability Power Ratio (SSPR) 218
4.38 Minimum Values of CVR (One Tailed Test, α = 0.05) 220
4.39 Construct Validity by Confirmatory Factor Analysis 221
4.40 Population Validity and Sample Size 222
4.41 Social Sustainability Factors’ Average Mean Score 223
4.42 IBS Social Sustainability Factors’ by System Identification Model 225
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research Methodology Flow Chart</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>The Sources of IBS in Malaysia according to the Origin of Countries</td>
<td>42</td>
</tr>
<tr>
<td>2.2</td>
<td>Drivers to IBS</td>
<td>51</td>
</tr>
<tr>
<td>2.3</td>
<td>Barriers to IBS</td>
<td>51</td>
</tr>
<tr>
<td>2.4</td>
<td>Images of Sustainable Development (Chaharbaghi and Willis, 1999)</td>
<td>57</td>
</tr>
<tr>
<td>2.5</td>
<td>The Three Themes of Sustainable Development</td>
<td>59</td>
</tr>
<tr>
<td>2.6</td>
<td>Sustainable Development Concentric Circles Model</td>
<td>62</td>
</tr>
<tr>
<td>2.7</td>
<td>Sustainable Development Overlapping Circles Model</td>
<td>62</td>
</tr>
<tr>
<td>2.8</td>
<td>WACOSS Model Levels</td>
<td>76</td>
</tr>
<tr>
<td>2.9</td>
<td>WACOSS Model of Social Sustainability</td>
<td>77</td>
</tr>
<tr>
<td>2.10</td>
<td>The Contribution of the Construction Industry GDP (Lowe, 2003)</td>
<td>80</td>
</tr>
<tr>
<td>2.11</td>
<td>The Diagram of Sustainability in Construction (Zainul Abidin, 2005)</td>
<td>84</td>
</tr>
<tr>
<td>2.12</td>
<td>Sustainable Development Different Dimensions and Their Relative Importance (Marghescu 2005)</td>
<td>87</td>
</tr>
<tr>
<td>3.1</td>
<td>Pair-wise Comparison of Factors Relative Priority</td>
<td>124</td>
</tr>
<tr>
<td>3.2</td>
<td>The System Identification Loop (Ljung, 1987)</td>
<td>128</td>
</tr>
<tr>
<td>3.3</td>
<td>Configuration of a Neural Network</td>
<td>129</td>
</tr>
<tr>
<td>3.4</td>
<td>Multilayered Artificial Neural Network (Derived from Pender (1997)</td>
<td>130</td>
</tr>
<tr>
<td>4.1</td>
<td>Chapter 4 Flow Chart</td>
<td>152</td>
</tr>
<tr>
<td>4.2</td>
<td>The Grounded Theory Method Diagram (S. Adolph, et al., 2011)</td>
<td>170</td>
</tr>
<tr>
<td>4.3</td>
<td>Social Sustainability Framework</td>
<td>171</td>
</tr>
<tr>
<td>Section Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.4</td>
<td>Three Levels of Confirmatory Factor Analysis (CFA) Conduction</td>
<td>177</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of Structural Equation for Factor a1</td>
<td>179</td>
</tr>
<tr>
<td>4.6</td>
<td>Results of Structural Equation for Social Sustainability</td>
<td>182</td>
</tr>
<tr>
<td>4.7</td>
<td>Structural Equation Model of IBS Social Sustainability</td>
<td>185</td>
</tr>
<tr>
<td>4.8</td>
<td>Social Sustainability Factors’ Different Rankings Comparison</td>
<td>197</td>
</tr>
<tr>
<td>4.9</td>
<td>Social Sustainability Groups’ Different Rankings Comparison</td>
<td>198</td>
</tr>
<tr>
<td>4.10</td>
<td>IBS Differentiation from Desired Level of Social Sustainability Factors</td>
<td>201</td>
</tr>
<tr>
<td>4.11</td>
<td>IBS Differentiation from Desired Level of Social Sustainability Groups</td>
<td>202</td>
</tr>
<tr>
<td>4.12</td>
<td>Input and Output Matching in System Identification</td>
<td>205</td>
</tr>
<tr>
<td>4.13</td>
<td>Input Set of Neural Network Model</td>
<td>212</td>
</tr>
<tr>
<td>4.14</td>
<td>Output Set of Neural Network Model</td>
<td>212</td>
</tr>
<tr>
<td>4.15</td>
<td>Creating a Network by Inputs and Outputs Vectors</td>
<td>213</td>
</tr>
<tr>
<td>4.16</td>
<td>Neural Network Training Window</td>
<td>215</td>
</tr>
<tr>
<td>4.17</td>
<td>Errors, Validation Errors, Test Errors</td>
<td>216</td>
</tr>
<tr>
<td>4.18</td>
<td>Regression of Neural Network Model</td>
<td>217</td>
</tr>
<tr>
<td>4.19</td>
<td>MATLAB Command Window, Insert New Input</td>
<td>218</td>
</tr>
<tr>
<td>5.1</td>
<td>Research Questions and Objectives</td>
<td>227</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBS</td>
<td>Industrial Building System</td>
</tr>
<tr>
<td>OBS</td>
<td>Open Building System</td>
</tr>
<tr>
<td>CIDB</td>
<td>Construction Industry Developing Board</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>GT</td>
<td>Grounded Theory</td>
</tr>
<tr>
<td>PEST</td>
<td>Political, Economical, Social, Technological</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths, Weaknesses, Opportunities and Threats</td>
</tr>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process</td>
</tr>
<tr>
<td>CR</td>
<td>Consistency Ratio</td>
</tr>
<tr>
<td>SI</td>
<td>System Identification</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>LM</td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Model</td>
</tr>
<tr>
<td>FA</td>
<td>Factor Analysis</td>
</tr>
<tr>
<td>EFA</td>
<td>Exploratory Factor Analysis</td>
</tr>
<tr>
<td>CFA</td>
<td>Confirmatory Factor Analysis</td>
</tr>
<tr>
<td>AR</td>
<td>Average Ranking</td>
</tr>
<tr>
<td>RI</td>
<td>Relative Index</td>
</tr>
<tr>
<td>FWA</td>
<td>Fuzzy Weighted Average</td>
</tr>
<tr>
<td>TOPSIS</td>
<td>Technique of Order Preference by Similarity to Ideal Solution</td>
</tr>
<tr>
<td>EC</td>
<td>EXPERT CHOICE</td>
</tr>
<tr>
<td>MATLAB</td>
<td>Matrix Laboratory</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>LISREL</td>
<td>Linear Structural Relation</td>
</tr>
<tr>
<td>CCPR</td>
<td>Cumulative Capability Power Ratio</td>
</tr>
<tr>
<td>SSPR</td>
<td>Social Sustainability Power Ratio</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Systematic Research Gap Finding</td>
<td>263</td>
</tr>
<tr>
<td>B</td>
<td>Social Sustainability Factors</td>
<td>264</td>
</tr>
<tr>
<td>C</td>
<td>Assessment Methods for Social Sustainability</td>
<td>270</td>
</tr>
<tr>
<td>D</td>
<td>IBS Social Sustainability Survey</td>
<td>273</td>
</tr>
<tr>
<td>E</td>
<td>Building Systems Social Sustainability AHP Survey</td>
<td>279</td>
</tr>
<tr>
<td>F</td>
<td>IBS SOWT Factors</td>
<td>285</td>
</tr>
<tr>
<td>G</td>
<td>IBS SOWT Analysis Survey</td>
<td>288</td>
</tr>
<tr>
<td>H</td>
<td>IBS PEST Factors</td>
<td>294</td>
</tr>
<tr>
<td>I</td>
<td>IBS PEST Analysis Survey</td>
<td>297</td>
</tr>
<tr>
<td>J</td>
<td>Confirmatory Factor Analysis (CFA)</td>
<td>301</td>
</tr>
<tr>
<td>K</td>
<td>AHP Process</td>
<td>322</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Thesis introduction acquaints the readers with the thesis topic, explaining the basic points of the thesis research and pointing the direction of the research. Therefore in this chapter, it has been tried to describe and determine the preliminaries, overall structure, main hypothesis and the necessary of the study. Initially the main research topics and questions express and then the importance and necessity of research to be addressed. In continue, according to the research objectives and hypotheses, its innovative aspects are considered. Finally the research scope will state.

1.1 Background of the Study

Increasing housing demand, causing a critical need for housing is becoming a problem in Malaysia. Conventional methods of building with slow execution and high costs are not responsive to existing needs (1997). As a result the construction industry must find an alternative that in addition to overcome the present crisis, has advantages in terms of productivity, indoor quality, durability and cost (IEM, 2001). A method which increase the speed of construction process by relying on the new advanced technologies and innovative methods of construction (Haron et al., 2005b). In this regard Malaysian construction industry is experiencing a transition from the
traditional system to a mechanized building system which is called the Industrial Building System (IBS).

IBS has been introduced in Malaysia since 60’s by the use of precast concrete beam-column elements. Construction Industry Developing Board (CIDB) published the IBS Roadmap 2003-2010 which detailed the needs and requirements of Malaysian construction industry. This roadmap was endorsed by Cabinet on October 29, 2003. The content of this roadmap is focused towards achieving the industrialization of the construction sector. The main advantages of using IBS, according to a report published by the Malaysian Ministry for Local Government and Housing (1997), are speed of construction and economic advantage, all of which are required to meet such a large demand for housing and other constructions. This method of construction can increase productivity and quality of work through the use of better construction machinery, equipment, materials and extensive pre-project planning. Malaysia is presently taking a hard look at IBS as an answer to a housing shortage problem.

In the other hand, construction practitioners worldwide are beginning to appreciate sustainability and acknowledge the advantages of building sustainable. This was further supported by Heerwagen (2000), Bartlett and Howard (2000) and Pettifer (2004), who added that sustainable buildings will contribute positively to better quality of life, work efficiency and healthy work environment. The concept of sustainability in building has initially focused on issues of limited resources especially energy, and on how to reduce impacts on the natural environment with emphasis on technical issues such as materials, building components, construction technologies and energy related design concepts. As well the appreciation of the significance of non-technical issues (soft issues) has grown, giving recognition to social sustainability concerns as well as cultural heritage of the built environment as equally important (Zainul Abidin, 2009).
There is general agreement that the different dimensions of sustainable development have not been equally prioritized by policy makers within the sustainability discourse (Smith, 1995). In particular, the relative lack of focus on the social dimension is notable and the social dimension of sustainability has received far less attention than the economic and environmental aspects (Partridge, 2005; Alkon and Agyeman, 2011). This lack of attention is noted by many writers (eg, Koning, 2001; Adebowale, 2002; WACOSS, 2002; McKenzie, 2004) and the conceptual framework for social sustainability is widely acknowledged as underdeveloped. It has not been reached regarding which indicators of societal sustainability should be addressed or how to relate the indicators to decisions (Partridge, 2005).

Nonetheless, for the purpose of this study, it refers to social sustainability as the base of sustaining ability of Industrial Building System (IBS) to function in the long term. Since delivering sustainable construction requires action from all engaged in constructing and maintaining the structure or building including those providing design, consulting and construction services (WS Atkins Consultants, 2001) this study is going to focus on IBS supply chain players.

1.2 Problem Statement

Problem statement defines the key elements of any scientific research because researchers figure all their research activities on the basis of problem statement. By that, they found their uncertain and unknown and what they must do. Many reasons such as personal experiences, study of written documents, oral sources and research applicants can be involved in problem research explanation. On behalf of researcher in the current study, the following reasons were most effective in clarification of the research problem:
Personal experience: dealing with the advantages of prefabricated systems and lack of social approach to the use of these systems. Oral sources: discuss with construction experts and supervisor, visit and participation in the construction industry and IBS exhibitions, conferences and workshops. Study of written documents: Preliminary study on the research gap in construction management that is attached in appendix A, as well as, the special situation of IBS in Malaysia construction industry. Applicants for research: The emphasis of CIDB on the IBS and display the sustainability issues by focusing on IBS supply chain as IBS targets for future, organizing the exhibitions, conferences and professional workshops by CIDB in order to develop the IBS research with the prospect of OBS, and the Malaysian government particular emphasizing on the construction industry movement towards IBS. These are the main reasons for entering the researcher into the research problem. By the way, the problem statement is going to explain considering the three time periods of (1) past (lack of research), (2) present (importance of issue) and (3) future (the necessity and the needs of investigation) as follow:

(1) **Past:** Preliminary studies and systematic reviews done on finding a gap of research in the field of construction management shows, the lack of enough study on the area of pre-casted elements and their procurement and maintenance in the construction field. Moreover sustainability is the major issue which construction industry is engaged with it, nowadays. So, the entrance of the aforementioned area with sustainability consideration in the field of construction studied is required for future research (Sarkisa *et al.*, 2012; Taherkhani *et al.*, 2012). Therefore, the review of the previous study leads and motivates the research into the topic that includes discussions about the sustainability and industrialized building systems.

(2) **Present:** Sustainable development is a continuous mission for future developments of human society and sustainable construction in recent years, become one of the most important performance-related issues within the construction industry (Adetunji *et al.*, 2008). More than ever, the construction industry as a globally emerging sector, and a highly active industry in both developed and developing countries (CSIR Building and Construction Technology, 2004; Zhang *et
al., 2008) is concerned with improving the integration of the social, economic and environmental indicators of sustainability into construction business strategies and practices (Ortiz et al., 2009). Accordingly the principles of sustainable development are applying to the comprehensive construction cycle as its supply chain from the extraction of raw materials, through the planning, design and construction of buildings and infrastructure, until their final deconstruction and management of the resultant waste (Tan et al., 2011).

As global interest on sustainability has steadily blooming, Malaysia should not fell short in its attitude on sustainability and sustainable construction. Malaysia needs to demonstrate that it can abide by this new interest and can compete in the global market (Zainul Abidin, 2009). As it mentioned above Malaysia is presently taking a hard look at IBS as an answer to a housing shortage problem and IBS is one of the essential strategies and necessary step to move Malaysia’s construction industry further up the value chain (Luo et al., 2005). Therefore, to maximize the value of IBS in sustainable building construction, a critical consideration is to fully understand the relationship between the two. In this regards CIDB is emphasized on the IBS and sustainable issues in the 2011-2015 roadmap (CIDB, 2010). Consequently according to the necessity and importance of social dimension which is explained previously, addressing social sustainability in IBS is accurately required.

(3) Future: In the other side, as well as incidence and emergence of open building system (OBS) as a next paradigm of building system, transition from IBS as a mass production building system to the OBS as a mass customization building system is unavoidable in the construction industry. In fact, IBS as a current method is the playing field and base of formation, promotion and development of OBS as a future and coming method of building systems. For that reason to enter the next step, while recognizing its needs and requirements, construction industry needs to properly identify and resolve the deficiencies and shortcomings of its current stage. So the IBS should be explored and its success rate in various fields of technical, administrative, managerial and other aspects should be evaluated.
In particular, one of the issues that should be attended is the changes of supply chain management by shifting from industrial to open building systems. More highlighted login of customers to the building system by OBS causes to the major changes in supply chain arrangement and creation of more customer-focused supply chain. Therefore, at the same time as dominate the current supply chain and eliminate its shortcomings, it is necessary to have a sufficient understanding of the new supply chain since providing the foundation of its impeccable creation. As it mentioned the OBS as a customized system is focused on the customer and supplying his demand therefore in order to achieve sustainable building in this new customer-centric system, the social dimension become more important. Accordingly to realize sustainable building the social factors will become the basis of the new customer-oriented paradigm and without satisfying the social factors; primarily the new paradigm loses its relevance. Consequently, for the improvement and success in the next paradigm of production, construction industry fundamentally needs to the realization of IBS social sustainable development as its current production paradigm.

In this regards, to achieve corporate sustainability within any organization, it is essential that sustainability issues are addressed throughout the organization’s whole supply chain. The implementation of SCM and sustainability is, however, an extremely complex undertaking (Adetunji et al., 2008). A number of case studies have shown that managing the entire supply chain has become a major success factor in delivering successful IBS approach (Gibb, 2001; Faizul, 2006; Pan et al., 2008; Blismas and Wakefield, 2009), and supply chain plays an important roles in improving the productivity and quality of construction process (Abd Shukor et al., 2011). To realize the government’s aspiration in moving towards a more efficient IBS construction approach, good practice of supply chain integration should be investigated and fully established (Abd Shukor et al., 2011). Consequently the issue of rethinking on IBS supply chain players towards social sustainability shows possible potentials of working on OBS as a mass customization era for the future.

Ultimately, (1) confirmation of IBS and sustainability issues as existing gaps in the field of construction management by review the past research, (2) the need of addressing IBS and its supply chain with a sustainable approach in the current state
of the Malaysian construction industry, as emphasized by CIDB, and (3) addressing the mandatory of IBS social sustainability as the base of entering to the OBS as a next step of building systems, and the lack of a comprehensive framework and model which can figure and measure the impact of social factors in IBS implementation lead the current research to focus on social sustainability in IBS supply chain players. It intended to narrow the gap between theoretical social sustainable requirements and current IBS practices. Therefore this research is going to review adoption of IBS towards social sustainability within its supply chain players by answer to the following research question:

1.3 Research Question

Main research question: How to implement social sustainability in IBS supply chain players?

Sub research questions: Two steps are required to optimize an issue. Firstly it is necessary to accurately assess the status quo and secondly, to achieve the desired status rely on the current situation. Similarly, in this study the research questions are divided into two sections. The first section includes the existing situation and the second section deals with the ideal and desired situation.

Current situation

i. What are the current aspects of IBS and its current practices?

ii. What are the current aspects of social sustainability and its current practices?

iii. What are the factors of social sustainability?
Desired situation

iv. How to design a framework of social sustainability?

v. How to design a model of social sustainability?

vi. How to design and implement a model of social sustainability in IBS supply chain?

1.4 Research Objective

Any activity requires determining the clear observe objectives because based on the specified objectives, the activities can plan and their efficiency rate of performance can be measured. The aim of this study is to improve IBS supply chain players towards social sustainability. Rest on the above description, the desired aim and objectives of this research can be stated as follows:

i. To identify the current status of IBS

ii. To identify the current status of social sustainability

iii. To define social sustainable factors

iv. To propose a framework for designing the social sustainability

v. To design a model for social sustainability

vi. To design and implement a model of social sustainability in IBS

1.5 Significance of study

i. To bring social sustainable aspects to the Industrial Building System.

ii. To reduce the implementation of the conventional method.
iii. To consider the upstream and downstream requirements in IBS production at the same time.

iv. To achieve more sustainable structure in social perspective with attention to the customer satisfaction in IBS production supply chain.

v. To increase the level of IBS adoption.

vi. To provide the base of OBS adoption.

vii. Hoped to fulfill the vision of CIDB and the Government of Malaysia.

1.6 Hypothesis

The research hypothesis is a paring down of the research problem into something testable and falsifiable. Hypotheses are the expected results of the research (Thomas et al., 2010). The goal of all research is to test hypothesis and all researchers should have hypothesis before they conduct their research. A research hypothesis is not a general topic. It is a specific prediction about how two or more variables will be related. This might be a question, a statement or an ‘If/or’ statement. A hypothesis must be testable, taking into account current knowledge and techniques, be realistic, be verifiable by statistical and analytical means, to allow a verification or falsification (Shuttleworth, 2008; Mitchell and Jolley, 2012). The hypotheses are the expression of existing relations within the variables or about how the objectives situations. Therefore by attention to Table 1.1 the hypotheses of the study through IBS social sustainability are:

i. There is a significant relationship between the political subsystem and social sustainability. The examined variables include: government and participation.

ii. There is a significant relationship between the cultural subsystem and social sustainability. The examined variables include: community and culture, quality of life and sense and perception
iii. There is a significant relationship between the institutional subsystem and social sustainability. The examined variables include: knowledge and education

iv. There is a significant relationship between the economic subsystem and social sustainability. The examined variables include: equity & accessibility, economy, job and empowerment

v. There is a significant relationship between the environmental subsystem and social sustainability. The examined variables include: safety and health, future and environment.

Table 1.1: Research Hypothesis Classifications

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Group</th>
<th>Factor</th>
<th>Number of Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(i)</td>
<td>A1: Socio-Political</td>
<td>a7: Government & NGOs</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a8: Participation & Democracy</td>
<td>3</td>
</tr>
<tr>
<td>H(ii)</td>
<td>A2: Socio-Cultural</td>
<td>a9: Sense & Perception</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a10: Quality of Life</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a3: Community & Culture</td>
<td>7</td>
</tr>
<tr>
<td>H(iii)</td>
<td>A3: Socio-Institutional</td>
<td>a4: Knowledge & Education</td>
<td>5</td>
</tr>
<tr>
<td>H(iv)</td>
<td>A4: Socio-Economic</td>
<td>a6: Job & Empowerment</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a1: Equity & Accessibility</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a2: Economy</td>
<td>4</td>
</tr>
<tr>
<td>H(v)</td>
<td>A5: Socio-Environmental</td>
<td>a5: Future</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a11: Safety & Health</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a12: Environment</td>
<td>4</td>
</tr>
</tbody>
</table>
1.7 Scope of Study

Any research should be restricted due to the limited scientific ability of researcher and other factors such as time and financial limitation and high workload. Besides, it is almost impossible doing the research that its results are valid at all the times, places and circumstances, except in such fields as mathematics. Therefore, any investigation will select a certain scope and tries to answer to the research questions through addressing the objectives within that research scope. In this regards, to narrow the focus of the research it need to specify the scope of what is to be done. The following segmentations is adopted from De Vaus’ (2001) research topic break up, to help narrow down the research scope. According to this guideline the researcher should mention the scopes of each objective in terms of concept, time, geographic, generality, interest, method and tools which are described as follow:

- Concept (what is the scope of the core concept? what is to be included in the scope?)
- Time (what is the time frame for the scope? over what period?)
- Area (what are the research area / geographical location for the scope?)
- Generality (how general is the scope to be? To be able to describe patterns for specific subgroups?)
- Interest (what aspect of the topic are interested in? the interest is in what?)
- Method (what is the method of analysis or data collection? How to collect information and draw conclusions?)
- Tools (what tools are used?)

Based on the above description Tables 1.2 and 1.3 show the scope of the study.
<table>
<thead>
<tr>
<th>Objective</th>
<th>Concept</th>
<th>Time</th>
<th>Area</th>
<th>Generality</th>
<th>Interest</th>
<th>Method</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) To identify the current status of IBS</td>
<td>1) Definitions, background, classification, advantages, disadvantages, etc.</td>
<td>From 1960s (started main IBS projects in the world and first IBS project in Malaysia)</td>
<td>Research Documents, Literatures consisted of the review of approximately 100 books, articles, research documents, published reports, and professional documents and road maps *</td>
<td>Worldwide and specially Malaysia construction industry</td>
<td>The necessity of addressing social sustainability in IBS</td>
<td>1)Secondary data</td>
<td>1)Search (Libraries and online sources)</td>
</tr>
<tr>
<td>(ii) To identify the current status of social sustainability</td>
<td>1) Definitions, background, sustainability dimensions and their interrelationship and integration, etc.</td>
<td>From 1970s (when sustainability concept originated)</td>
<td>Research Documents, Literatures consisted of the review of approximately 150 books, articles, published reports, and professional documents</td>
<td>All sustainability studies</td>
<td>The necessity and level of social dimension through Sustainability</td>
<td>1)Secondary data</td>
<td>1)Search (Libraries and online sources)</td>
</tr>
<tr>
<td>(iii) To define social sustainable factors</td>
<td>1) Definition, roles, current situation, features, framework, assessment methods and models</td>
<td>From 1970s (when sustainability concept originated)</td>
<td>Research Documents, Literatures consisted of the review of approximately 150 books, articles, research documents, published reports, and professional documents</td>
<td>All sustainability studies specially social dimension</td>
<td>Preliminary factors to propose a social sustainable framework and model</td>
<td>1)Secondary data collection</td>
<td>1)Search (Libraries and online sources)</td>
</tr>
</tbody>
</table>

Sources included the researcher’s university library, scholarly, peer-reviewed journals, and the web and CIDB data center.
<table>
<thead>
<tr>
<th>Objective</th>
<th>Concept</th>
<th>Time</th>
<th>Area</th>
<th>Generality</th>
<th>Interest</th>
<th>Method</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iv) To propose a framework for designing the social sustainability</td>
<td>1) Social sustainable factors sorting</td>
<td>2011-12 (research period)</td>
<td>1) Social sustainability factors (objective iii), Social experts</td>
<td>Commonly applicable</td>
<td>Provide a basis of social sustainable model</td>
<td>1) Group Focus, Grounded Theory</td>
<td>1) Interview</td>
</tr>
<tr>
<td>(v) To design a model for social sustainability</td>
<td>1) Framework confirmation 2) Model design with AHP</td>
<td>2011-12 (research period)</td>
<td>1) Social sustainable framework, IBS supply chain players 2) Social sustainable framework, Social experts Construction industry experts</td>
<td>Commonly applicable</td>
<td>Applicable in building systems and IBS</td>
<td>General model which be applicable in building systems and IBS</td>
<td>1) Confirmatory Factor Analysis (CFA) 2) AHP</td>
</tr>
<tr>
<td>(vi) To implement and design a model of social sustainability in IBS supply chain players</td>
<td>1) IBS social factor ranking 2) System Identification and Neural Network model application</td>
<td>2011-12 (research period)</td>
<td>1) IBS supply chain players 2) Social sustainability AHP model, System Identification and Neural Network model, IBS supply chain players (Contractors, Consultant, Manufacturer, Clients) and Academic experts</td>
<td>Constructio n Industry and IBS in Malaysia</td>
<td>Social sustainability measurement and evaluation in IBS</td>
<td>1) Average, Friedman, TOPSIS Ranking 2) System Identification and Neural Network</td>
<td>1) questionnaire and SPSS19 2) questionnaire and EXPERT CHOICE11</td>
</tr>
</tbody>
</table>
1.8 Research Methodology

The research methodology has been carried out to fulfill the objectives of the study which include the method of data collection such as documents study, case study, preparation of questionnaires and data analysis. The research procedures are as shown in Figure 1.1.

Figure 1.1 Research Methodology Flow Chart
1.9 Structure of Report

The research report is consists of five chapters where the content of each chapter are summarized as follows:

Chapter 1 is the introduction part for the research report. It provides an overall view of the whole report. Chapter 1 includes introduction, problem statement, hypothesis, objective, and scope of the study, significance of the study, research questions, research methodology and the structure of the report.

Chapter 2 is the literature review that based on findings from various different sources of information such as journal, technical papers, books, research paper etc on IBS and social sustainability. Chapter 2 includes definitions, classification of building system and IBS, essential characteristic of IBS, benefits and shortcomings of IBS, experiences and implementation of IBS in other countries, IBS in Malaysia, barriers of IBS in Malaysia, IBS Roadmaps and Construction Industry Master Plan (CIMP 2006-2015). In continue, this section is going to look at sustainable development and its three-dimensional model, then focus more closely and particularly the place of ‘the social’ within it.

Chapter 3 describe in detail the research methodology which covered literature review, questionnaires, preparation of the questionnaires, and method of analysis.

Chapter 4 analyzed the data using frequency analysis and also was discussed in detail the data analyzed and the findings were highlighted.

Chapter 5 highlights the findings and concludes the overall study on the subject and evaluate whether the objective of the research are achieved. Recommendations for further studies are also included in this chapter.
REFERENCES

Abosaad et al. (2009). Towards an information system representation of OSM in facilitating the virtual prototyping of housing design. *BuHu 9th International Postgraduate Research Conference (IPGRC)*. Salford, United Kingdom: 509-520.

Allen et al. (2002). Sustainable Urbanisation: Bridging the Green and Brown Agendas, UN-HABITAT.
Badir et al. (2002). "Industrialized Building Systems Construction in Malaysia."
JOURNAL OF ARCHITECTURAL ENGINEERING.
Baiden et al. (2006). "The Extent of Team Integration within Construction Projects."

Barron and Gauntlet (2002). Housing and Sustainable Communities Indicators Project. paper presented at ‘Sustaining our Communities’ International Local Agenda 21 Conference, Adelaide.

Bramley et al. (2006). What is ‘Social Sustainability’ and How do our Existing Urban Forms Perform in Nurturing it? ’Sustainable Communities and Green Futures’ Conference. Bartlett School of Planning, University College London.
Brenkert (2004). Corporate Integrity & Accountability, SAGE.
Byrne (2001b). Structural equation modelling with AMOS: Basic concepts, applications, and programming. New Jersey, Lawrence Erlbaum

Elkington (1999). Triple bottom line revolution: reporting for the third millennium, Australian CPA.

Ezin et al. (2010). Recognition of Human Codewords with a Genetic-Neural Hybrid System. 9th Mexican International Conference on Artificial Intelligence, Micai 2010, Pachuca, Mexico, Springer.

Decision Support Software Inc.,

Hong (2006). Analysis of IBS for School Complex. Johor Bharu, Malaysia,
Universiti Teknologi Malaysia. **Master.**

Jee *et al.* (2004). To Solve Inverse and Forward Kinematic Problem of 2D Robot Arm Using Neural Network Proceedings of the National Conference on Advanced Manufacturing & Robotics, , Durgapur, India,

Jin (2008). Lean Construction: Knowledge and Barriers in Implementing into
Malaysia Construction Industry. Faculty of Civil Engineering, Universiti Teknologi Malaysia. Master.

Kamar et al. (2009). Barriers to Industrialized Building System (IBS): The Case of Malaysia BuHu 9th International Postgraduate Research Conference (IPGRC), Salford, United Kingdom.

King (2000). Stakeholders and spindoctors: the politicisation of corporate
reputations. Hawke Research Institute Working Paper Series No. 5, Magill, SA.

King and Mackinnon (2000). Corporate citizenship and reputational value: the marketing of corporate citizenship. Hawke Research Institute, Magill, SA.

Kitzinger and Barbour (1999). Developing Focus Group Research: Politics, Theory and Practice. SAGE.

Lake and Harper (1987). Public Opinion Polling:
A Handbook For Public Interest And Citizen Advocacy Groups. Island Press.

Li et al. (2010) Enhancing diversity for average ranking method in evolutionary many-objective optimization. PPSN'10 Proceedings of the 11th international conference on Parallel problem solving from nature: Part I, Kraków, Poland

Muijs (2004). Doing Quantitative Research in Education with SPSS. SAGE.

Ortgiese (2007). *Value Added by Venture Capital Firms*. Josef Eul Verlag GmbH.

Polèse and Stren (2000). *The Social Sustainability of Cities: Diversity and the
Management of Change. Toronto: University of Toronto Press.

Roslan (2010). Perspectives of Malaysian contractors toward industrialised building systems (IBS) implementation, Universiti Teknologi Malaysia. Master.

Schaltegger and Synnestvedt (2002). "The link between ‘green’ and economic

Severcan and Haris (2012). Vibrational Spectroscopy in Diagnosis and Screening, IOS Press.

Shaari and Ismail (2003). Promoting the usage of Industrialized Building System (IBS) and Modular Coordination (MC) in Malaysia. Construction Industry in Engineers (Board of Engineer Malaysia).

Shevlin et al. (2000). "Reassessing the fit of the confirmatory factor analysis of the multidimensional students life satisfaction scale: comments on 'confirmatory factor analysis of the multidimensional Students' Life Satisfaction Scale." Personality and Individual Differences 28: 181±185.

Staden (2010). Local Governments and Climate Change: Sustainable Energy Planning and Implementation in Small and Medium Sized Communities.

Stewart et al. (2007). Focus Groups: Theory And Practice, SAGE.

Tatum (1986). Constructability improvement using pre-fabrication, pre-assembly and modularization, In Technical Report No. 297, Stanford University, California, US.

Thanoon et al. (2003a). The Experiences of Malaysia and Other Countries in Industrialised Building System in Malaysia. Proceeding on IBS Seminar, UPM, Malaysia.

Thanoon et al. (2003b). The Experiences of Malaysia and Other Countries in Industrialised Building System in Malaysia. IBS Seminar, UPM, Malaysia.

Thin et al. (2002). Conceptualising Socially Sustainable Development. mimeo. A paper prepared for DFID and the World Bank, DFID.

UNCSD (2001). Sustainable development of tourism, United Nations Commission on Sustainable Development Zurich, UN

CIRIA C563. London: CIRIA.

Zaimi (1997). Non-excusable Delays In Constructions [Thesis], Loughbrough University of Technology, UK. Ph.D.

Zhang et al. (2008). Study on sustainable construction management based on LCA. International Conference on Construction on Real Estate Management, Toronto, Canada.