CORROSION MANAGEMENT OF
STEEL REINFORCED CONCRETE

CHEW WE-SEN

A project report submitted in partial fulfillment of the
requirements for the award of the Degree of
Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

APRIL, 2006
TO MY BELOVED MOTHER, FATHER AND SISTERS
ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my supervisors, PM. Wan Zulkifli Wan Yusof and Mr. Bachan Singh who have been providing guidelines and information for the completion of this report. They have shown great faith in me and has been very supportive throughout the research. Also, not forgetting to extend my gratitude to all lecturers of Falkulti Kejuruteraan Awam (FKA), UTM for their nurturing. To all staffs of UFT Sdn. Bhd and Sinct Lab Sdn. Bhad who had offered many helpful information in preparation of case study.

Last but not least, to my family and friends for their care and encouragement that has inspired me to complete this work. This work could not have been completed without their unconditional support.
ABSTRACT

Structural failures are closely linked with the corrosion of steel bar in reinforced concrete. Repair or maintenance works on corroded structures are usually costly. Corrosion is actually a slow process and can be detected for further repair before causing any damage. Failure to do so would only cause expensive economical as well as physical damage to the structure itself. Corrosion management includes activities performed to mitigate corrosion, to repair corrosion-induced damage and to replace the structures that are badly corroded. The objectives of this study are to study the corrosion management program, to identify the methods of corrosion prevention, to evaluate the cost-benefit ratio of corrosion management and to identify the problems in the management of corrosion. The study was carried out by conducting literature reviews, questionnaires and interviews. The data collected through questionnaires were then analyzed using average mean index. The outcome of the study indicates that awareness of practicing professional is relatively low regarding issues on corrosion management. The potential of cost saving through implementation of proper management program can be surprisingly high
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>THESIS STATUS DECLARATION</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER I INTRODUCTION

1.1 Introduction 1
1.2 Problem Statement 2
1.3 Objectives 3
1.4 Scope of Studies 4

CHAPTER II LITERATURE REVIEW

2.1 Electrochemical Theory of Corrosion 5
2.2 Mechanism of Corrosion 7
2.2.1 Chloride Attack 8
2.2.2 Carbonation

2.3 Corrosion Damage

2.4 Types of Reinforcement Corrosion

2.4.1 General Corrosion

2.4.2 Pitting Corrosion

2.4.3 Bacterial Corrosion

2.4.4 Concentration Cells

2.4.5 Differential-oxygen Cells

2.4.6 Dissimilar Metal Corrosion

2.5 Methods of Prevention

2.5.1 Design for Durability

2.5.1.1 Concrete Technology

2.5.1.2 Cover Thickness

2.5.2 Concrete Technology for Corrosion Prevention

2.5.2.1 Cement

2.5.2.2 Aggregates

2.5.2.3 Mixing Water

2.5.2.4 Admixtures

2.5.2.5 Mix Design, Mixing, Handling, Placement and Compaction

2.5.3 Surface Treatment

2.5.3.1 Organic Coatings

2.5.3.2 Hydrophobic Treatment

2.5.3.3 Cementitious Coatings and Layers

2.5.4 Corrosion Resistant Reinforcement

2.5.4.1 Stainless Steel Rebars

2.5.4.2 Galvanized Steel Rebars

2.5.4.3 Epoxy Coated Rebars

2.6 Methods of Repair

2.6.1 Conventional Repair Method

2.6.1.1 Assessment of the Condition of the Structure

2.6.1.2 Removal of Concrete
2.6.1.3 Preparation of Reinforcement 33
2.6.1.4 Application of Repair Material 33
2.6.2 Cathodic Protection 34
 2.6.2.1 Application of Cathodic Protection on Reinforced Concrete Structure 35
 2.6.2.2 Types of Cathodic Protection 36
 2.6.2.2.1 Sacrificial Anode 36
 2.6.2.2.2 Impressed Current 37
 2.6.2.3 Cathodic Protection of Steel in Chloride Contaminated Concrete 38
2.6.3 Cathodic Prevention 39
2.6.4 Electrochemical Chloride Removal 40
2.6.5 Electrochemical Realkalisation 42
2.7 Economic Analysis 43
 2.7.1 Cost of Corrosion 43
 2.7.2 Direct and Indirect Cost 45
 2.7.3 Life Cycle Cost 45
 2.7.4 Cash Flow 46
 2.7.5 Present Value 48
 2.7.6 Annualized Value of the Cash Flow 50
 2.7.7 Potential of Cost Saving Through Corrosion Management 52

CHAPTER III METHODOLOGY 53

3.1 Introduction 53
3.2 Literature Review 55
3.3 Questionnaire 55
3.4 Method of Analysis 56
 3.4.1 Average Index 57
 3.4.2 Mean 57
 3.4.3 Median 58
 3.4.4 Mod 58
CHAPTER IV RESULTS AND DISCUSSION 60

4.1 Introduction 60
4.2 Number of Respondent 60
4.3 Fields of Expertise of Respondents 61
4.4 Experience of Respondents 62
4.5 Cost of Steel in Construction 63
4.6 Corrosion Prevention Methods Available 64
4.7 Frequency of Applying Corrosion Prevention Methods 66
4.8 Corrosion Repair Method Available 68
4.9 Frequency of Applying Corrosion Repair Method 71
4.10 Conclusion 73

CHAPTER V CASE STUDY 74

5.1 Introduction 74
5.2 Visual Inspection 76
 5.2.1 Cause of Corrosion of the Deck 77
5.3 Underwater Inspection 79
 5.3.1 Causes of Corrosion on Steel Pilling 79
 5.3.2 Corrosion Mechanism of Steel in Seawater 80
 5.3.3 Zones of Corrosion of Steel Piles 81
 5.3.3.1 Atmospheric Zone 82
 5.3.3.2 Splash Zone 82
 5.3.3.3 Tidal Zone 84
 5.3.3.4 Submerged Zone 85
5.4 Visual Inspection on 19 Numbers of Steel Pile With Diameter 600mm Between Dolphin C And Dolphin D 86
5.5 Conclusion of The Visual Inspection 87
5.6 Cost of Concrete Repair and Structural...
CHAPTER VI CONCLUSION AND SUGGESTION 96

6.1 Introduction 96
6.2 Conclusion 97
 6.2.1 Corrosion Management Program 97
 6.2.2 Methods of Corrosion Prevention 100
 6.2.2.1 Design for Durability 100
 6.2.2.2 Concrete Technology 101
 6.2.2.3 Surface Treatment 101
 6.2.2.4 Corrosion Resistant Rebar 102
6.3 Cost-Benefit Ratio 102
6.4 Problems in Corrosion Management 103
6.5 Suggestions 104

REFERENCES 106
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The anodic and cathodic reactions</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The corrosion reactions on steel</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>The breakdown of the passive layer and recycling chlorides</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Chloride attack and spalling of concrete</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Rust growth forcing steel and concrete apart</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Pitting corrosion in a freely corroding bar</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Concentration and differential-aeration cells in concrete</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Dissimilar metal corrosion</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Sacrificial anode protection</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Impressed current protection</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>Mechanism of cathodic prevention</td>
<td>40</td>
</tr>
<tr>
<td>2.12</td>
<td>Principle reactions involved in chloride extraction</td>
<td>41</td>
</tr>
<tr>
<td>2.13</td>
<td>Mechanism of electrochemical realkalization</td>
<td>42</td>
</tr>
<tr>
<td>2.14</td>
<td>Principle of electrochemical realkalization</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology Flowchart</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Numbers of collected questionnaires</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Fields of expertise of the respondents</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Working experience of respondents</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Cost of steel in construction</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Level of familiarity of corrosion prevention methods</td>
<td>65</td>
</tr>
<tr>
<td>4.6</td>
<td>Frequency of applying corrosion prevention methods</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>Familiarity of corrosion repair method</td>
<td>70</td>
</tr>
</tbody>
</table>
4.8 Frequency of applying corrosion repair method 72

5.1 View of the deck and steel piling 75

5.2 Tracks of corrosion along the reinforcement arrangement. 76

5.3 Concrete cover spalling off from corroded rebars. 77

5.4 Concrete cover was seen disintegrated from beams 78

5.5 Underwater inspection. 79

5.6 Typical corrosion regions of a steel pile in marine environment. 81

5.7 Corrosion at atmospheric zone 82

5.8 Corrosion at splash zone 83

5.9 Corrosion at tidal zone 84

5.10 Corrosion at submerged zone 85

6.1 Typical corrosion management program 99
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Order of Metal in Galvanic Series</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Recommended Choice of Limiting Values of Concrete Composition in Relation to Exposure Classes According To EN 20</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Concrete Cover Thickness in Relation To Diameter of Rod</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Minimum Thickness of Concrete Cover Depending On Environmental Condition</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Level of Familiarity of Corrosion Prevention Methods</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Frequency of Applying The Following Prevention Methods</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Level of Familiarity of Corrosion Repair Methods</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Frequency of Applying The Following Repair Methods</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Questionnaire</td>
<td>108</td>
</tr>
</tbody>
</table>
1.1 Introduction

Corrosion is a natural process. The problem started as soon as human started digging the ores. It terrorized industries that have the application of steel ranging from chemical plant, power plant and agricultural sector. However, corrosion that takes place in construction industry is the most critically acclaimed as it involves the lives of human being living under these structures.

Corrosion of rebars in concrete structure is a major problem in the construction industry. Corrosion is generally caused by chloride attack and carbonation which are acidic reaction. Concrete which contains microscopic pores with high concentration of soluble calcium, sodium and potassium oxides are highly alkaline. Ironically, alkalinity is the opposite of acidic. Under high alkalinity condition in concrete, a layer of passive protection would form on the steel surface. A passive layer is a dense, impenetrable film, which if fully established and maintained, prevent further corrosion of steel.

However, as mentioned above, two processes can break down the passivating environment in concrete, one is chloride attack while the other one is carbonation. Therefore, the passive layer is not always maintained.
It was reported that corrosion of metal cost the U.S economy some near $300 billion per year as published by National Association of Corrosion Engineer (NACE). As a general statement, the cost of combating corrosion would keep on growing as long as the country has the capacity to develop. Therefore, it shows that a proper system is very much in need to manage to rising problem of corrosion.

1.2 Problem statement

Concrete is strong in compression but weak in tension. Based on this statement, other material has been introduced to the manufacturing of concrete in hoping to increase the tensile strength of it. Thus, the term of reinforced concrete has been created. Reinforced concrete can be defined as introduction of steel in concrete structure purely for the purpose of strengthening its tensile properties.

Reinforced concrete is a very versatile structure as it can be moulded into variety of shapes. Therefore, application of reinforced concrete is usually very wide in the construction industry. Ranging from substructure to super structure, from beams to columns, from slabs to walls, reinforced concrete can be found in almost every member of the structure.

However, one common problem face by engineers around the globe is that reinforced concrete is an aging material. In other word, the steel will corrodes as time goes by. The severe environment condition in tropical region as well as the process of deicing of saltwater in seasonal countries has led to shorter lifetime of a structure. Right after planting of metal into concrete, nature sets the reversing process.
Of all that, it has prompted one common interest, to study, understand and tackle the problems of corrosion. Realizing the damage and potential danger caused by corrosion, researchers have taken the initiative to identify the mechanism of corrosion and thus introduce methods of curing for it. The methods that are commonly practiced will be further discussed in this study.

As the saying of “prevention is better than cure” goes by, it is wise to design and construct the structure accordingly to avoid any inconvenience.

Corrosion is actually a slow process and can be detected for further repair before causing any damage. Failure to do so would only cause expensive economical as well as physical damage to the structure itself. For that, overlooking the maintenance aspect of a structure could prove to be a costly error.

1.3 Objectives

Engineered structures are built to serve with a purpose. However, all members of a structure undergoes the process of aging. For instance, the most significant aging process is the corrosion of steel in reinforced concrete member.

Corrosion management includes all activities throughout the service life of the structure that are performed to mitigate corrosion, to repair corrosion-induced damage and to replace the structures that are badly corroded. All these activities are governed by large sum of money and are characterized by annual cost. These factors had triggered the need for a proper and systematic ways of conducting corrosion management for reinforced concrete structures ensure maximum profit. In this study, the main objectives are:

1. To study the corrosion management programs.
2. To identify the methods of corrosion prevention.
3. To evaluate the cost-benefit ratio of the management program.
4. To identify the problems in corrosion management.

1.4 Scope of studies

Among the methods that will be carried out to determine the current trend in Malaysia are as follow:

a. Interviews with local contractors, consultants and developers.
b. Survey, in the form of questionnaire to be handed out to local contractors, consultants and developers.
c. Internet research.
d. Application of cost analysis to determine the cost-benefit ratio for corrosion prevention program.
e. Reference of previous studies.
REFERENCES

