RESOURCE-DRIVEN SCHEDULING: BARRIERS TO IMPLEMENTATION

AFTAB HAMEED

A master’s report submitted as a partial fulfilment of
the requirement for the award of degree of
Master of Science (Construction Management)

Faculty Of Civil Engineering
University Teknologi Malaysia

OCTOBER, 2005
Resource-driven scheduling techniques focus on resource. Their objective is to schedule activities so that a project deadline is met using predefined resource availability limits. This research was carried out to investigate the method of project scheduling being adopted in the construction industry, the status, factors affecting and barriers to implementation of resource-driven scheduling implementation in Malaysian construction industry. Survey was conducted to determine the level of resource-driven scheduling and factors affecting the concerned implementation. Construction Firms registered under G7 (A Class), G6 (B class) and G5 (C class) were used in the investigation. It is significant 59.6 percent firms are implementing resource-driven scheduling partially. The methods of project scheduling and resource options adopted were also investigated. A significant majority of construction firms (approximately 65%) adopted Microsoft project for scheduling. The research also focused on the barriers to implementation of resource-driven scheduling in construction projects. Lack of knowledge, no training session, budget allocation and uncertainty value were found very significant barriers.
ABSTRAK

Teknik jadual kerja berasaskan sumber (Resource-driven Scheduling) memberi fokus kepada penjadualan kerja. Objektif utama penjadualan kerja adalah untuk menyelaraskan aktiviti dan menyiapkan projek dengan menggunakan sumber pada had ditetapkan. Kajian ini dijalankan bertujuan untuk mengenalpasti kaedah penjadualan kerja yang digunakan di dalam industri pembinaan, status penggunaannya, dan juga faktor-faktor halangan kepada implimentasi kaedah penjadualan kerja berasaskan sumber di dalam industri pembinaan di Malaysia. Tinjauan telah di laksanakan untuk mengenalpasti peringkat penggunaan teknik jadual kerja berasaskan sumber (resource-driven scheduling) dan faktor yang mempengaruhi penggunaan teknik tersebut. Kajian ke atas syarikat pembinaan yang berdaftar di dalam kelas G7 (Kelas A), G6 (Kelas B), dan G5 (Kelas C) di gunakan untuk tujuan ini. Hasil dari kajian menunjukan bahawa 59.6 peratus daripada keseluruhan syarikat telah menggunakan teknik jadual kerja berasaskan sumber secara tidak menyeluruh. Kajian juga telah dijalankan untuk mengenalpasti kaedah penggunaan penjadualan kerja dan pilihan sumber. Majoriti daripada syarikat pembinaan (dianggarkan sebanyak 65 peratus) menggunakan perisian ‘Microsoft Project’ untuk penjadualan. Fokus kajian juga bertumpu kepada halangan terhadap implimentasi penjadualan kerja berasaskan sumber (resource-driven scheduling). Faktor kurangnya pengetahuan terhadap perisian, tiada latihan, kekurangan peruntukan kewangan dan ketidak tentuan nilai merupakan halangan terpenting di dalam perlaksanaan penjadualan kerja berasaskan sumber.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction

1.1.1 Construction Schedule 1
1.1.2 Material Schedule 2
1.1.3 Labour Schedule 3
1.1.4 Equipment Schedule 3
1.1.5 Financial Schedule 4

1.2 Problem Statement 4
1.3 Aim Of Study 5
1.4 Objectives Of Study 5
1.5 Scope Of The Study 5
2 LITERATURE REVIEW

2.1 Resource Management
 2.1.1 Money or Financial resource
 2.1.2 Manpower Resource
 2.1.3 Material Resource
 2.1.4 Machines or Equipment Resource

2.2 Resource Planning

2.3 Scheduling Techniques
 2.3.1 Simple Bar Chart
 2.3.2 Gantt Chart
 2.3.3 Critical Path Method (CPM)
 2.3.4 PERT
 2.3.5 Work Breakdown Structure (WBS)
 2.3.6 Programs Involving Computer Software Packages

2.4 Resource-Constrained Scheduling

2.5 Resource-Driven Scheduling
 2.5.1 Resource Aggregation
 2.5.2 Resource Cumulating
 2.5.3 Resource Allocation
 2.5.4 Resource Smoothing
 2.5.5 Resource Levelling

2.6 Resource Levelling Techniques
 2.6.1 Slack or Float
 2.6.2 Splitting or Decomposition Of Activities
 2.6.3 Shifting the Project Finishing Date
 2.6.4 Stretching the activities

2.7 Effect Of Limited resources On Project
 2.7.1 Effect On Project Scheduled Float
2.7.2 Effect On Project Scheduled Duration 38

3 RESOURCE FEATURES IN PRIMAVERA AND MICROSOFT PROEJECT

3.1 Resource 39

3.2 Resources in P3 39

3.2.1 Resource Option 40
3.2.2 Resource Calendar 41
3.2.3 Assigning Resources To Activities 42
3.2.4 Resource Priority 42
3.2.5 Resource Levelling 43
3.2.6 Resource Smoothing 44
3.2.7 Resource Splitting 45
3.2.8 Resource Stretching 46
3.2.9 Resource Crunching Option 46

3.3 Resources in Microsoft Project 46

3.3.1 Resource Option 47
3.3.2 Resource Calendar 47
3.3.3 Assigning Resources to Activities 48
3.3.4 Resource Levelling 49

3.4 Sample Program 49

3.4.1 Sample Program Worked With P3 51
2.7.3 Sample Program Worked With MS Project 59

3.5 Comparison of Primavera and MS Project Results 64

4 RESEARCH METHODOLOGY

4.1 Introduction 68

4.2 Research Process 68

4.3 Determining the Research Objectives 69

4.4 Methodology 69

4.4.1 Conceptualization 70
DATA AALYSIS AND RESULTS

5.1 Introduction 75
5.2 Resource-Driven Scheduling Features 75
 5.2.1 Company Information 75
 5.2.2 Respondents By Designation 76
 5.2.3 Respondents’ Experience 78
 5.2.4 Method of Project Scheduling Implementation 79
 5.2.5 Factors Affecting Resource-Driven Scheduling Implementation 81

5.3 Statistical Test Results 84
 5.3.1 Level Of Implementation Of Resource-Driven Scheduling Features 85
 5.3.2 Barriers/Constraints checklist Against Implementation Of Resource-Driven Scheduling
 5.3.2.1 Complexity of the Project 88
 5.3.2.2 Uncertainty Value 89
 5.3.2.3 Resource Availability 89

5.4 Summary 94

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction 96
6.2 Summary Of Findings 98
6.3 Research Achievements 100
6.4 Recommendations For Future Research 100

REFERENCES 102

APPENDICES 112
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Research Methodology</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Effect Of Limited resource Availability</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Resource creation Dialogue Box in P3</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Resource Calendar Dialogue Box in P3</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Resource Assigning Dialogue Box in P3</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Prioritization Dialogue Box in P3</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>Levelling and Smoothing Dialogue Box in P3</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Splitting, Stretching & Crunching Option Dialogue Box in P3</td>
<td>45</td>
</tr>
<tr>
<td>3.7</td>
<td>Resource Option (Sheet) Dialogue Box In MS Project</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>Resource Calendar Dialogue Box In MS Project</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>Resource Assigning Dialogue Box In MS Project</td>
<td>48</td>
</tr>
<tr>
<td>3.10</td>
<td>Resource Levelling Dialogue Box In MS Project</td>
<td>49</td>
</tr>
<tr>
<td>3.11</td>
<td>Scheduled Activities in P3</td>
<td>52</td>
</tr>
<tr>
<td>3.12</td>
<td>Defined Resources with Limits & Rates in P3</td>
<td>53</td>
</tr>
<tr>
<td>3.13</td>
<td>Assigning Resources to Activities in P3</td>
<td>53</td>
</tr>
<tr>
<td>3.14</td>
<td>Summary of Peak Resources Before Levelling in P3</td>
<td>54</td>
</tr>
<tr>
<td>3.15</td>
<td>Summary of Peak Resources after Levelling in P3</td>
<td>54</td>
</tr>
<tr>
<td>3.16(a to n)</td>
<td>Resource Profile Before and After Levelling in P3</td>
<td>55</td>
</tr>
<tr>
<td>3.17</td>
<td>Schedule after Resource Levelling in P3</td>
<td>58</td>
</tr>
<tr>
<td>3.18</td>
<td>Scheduled Activities in Microsoft Project</td>
<td>59</td>
</tr>
<tr>
<td>3.19</td>
<td>Defined Resources with Limits in Microsoft Project</td>
<td>59</td>
</tr>
<tr>
<td>3.20</td>
<td>Assigning Resources to Activities in Microsoft Project</td>
<td>60</td>
</tr>
<tr>
<td>3.21</td>
<td>Monthly usage of Resources Before Levelling in MS Project</td>
<td>61</td>
</tr>
<tr>
<td>3.22</td>
<td>Monthly usage of Resources After Levelling in MS Project</td>
<td>61</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.23(a to n)</td>
<td>Resource Profile Before and After Levelling in MS Project</td>
<td>61</td>
</tr>
<tr>
<td>3.24</td>
<td>Schedule after Resource Levelling in Microsoft Project</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Composition of Respondents by Designation</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>Composition of Respondents by Company Registration</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Method of Project Scheduling Implemented</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>List of Activities for Sample Project</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>List of Resources for Sample Project</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Resources Assigned to Activities</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Monthly Usage of Total Resources Before Levelling in P3</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Monthly Usage of Total Resources After Levelling in P3</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Monthly Usage of Peak Resources Before Levelling in P3</td>
<td>57</td>
</tr>
<tr>
<td>3.7</td>
<td>Monthly Usage of Peak Resources After Levelling in P3</td>
<td>57</td>
</tr>
<tr>
<td>3.8</td>
<td>Monthly Resource Usage results Before Levelling (Primavera and Microsoft Project)</td>
<td>66</td>
</tr>
<tr>
<td>3.9</td>
<td>Monthly Resource Usage results Before Levelling (Primavera and Microsoft Project)</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Respondents By Designation</td>
<td>76</td>
</tr>
<tr>
<td>5.2</td>
<td>Respondents From Various Class/Grades of Registration</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>Respondents by Working Experience</td>
<td>78</td>
</tr>
<tr>
<td>5.4</td>
<td>Methods of Project Scheduling Implemented</td>
<td>79</td>
</tr>
<tr>
<td>5.5</td>
<td>Status of Resource-Driven Scheduling Implemented</td>
<td>80</td>
</tr>
<tr>
<td>5.6</td>
<td>Factors Affecting Resource Driven-Scheduling Implementation</td>
<td>81</td>
</tr>
<tr>
<td>5.7</td>
<td>Factors Affecting Resource Driven-Scheduling Identified by Project Managers</td>
<td>82</td>
</tr>
<tr>
<td>5.8</td>
<td>Factors Affecting Resource Driven-Scheduling Identified by Planners</td>
<td>83</td>
</tr>
<tr>
<td>5.9</td>
<td>Factors Affecting Resource Driven-Scheduling Identified by Quantity Surveyors</td>
<td>83</td>
</tr>
</tbody>
</table>
5.10 Factors Affecting Resource Driven-Scheduling Identified by Site Engineers 84
5.11 Results for Resource-Driven Scheduling Features 85
5.12 Resource-Driven Scheduling Features Adopted by G7 (A Class) Companies 86
5.13 Resource-Driven Scheduling Features Adopted by G6 (B Class) Companies 86
5.14 Resource-Driven Scheduling Features Adopted by G5 (C Class) Companies 87
5.15 Results for Barriers/Constraints 90
5.16 Barriers Identified by Project Managers 91
5.17 Barriers Identified by Planners 92
5.18 Barriers Identified by Quantity Surveyors 92
5.19 Barriers Identified by Site Engineers 93
APPENDICES

<table>
<thead>
<tr>
<th>APPENDICES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Questionnaire</td>
<td>107</td>
</tr>
<tr>
<td>B</td>
<td>List of Companies Participated in Questionnaire</td>
<td>112</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Money is always of special importance to those involved in construction project and hence project completion within time limit is essential regardless of size and complexity of project. Each day of delay in the completion of time constitutes a loss in revenue that can hardly be recovered. Therefore, it is required that a detailed construction schedule be prepared and submitted by the contractor to the owner as a means of monitoring the work progress to ensure the project is completed on time and within budget.

The project schedule is in fact the road map to provide information regarding the project's timeline and measurement of progress. It is necessary that the project schedule be developed at the commencement of the project to ensure completion of the each phase of project in its stipulated period. Also prior and adequate arrangement for provision of resources of construction, such as type and quantity of material, manpower, machines and finance required at each stage of construction can be made as duration of activities depend on the availability of resources. Therefore, allocating resources into the schedule is necessary to determine whether or not there is sufficient supply of resources on hand to perform the work as planned. By comparing the availability of the desired resources against the quantity of labour, equipment, or material required to work the schedule, one is able to manage resource use in the schedule.
Scheduling also indicates the quantities of work and duration of various operations for which plant and equipment can be arranged in due time. It will help in arranging labour (skilled and unskilled) regarding the quantity and period for which they are required. Actual progress can be known and in cases of lagging behind it can be made fast by speeding up of the activities. Resource utilization is optimized and available resources can be directed towards various activities with advantage. Any change or modification made in original plans due to detection of errors in productivity, and delay due to weather and geological conditions can be properly evaluated and the program can be suitably amended.

The ultimate advantage of scheduling is that inter-relationship of various activities and relative importance of each activity at any stage of construction can be known which will help in fixing their priorities properly to execute work in an efficient manner without wastage of the inputs. This will result in gaining maximum possible construction economy.

Schedules can also be classified in order to make the project requirements easy from various aspects as follows:

i) Construction Schedule
ii) Material Schedule
iii) Labour Schedule
iv) Equipment Schedule
v) Financial Schedule

1.1.1 Construction Schedule

Construction schedule is roster prepared for the execution of different operations in the construction of a certain project. In this schedule the work is sub-divided into many sub-heads or operations. The quantity of each operation is calculated and time is allowed for its completion. The amount of work and rate of
completion of work making allowance for bad weather and other unforeseen circumstances, number of men required (both skilled and unskilled), and type of equipment needed and inter-relationship is calculated, the sequence of various operations is given and the date of completion of each operation is mentioned. In fact, construction schedule governs all the other schedules.

1.1.2 Material Schedule

Moving and storing the material in any form is known as material schedule. It is the schedule, which shows the dates of delivery of each type of material on site. A material schedule is a useful guide and measure of control of construction materials.

1.1.3 Labour Schedule

Labour schedule is the graphical representation of the labour requirement on certain days or during certain weeks. Labour schedule will indicate the nature and quantity of labour for the execution of different operations on different dates. It helps for the arrangement of special type of labour if required for a particular operation in the project.

1.1.4 Equipment Schedule

Equipment schedule shows the types and quantities of equipment required on particular dates in the entire project. Equipment schedule enables to make proper arrangement and to have maximum use of construction equipment. This schedule is prepared with the help of a construction schedule.
1.1.5 Financial Schedule

Financial schedule shows the flow of money into project.

Various computer programs have been established so far to prepare schedules of which Microsoft project and Primavera Project Planner are two popular software programs used in construction industry. Both programs allow the user to prepare detailed schedule and allocate resources and level the type and quantity of resources required for each activity on the schedule. For the current study an example data is taken and scheduled by using Primavera Project Planner and Microsoft Project to visualize the effect by the application of resource-driven scheduling features in both software packages. Finally, the results obtained with both software packages are compared.

1.2 Problem Statement

In construction industry planning and scheduling have a lot of importance as they help as a mean of monitoring progress to ensure the project is completed on time and within budget and this depends on the availability of resources. Unfortunately, most discussions of scheduling in the project management arena focus largely on timing issues without taking into account the link between resource availability and capability and the project schedule (Gido and Clements, 1999). Also based on the discussions with the experts involved in construction industry, it was observed that there is normally not much consideration of resources in scheduling and there is low level of implementation of resource-driven scheduling as compared to time-driven scheduling. Since the duration of each activity is dependent upon the availability of resources, the problem arise when work proceeds without taking into account how much the limited amount of labour, equipment and materials will impact the schedule. Therefore the problem of scheduling activities under resource and precedence restriction with the objective of minimizing the total project throughput duration or the objective function is very important to perform the work as planned.
1.3 Aim of the study

The need for the implementation of resource-driven scheduling in construction is necessary in order to complete the projects according to the schedule and within the time and available resources. The aim of this research is to study barriers to the implementation of resource-driven scheduling in construction industry.

1.4 Objectives of the study

In order to achieve the aim mentioned earlier the following objectives have been identified:

1. To evaluate/identify and compare resource-driven scheduling features in Primavera Project Planner and Microsoft Project.
2. To identify the level of implementation of resource-driven scheduling features in construction projects.
3. To identify the barriers to the implementation of resource-driven scheduling.

1.5 Scope of study

This study covers a comparative study of resource-driven scheduling features available only in Microsoft Project and Primavera Project Planner. A questionnaire survey was carried out among the participants of the construction industry registered under classes G7 (A grade), G6 (B grade) and G5 (C grade) in:

- The state of Johor (Malaysia)
- Selangor (Malaysia)
1.6 Framework of research

This section discusses the framework of research. This will help to realize the essential stages of methodology performed or steps of process carried in order to achieve the aim and objectives of this study. The framework of methodology represented diagrammatically in figure 1.1 to show the distinct stages and sequence carried out. Conceptualization is the understanding the importance and basics of the work intended to be carried out.

![Diagram of Research Methodology]

Figure: 1.1: The Research Methodology

CONCEPTUALIZATION

LITERATURE REVIEW

QUESTIONNAIRE SURVEY

ANALYSIS OF QUESTIONNAIRE

CONCLUSION AND RECOMMENDATIONS
1.7 Organization of dissertation

The dissertation is structured into six chapters as follows.

In chapter one, a brief introduction and importance of the study is given along with the aim, objectives and scope of study. A brief methodology of the study is also given in this chapter.

The basic knowledge, historical background and significance of the topic of study are described in chapter two. Theoretical aspects of the research are also discussed briefly.

Chapter three includes the study of various features of resource-driven scheduling in Microsoft Project and Primavera Project Planner and the comparison between the two by implementing on a simple example.

In chapter four, the methodology adopted to achieve the aim and objectives of the study is explained.

A complete description of the findings of the study is presented in chapter five. It also includes a description of the outcomes, especially if it deviates from expectations and quantitative data analysis approaches that are specifically linked to the key questions.

Chapter six presents conclusions to the findings of the study with particular emphasis on the contribution made by the research and recommendation for future research.
REFERENCES

David, Chua, H.K. And Shen, J.L. “Constraint Modeling and Buffer Management with Integrated Production Scheduler”

Nowlan, D. “Questionnaire Design in Relation To Instructional Development.” *Concept Paper, EDER 675*

