SURVIVAL OF HUMAN PROSTATE CARCINOMA CELL LINE (DU145) IN
THE PRESENCE OF Ficus deltoidea AND Labisia pumila AQUEOUS
EXTRACTS

KOSAR ALI OMER

UNIVERSITI TEKNOLOGI MALAYSIA
SURVIVAL OF HUMAN PROSTATE CARCINOMA CELL LINE (DU145) IN THE PRESENCE OF *Ficus deltoidea* AND *Labisia pumila* AQUEOUS EXTRACTS

KOSAR ALI OMER

A dissertation submitted in partial fulfillment of the requirement for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Bioengineering
Universiti Teknologi Malaysia

JANUARY 2013
To my beloved wife (Shaee), father (Ali), mother (Badeaa) and sisters (Kizhan, Zhwan) and my uncle (Latif)
ACKNOWLEDGEMENTS

First and foremost, Alhamdulillah, thanks to Allah, for giving me the strength, patience and health to go through all obstacles in order to complete this research. With His blessing, this project is finally accomplished.

I would like to thanks my main supervisor Dr. Mohammed Arshad Javed for his believing in me and all his supports and guidance by his courageous advices. I would also want to express my appreciation and thanks to my Co-supervisor Prof. Dr. Mohammed Roji Sarmidi for all his help during this project and giving me helpful hand in every step of the work making everything easy for me. I would like to express my deep appreciation for both my friends Moh. Mukrish bin Mohd Hanafi and Muhammad Fauzi Abdjalil efforts, with out their help I couldn’t finish this project as it is now, special thanks for all the members of Tissue Culture Engineering Laboratory (TCEL) for letting me work in their laboratory.

I would like to express my grateful to Kurdistan region government, Ministry of higher education / HCDP, Ministry of health and Hiwa hospital to give me a chance for completing my post graduate study.

Last but not least, I’m very thankful for my dear wife for all her supports and encouragements during the time of study. Special thanks for my father and mother for all their love and prayers. Thanks to all my friends and relatives who support me, especially my uncle Latif and Dara, Dr. Taher Arif and Miss DeeDee Baumgraner. Thanks a lot for everything. May God repay your kindness and help in the future.
ABSTRACT

Ficus deltoidea and *Labisia pumila* are two local plants that have been used in traditional medicine for a long time for enhancement reproductive system and cancer treatment. In this study, cell-based assays were used to determine the effect of aqueous extract of these two plants on the Human Prostate carcinoma (DU145) cell line. MTT assay, viability test, and morphological studies were carried out. *Ficus deltoidea* showed higher growth inhibitory than *Labisia pumila* extract. The MTT assay indicated that the most inhibitory concentration of the extracts is 1×10^{-3} µg/ml, this concentration is consistent throughout the course of this study. MTT assay demonstrated that *Ficus deltoidea* extracts killed around 60% and *Labisia pumila* around 42% of the cells compared with the negative control. In the viability test, *Ficus deltoidea* also recorded a better effect than *Labisia pumila* which killed all the cells within 7 days. In the case of *Labisia pumila* extract, it took 9 days, while 12 days needed for the negative control. Both extracts showed almost similar effects on the morphology of the cells. Observation under inverted microscope for both extracts observed irregular detachment and clumping of the cells. There was morphological changing of the cells from hexagonal to round shape. In apoptotic body study, the effect was similar in blabbing cells, chromatin condensation, apoptotic cells, and late apoptotic body formation, the difference was in the living cells which for *Labisia pumila* extract more living cells seen than *Ficus deltoidea* extract. In general, both aqueous extracts showed a growth suppressive effect on the DU145 cell line, but *Ficus deltoidea* extract was more effective than *Labisia pumila* extract.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABASTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LEST OF SYMBOLS / ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research background 1
1.2 Objective of the study 3
1.3 Scopes of the study

1.4 Research contributions

2 LITERATURE REVIEW

2.1 Overview

2.2 Introduction

2.3 Use of Herbs in medicine

2.4 Ficus spp. (Fig) and its use in medicine

 2.4.1 Ficus deltoidea plant and its use in medicine

2.5 Labisia pumila

 2.5.1 Traditional use of Labisia pumila

 2.5.2 Phytochemical compounds in Labisia pumila

2.6 Cancer

2.7 Prostate cancer

 2.7.1 Prostate

 2.7.2 Prostate cancer

 2.7.2.1 Prostate cancer symptoms

 2.7.2.2 Risk factors that enhance Prostate cancer

 2.7.2.3 Prostate cancer diagnosis
2.7.2.3.1 Prostate Specific Antigen 27
2.7.2.3.2 Digital rectal examination 28
2.7.2.3.3 Trans-rectal ultrasound 29
2.7.2.3.4 Needle biopsy 29

2.7.2.4 Prostate cancer grading systems 30
2.7.2.4.1 The Gleason Grading System 30
2.7.2.4.2 H staging system 31

2.8 Plant and phytochemical compounds against cancer 33

2.9 Cell culture 37
2.9.1 Cell growth 38
2.9.2 Cell death; apoptosis and necrosis 38
2.9.2.1 Determining the cell death 40
2.9.2.1.1 Viability test 41
2.9.2.1.2 The MTT assay 43
2.9.2.1.3 Ethidium bromide and Acridin orange (EB/AO) double staining method 45
3 METHODOLOGY

3.1 Introduction 48

3.2 Materials 49

3.2.1 Chemical requirements 49

3.2.2 Instruments 49

3.2.3 Cell line 50

3.3 Preparation of extract 51

3.3.1 Preparation of aqueous extracts from *F. deltoidea* plant 51

3.3.2 Preparation of aqueous extract from *Labisia pumila* plant 51

3.4 Cell culture protocol 52

3.4.1 Cells seeding 52

3.4.2 Medium renewal 52

3.4.3 Cell subculture 53

3.4.4 Cell Cryopreservation 54

3.4.5 Cell Recovery 54

3.4.6 Cell Counting 55

3.4.7 Growth Curve Profile 56

3.5 Cell Proliferation Analysis 57
3.5.1 Cell cytotoxicity assay (MTT assay) 57
3.5.2 Viability assay 59
3.5.3 Morphological study 60
 3.5.3.1 Cells morphological study using inverted microscopy 60
 3.5.3.2 Apoptotic body study by double staining EB/AO using fluorescence microscopy 60

4 RESULTS AND DISCUSSION

4.1 Introduction 62
4.2 Cell lines 62
 4.2.1 Human Prostate Cancer Cell Line (DU145) 62
 4.2.2 Human Skin Fibroblast Cell Line (HSF1184) 63
 4.2.1.1 The growth profile of DU145 cell line 63
 4.2.1.2 Normal cells morphology observation 65
4.3 Cell based assay – Determining the effect of the extracts on the cells 69
 4.3.1 Cell cytotoxicity assay (MTT assay) 70
 4.3.1.1 The effect of Ficus deltoidea aqueous extract on DU145 cell growth 70
 4.3.1.2 The effect of Labisia pumila aqueous extract on DU145 cell growth 73
4.3.1.3 The comparative study between effects of aqueous extracts of *Ficus deltoidea* and *Labisia pumila* on DU145 cell growth

4.3.2 DU145 cells viability study in the presence of aqueous extract of *Ficus deltoidea* and *Labisia pumila* plant

4.3.2.1 Study the effect of aqueous extract of *Ficus deltoidea* on the viability of DU145

4.3.2.2 Study the effect of aqueous extract of *Labisia pumila* on the viability of DU145 cells

4.3.2.3 The comparative study between the effects of aqueous extract of *Ficus deltoidea* and *Labisia pumila* on the viability of DU145

4.3.3 Study the effect of aqueous extract of *Ficus deltoidea* and *Labisia pumila* plant on the morphological observation of DU145 cells

4.3.3.1 Study the effect of the extracts on the morphology of DU145 cells using Inverted microscope

4.3.3.1.1 Study the effect of *Ficus deltoidea* aqueous extract on the DU145 cells morphology using inverted microscope

4.3.3.1.2 Study the effect of *Labisia pumila* aqueous extract on the DU145 cells morphology using inverted microscope

4.3.3.2 Apoptotic bodies study using fluorescence microscope
5 CONCLUSIONS AND RECOMMENDATION

5.1 The conclusion of this study 89

5.2 Recommendations 91

REFERENCES 92

APPENDICES 110
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Major plant drugs for which no synthetic one is currently available</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Ratio between PSA level and ratio of Prostate cancer probability</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Ratio of PSA value to positive prostate cancer</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>The Gleason grade and tumor progression</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>H staging system (TNM)</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>List of the instrument that use in this research with the name of Producer Company</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Male “mas cotek” leave</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Female “mas cotek” leave</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Labisia pumila var. alata</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Cancer Hallmarks</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Prostate gland and surrounding organs</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Statistics for prostate cancer in different countries and the rate of mortality among them</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>The steps and mechanisms of necrosis and apoptosis</td>
<td>40</td>
</tr>
<tr>
<td>2.8</td>
<td>Cell growth curve in cell culture</td>
<td>42</td>
</tr>
<tr>
<td>2.9</td>
<td>Reaction happen on MTT solution to purple formazan by mitochondrial reductase enzyme</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>The design of overall experimental procedure</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Hemocytometer, magnified view of one square that shows the cells that can be count and those that neglected. The clear rings are living cells and the dark rings are dead cells</td>
<td>55</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>The complete growth profile of DU145 cell line</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>The morphology of DU145 cell line on (a) day 1, (b) day 3, (c) day 6, (d) day 8 and (e) day 14 using 10X magnification power of inverted microscope</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of aqueous extract of Ficus deltoidea plant at different concentration on DU145 cell</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Comparative study of the effect of aqueous extract of Ficus deltoidea plant at different concentration on HSF1184 and DU145 cells</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of aqueous extract of Labisia pumila plant at different concentration on DU145 cell</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Comparative study of the effect of aqueous extract of Labisia pumila plant at different concentration on growth of HSF1184 and DU145 cells</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Comparative study of the effect of aqueous extract of Ficus deltoidea and Labisia pumila plant at different concentration on growth of DU145 cells</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>The effect of Ficus deltoidea aqueous extract on the viability of DU145 cell compared with the normal viability of the cells</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>The effect of Labisia pumila aqueous extract on the viability of DU145 cell compared with the normal viability of the cells</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Comparative study between the effects of aqueous extract of Ficus deltoidea and Labisia pumila on the viability of DU145 cells</td>
<td></td>
</tr>
</tbody>
</table>
4.11 Changes in cells morphology in different times of extract effect (a) 1st day of exposure, (b) 4th day of the extract exposure and (c) 7th day of exposure under inverted microscope with 10X power

83

4.12 Changes in cells morphology in different times of extract effect (a) 1st day of exposure, (b) 4th day of the extract exposure and (c) 9th day of exposure under inverted microscope with 10X power

85

4.13 The morphology of DU145 cell stained with EB/AO and observed under the fluorescence microscope after (a) cells with out extract (control), (b) cells after treatment with 0.001 µg/ml *Ficus deltoidea* aqueous extract, (c) cells after treatment with 0.001µg/ml *Labisia pumila* aqueous extract

87
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine orange</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco Minimum Essential Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyle Sulfoxide</td>
</tr>
<tr>
<td>EB</td>
<td>Ethedium bromid</td>
</tr>
<tr>
<td>ECACC</td>
<td>European Collection of Cell Cultures</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra Acidicacid</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal Bovine Serum</td>
</tr>
<tr>
<td>HSF</td>
<td>Human Skin Fibroblast</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agricultural Research and Development Institute</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5 Dimethylthiozo1-2-yl)-2,5- diphenyletetrazolium</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PDT</td>
<td>Population Doubling Time</td>
</tr>
</tbody>
</table>
LIST OF APPENDICS

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Certificate Analysis of Ficus deltoidea extract</td>
<td>110</td>
</tr>
<tr>
<td>B</td>
<td>Certificate Analysis of Labisia pumila extract</td>
<td>111</td>
</tr>
<tr>
<td>C</td>
<td>Preparation of Ethidium bromide and Acridine orange (EB/AO) dye mixture</td>
<td>112</td>
</tr>
<tr>
<td>D</td>
<td>The results of statistical analysis by ANOVA for effect of aqueous extract of Ficus deltoidea plant at different concentration on DU145 cell</td>
<td>113</td>
</tr>
<tr>
<td>E</td>
<td>The results of statistical analysis by ANOVA for effect of aqueous extract of Ficus deltoidea plant at different concentration on HSF1184 cell</td>
<td>119</td>
</tr>
<tr>
<td>F</td>
<td>The results of statistical analysis by ANOVA for comparative study of the effect of aqueous extract of Ficus deltoidea plant at different concentration on HSF1184 and DU145 cells</td>
<td>126</td>
</tr>
<tr>
<td>G</td>
<td>The results of statistical analysis by ANOVA for effect of aqueous extract of Labisia pumila plant at different concentration on DU145 cell</td>
<td>129</td>
</tr>
<tr>
<td>H</td>
<td>The results of statistical analysis by ANOVA for effect of aqueous extract of Labisia pumila plant at different concentration on HSF1184 cell</td>
<td>136</td>
</tr>
</tbody>
</table>
I The results of statistical analysis by ANOVA for comparative study of the effect of aqueous extract of *Labisia pumila* plant at different concentration on HSF1184 and DU145 cells

J The results of statistical analysis by ANOVA for comparative study of the effect of aqueous extract of *Ficus deltoidea* and *Labisia pumila* plant at different concentration on the viability DU145 cells
1.1 Research background

Prostate cancer is one of the common diagnosed cancer worldwide, especially in western societies. In the United States, there were 32,050 deaths recorded out of 217,730 newly diagnosed cancer in 2010 (American Cancer Society, 2012). Approximately one in seven men in America will be diagnosed with prostate cancer and this makes it as the most common cancer in the United States.

In Europe, 3.2 million new cases of cancer are diagnosed and 1.7 million deaths due to cancer recorded in 2008. Out of this, Prostate cancer comprised around 11.9 % of all male cancer and around 6 % of all cancer deaths among men caused by prostate cancer in the European Union (Ferlay et al., 2010).

Prostate cancer is the fourth common cancer in Malaysia among men. There were 502 prostate cancer cases diagnosed in 2007 and reported to NCR. The incidence of prostate cancer increases after the age of 45 years and higher in Chinese male compared to Malay and Indian. Of the cases with reported stage, 40.6% of the cases were diagnosed at stage I and II (Zainal and Nor Saleha, 2011).
According to GLOBOCAN 2008; (a project of the International Agency for Research on Cancer), Prostate cancer was the second most diagnosed cancer among male, the 5th common cancer overall, and the 6th cause of death in men from cancer worldwide. Recently, GLOBOCAN announced that around 258,000 patients died due to prostate cancer in 2008, with an estimated 899,000 new cases (Ferlay et al., 2010).

Novel anticancer agents are needed because many cancer patients developed resistance to standard anticancer agents during treatment. In addition, these agents are toxic causing undesired side effect and also hypersensitive reactions. Presently, less than 1% of the estimated 250,000 higher plant species on earth has been investigated chemically for their bioactivity. There are still possibilities of finding novel compounds with desired bioactivity (Nor Azurah, 2011).

Several species of Fig tree showed to have multiple cancer preventive, anti-inflammatory and cancer therapeutic effects. *Ficus deltoidea* is one of these species of Fig trees “or as locally known as Mas Cotek” from the family *Moraceae*. Recently this herb attracts many researchers who are interested in traditional medicine and phytotherapy. Its therapeutic effect includes regulating blood circulation, and also traditionally its leaf is used by female as post partum medication. Compared to other traditional Malaysian herbs, this plant species receives little scientific research and the information regarding is very limited.

Studies have shown that *Labisia pumila* plant extract contains certain phytochemicals which have great potential in cancer prevention specifically prostate cancer. Flavonoids and other phenolic acids are compounds that are found in the plant extract in remarkable amount are responsible for the wide spectrum of pharmacological activities attributed to the herb (Zhang et al., 2008). Even though, no specific research has been done to investigate the anticancer properties of *Labisia pumila* extract, the presence of these phytochemicals could lead to the finding of another great potential of the plant. Other researches using plant extract with similar phytochemical compounds have clearly displayed their anticancer properties by
addressing some of the hallmarks of cancer. Gallic acid is identified as the major anticancer compound in *T.sinesis* leaf extract. Studies done using this extract showed that gallic acid is cytotoxic to DU145 prostate cancer cells through generation of reactive oxygen species (ROS) (Huei *et al.*, 2009).

Cell based assay is increasingly used in the recent years for determination of bioactivity of plant extracts. Simplicity of homogenous methods and correlation with in vitro cytotoxicity data made this assay as an alternative method for animal testing in toxicology laboratories. Cell culture technology enables us to investigate the effect of plant extract on cell viability or cytotoxicity in vitro and also observation of cell morphology (Freshney, 2005).

There are several ways to determine cell viability and observation of cell morphology. Staining and observation of cell morphology under light or fluorescence microscope is one of these methods and molecular method is another one by using DNA fragmentation screening we can distinguish between the cells. MTT assay is a standard colorimetric method that can be used for determining the biochemical activity of the extracts by distinguishing between the live and dead cells and when there was any disruption of critical biochemical function (Lobnar, 2000).

1.2 **Objective of study**

The objective of this study is to establish the effect of aqueous extract of *Ficus deltoidea* and *Labisia pumila* on the growth and survival of prostate carcinoma cell line (DU145).
1.3 Scopes of the study

The scopes of this study are:

1. To investigate the effect of *Ficus deltoidea* aqueous extracts on the characteristics and the morphology of human prostate carcinoma cell line.

2. To investigate the effect of *Labisia pumila* aqueous extracts on the characteristics and the morphology of human prostate carcinoma cell line.

3. To compare the effect of *Ficus deltoedia* aqueous extract with the effect of *Labisia pumila* aqueous extract on the Human Prostate carcinoma cell line.

1.4 Research contributions

This research contributed in the finding the importance of *Ficus deltoidea* and *Labisia pumila* extracts as a medicinal and anticancer agents against prostate cancer. This study maybe counted as the basic steps in finding novel drugs for prostate cancer cell, which will pave a way for future studies especially in mechanism of action of these extracts and isolating the active phytochemical compounds in the extracts in order to treat this disease at its early stages.

Agrawal S., Agarwal SS. (1990). Preliminary observations on leukaemia specific agglutinins from seeds. *Indian Journal of Medical Research* 92, 38–42.

Baker J. T., Borris R. P., Carte B., Cordell G. A., Soejarto D., Cragg G. M., Gupta M. P.,
discovery and development: new perspectives on international collaboration. J.
Nat. Prod. 58, 1325-1357.
A. D., Balandrin M. F., (Eds.). Human Medicinal Agents from Plants (p. 2-12).
Washington: American Chemical Society.
the European Union: cancer registry data and estimates of national incidence for
transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem.
267, 14523-14526.
Families M–R. Royal Botanic Gardens (pp. 969). United Kingdom: Kew
publishing.
(I–Z). Kuala Lumpur: Government of Malaysia and Singapore by the Ministry of
Agriculture and Cooperative.

