REMOVAL OF CATIONIC, ANIONIC AND NON–IONIC DYES FROM AQUEOUS SOLUTIONS USING *DURIO ZIBETHINUS* HUSK

SITI HAZIRAH ADAM

UNIVERSITI TEKNOLOGI MALAYSIA
REMOVAL OF CATIONIC, ANIONIC AND NON–IONIC DYES FROM AQUEOUS SOLUTIONS USING *DURIO ZIBETHINUS* HUSK

SITI HAZIRAH BT ADAM

A thesis submitted in fulfilment of the requirement for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

MAY 2011
This thesis is dedicated to whom I love
ACKNOWLEDGEMENTS

In preparing this thesis, I wish to express my sincere appreciation to my supervisors, Associate Professor Dr. Aishah Abdul Jalil and Associate Professor Dr. Sugeng Triwahyono for encouragement, guidance, critics and friendship. Their comments and advices had a very essential role towards the completion of this research.

Grateful acknowledge to the Ministry of Science, Technology and Innovation (MOSTI) Malaysia through National Science of Foundation (NSF) for the agreement and financial support.

Last but not least, my sincere appreciation also extends to my parents, family, friends and others who have provided assistance at various occasions. Their views and tips are useful indeed.
ABSTRACT

Development of economical adsorbents from peanut hull, hazelnut shell, bottom ash and other waste materials to treat dyes in wastewater attracts a great interest in recent years. However, the adsorption capacities of these materials are still limited. Economical, locally available and highly effective adsorbents are still under investigation. The purpose of this study is to investigate the potential of *Durio zibethinus* husk (*DZH*) as a low–cost adsorbent to remove cationic dye, Malachite Green (MG): anionic dyes, Congo Red (CR) and Reactive Blue 221 (RB 221): and non–ionic dyes, Disperse blue 60 (DB 60) and Disperse violet 93 (DV 93) from aqueous solution. Adsorption studies were carried out under various parameters including adsorbent pre‒treatment, contact time, pH (2–11), amount of adsorbent (0.25‒7.5 g/L), initial concentration (10‒200 mg/L) and temperature (30‒50 °C). Results revealed that the pre‒treatment of *DZH* and pH have significant effect on the removal of dyes. MG reached its maximum removal percentage of 76% using untreated *DZH*. However, maximum removal percentage of other dyes were obtained using treated *DZH*, i.e., 62,70,99 and 79% for CR, RB 221, DB 60 and DV 93, respectively. The adsorption data were correlated using Langmuir and Freundlich models, and the result showed that all dyes fitted well with the Langmuir model. The kinetic data were analyzed using pseudo ‒first‒and pseudo‒second‒order equations, and all dyes studied conformed to the pseudo‒second‒order kinetic model. The intraparticle diffusion model indicated that multiple stages were involved in the adsorption process. Negative value of ΔH for CR, RB 221 and DV 93 confirmed the exothermic nature of adsorption process, while the positive values for MG and DB 60 showed the endothermic adsorption in nature. So the conclusion,
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**

1.1 Introduction 1
1.2 Problem statement 3
1.3 Objectives of Research 4
1.4 Scopes of Research 5
1.5 Thesis Outline 6
1.6 Significance of Research 6

2 **LITERATURE REVIEW**

2.1 Technologies of Dye Removal 7
2.2 Adsorption 10
2.3 Low-cost Adsorbents 13
2.3.1 Biosorbents 14
2.3.2 Agricultural Solid Wastes 16
2.3.3 Durio Zibethinus 18
 2.3.3.1 Celullose 21
 2.3.3.2 Hemi–cellulose 22
 2.3.3.3 Lignin 22
2.4 Dye 23
2.5 Adsorption Isotherms 27
 2.5.1 Langmuir Isotherm 27
 2.5.2 Freundlich Isotherm 29
2.6 Adsorption Kinetics 30
 2.6.1 Pseudo–first–order Model 31
 2.6.2 Pseudo–second–order Model 32
 2.6.3 Intraparticle Diffusion 33
2.7 Thermodynamics Studies 34
2.8 Previous Study 35

3 METHODOLOGY
3.1 Preface 44
3.2 Instrumentation 45
3.3 Chemicals and Materials 45
3.4 Characterization 45
 3.4.1 Functional Group Determination by FTIR 46
 3.4.2 Morphology Observation by FE–SEM 46
3.5 Experimental Procedures 46
 3.5.1 Preparation of Adsorbent 46
 3.5.1.1 Untreated Adsorbent 47
 3.5.1.2 Treated Adsorbent 47
 3.5.2 Preparation of Dyes Solution 47
 3.5.2.1 Preparation of Cationic and Anionic dyes 47
 3.5.3 Calibration Curve Plot 48
3.5.2.2 Preparation of Non–ionic dye 48
4 RESULTS AND DISCUSSIONS

4.1 Introduction 51

4.2 Characterization of DZH 52
 4.2.1 Functional Group Study 52
 4.2.2 Morphology Change after Adsorption of Dye 54

4.3 Adsorption Study 55
 4.3.1 Effect of Pre-treatment 56
 4.3.2 Effect of pH 57
 4.3.3 Effect of Contact Time 62
 4.3.4 Effect of Adsorbent Dosage 65

4.4 Proposed Mechanism of Dyes Adsorption 67
 4.4.1 Proposed Mechanism of Cationic dye Adsorption 67
 4.4.2 Proposed Mechanism of Anionic dye Adsorption 69
 4.4.3 Proposed Mechanism of Non-ionic dye Adsorption 72

4.5 Adsorption Isotherms 73

4.6 Kinetics Study 83

4.7 Thermodynamics Study 89

5 CONCLUSION

5.1 Conclusion 95

5.2 Recommendations 96

REFERENCES 97–130

APPENDIX 131–134
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of dyes removal technologies</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Adsorption capacities q_m (mg/g) for various activated carbons</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison of low‒cost alternative adsorbents of biosorbent and agricultural solid wastes</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Various adsorbent capacities from agricultural waste</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical chemical composition of durian husk</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Properties of cationic, anionic and non–ionic dyes</td>
<td>25‒26</td>
</tr>
<tr>
<td>2.7</td>
<td>Assumptions of Langmuir and Freundlich isotherm models</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Nature of Adsorption Process</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>IR absorption bands and corresponding possible groups observed on untreated and treated DZH</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>IR absorption bands and corresponding possible groups observed on untreated DZH and MG‒loaded treated DZH</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>IR absorption bands and corresponding possible groups observed on untreated DZH and RB 221‒loaded treated DZH</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>IR absorption bands and corresponding possible groups observed on untreated DZH and DB 60‒loaded treated DZH</td>
<td>73</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.5</td>
<td>Adsorption capacities and other parameters for the removal of cationic, anionic and non–ionic dyes by agricultural by–products</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>Langmuir and Freundlich isotherm constants for cationic, anionic and non–ionic dyes (303 K)</td>
<td>83</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of the first–order and second–order adsorption rate constants, calculated $q_{e,\text{cal}}$ and experimental $q_{e,\text{exp}}$ values for different initial dyes concentrations (303 K)</td>
<td>87</td>
</tr>
<tr>
<td>4.8</td>
<td>Values of thermodynamic parameters for removal dyes</td>
<td>93</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Fundamental of Adsorption Process</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Durian fruit</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>(a) Cellulose molecule, (b) Phenylpropanoid units found in lignin and (c) Principal sugar residues of hemicellulose</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of Experimental Procedure</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>FTIR spectra of untreated and treated DZH</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>FESEM micrographs of DZH particle (a) before CR adsorption and (b) with CR adsorbed.</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of adsorbent surface charge on MG, CR, RB 221, DB 60 and DV 93 dyes adsorption</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of initial pH on removal MG dye</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of initial pH on removal CR dye</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of initial pH on removal RB 221 dye</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of initial pH on removal DB 60 and DV 93 dyes</td>
<td>62</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of contact time on removal MG dye</td>
<td>63</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of contact time on removal CR dye</td>
<td>63</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of contact time on removal RB 221, DB 60 and DV 93 dyes</td>
<td>64</td>
</tr>
</tbody>
</table>
4.11 Effect of dose of the adsorbent on removal MG dye

4.12 Effect of dose of the adsorbent on removal CR dyes

4.13 Effect of dose of the adsorbent on removal RB 221, DB 60 and DV 93 dyes

4.14 FTIR spectra of untreated DZH and loaded MG

4.15 Proposed adsorption mechanism of dye MG with untreated DZH

4.16 FTIR spectra of treated DZH and loaded RB 221

4.17 Proposed adsorption mechanism of dye RB 221 with treated DZH

4.18 FTIR spectra of treated DZH and loaded DB 60

4.19 Proposed adsorption mechanism of dye DB 60 with treated DZH

4.20 Effect of initial concentration on the removal MG dye

4.21 Effect of initial concentration on the removal CR dye

4.22 Effect of initial concentration on the removal RB 221, DB 60 and DV 93 dyes

4.23 Langmuir isotherms for MG dye

4.24 Langmuir isotherms for CR dye

4.25 Langmuir isotherms for RB 221, DB 60 and DV 93 dyes.

4.26 Variation of adsorption intensity (R_L) with initial dyes concentration of MG dye

4.27 Variation of adsorption intensity (R_L) with initial dyes concentration of CR dye

4.28 Variation of adsorption intensity (R_L) with initial dyes concentration of RB 221, DB 60 and DV 93 dyes

4.29 Freundlich isotherms for MG dye adsorption

4.30 Freundlich isotherms for CR dye adsorption

4.31 Freundlich isotherms for RB 221, DB 60 and DV 93 dyes adsorption
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.32</td>
<td>Pseudo‒first‒order kinetic for adsorption of MG dye.</td>
</tr>
<tr>
<td>4.33</td>
<td>Pseudo‒first‒order kinetic for adsorption of CR dye</td>
</tr>
<tr>
<td>4.34</td>
<td>Pseudo‒first‒order kinetic for adsorption of RB 221, DB 60 and DV 93 dyes</td>
</tr>
<tr>
<td>4.35</td>
<td>Pseudo‒second‒order kinetic for adsorption of MG dye</td>
</tr>
<tr>
<td>4.36</td>
<td>Pseudo‒second‒order kinetic for adsorption of CR dye</td>
</tr>
<tr>
<td>4.37</td>
<td>Pseudo‒second‒order kinetic for adsorption of RB 221, DB 60 and DV 93 dyes</td>
</tr>
<tr>
<td>4.38</td>
<td>Intraparticle diffusion kinetics for adsorption of MG, CR, RB 221, DB 60 and DV 93 dyes</td>
</tr>
<tr>
<td>4.39</td>
<td>Effect of temperature on removal of MG dye</td>
</tr>
<tr>
<td>4.40</td>
<td>Effect of temperature on removal of CR dyes</td>
</tr>
<tr>
<td>4.41</td>
<td>Effect of temperature on removal of RB 221, DB 60 and DV 93 dyes</td>
</tr>
<tr>
<td>4.42</td>
<td>Plot of log K_c vs. $1/T$ for estimation of thermodynamic parameters of MG dye</td>
</tr>
<tr>
<td>4.43</td>
<td>Plot of log K_c vs. $1/T$ for estimation of thermodynamic parameters of CR dye</td>
</tr>
<tr>
<td>4.44</td>
<td>Plot of log K_c vs. $1/T$ for estimation of thermodynamic parameters of RB 221, DB 60 and DV 93 dyes</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>C</td>
<td>Concentration</td>
</tr>
<tr>
<td>C_o</td>
<td>Initial concentration</td>
</tr>
<tr>
<td>C_e</td>
<td>Equilibrium concentration</td>
</tr>
<tr>
<td>C_{AE}</td>
<td>Amount of dye adsorbed on the adsorbent per L of the solution at equilibrium</td>
</tr>
<tr>
<td>C_{SE}</td>
<td>Equilibrium concentration (mg/L) of the dye in the solution</td>
</tr>
<tr>
<td>$%$</td>
<td>Removal percentage</td>
</tr>
<tr>
<td>$^\circ C$</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>G</td>
<td>Gram</td>
</tr>
<tr>
<td>ΔG</td>
<td>Gibbs free energy</td>
</tr>
<tr>
<td>ΔH</td>
<td>Enthalpy</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>K_L</td>
<td>Amount of adsorbate required to form a monolayer</td>
</tr>
<tr>
<td>K_f</td>
<td>Freundlich constant</td>
</tr>
<tr>
<td>K_c</td>
<td>Adsorption equilibrium constant</td>
</tr>
<tr>
<td>k_p</td>
<td>Intraparticle diffusion rate constant</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>Min</td>
<td>Minutes</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per Liter</td>
</tr>
<tr>
<td>mg/g</td>
<td>Milligram per gram</td>
</tr>
<tr>
<td>q_{max}</td>
<td>Maximum adsorption capacity</td>
</tr>
<tr>
<td>q</td>
<td>Adsorption capacity</td>
</tr>
<tr>
<td>R^2</td>
<td>Correlation coefficients</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>(R_L)</td>
<td>Dimensionless constant</td>
</tr>
<tr>
<td>(\Delta S)</td>
<td>Entropy</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperature</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>CAC</td>
<td>Commercial activated carbon</td>
</tr>
<tr>
<td>CR</td>
<td>Congo Red</td>
</tr>
<tr>
<td>CI</td>
<td>Color index</td>
</tr>
<tr>
<td>DB 60</td>
<td>Disperse Blue 60</td>
</tr>
<tr>
<td>DV 93</td>
<td>Disperse Violet 93</td>
</tr>
<tr>
<td>DZH</td>
<td>Durio zibethinus Husk</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transforms Infrared</td>
</tr>
<tr>
<td>FESEM</td>
<td>Electrons in Field Emission Scanning Electron</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>MG</td>
<td>Malachite Green</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>RB 221</td>
<td>Reactive Blue 221</td>
</tr>
<tr>
<td>UV–vis</td>
<td>Ultraviolet–visible</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Synthetic dyes are widely used in many industries including textiles, rubber, paper, plastics, cosmetics, food and etc. The effluent of these industries is well known pollutants to the receiving bodies in the surrounding areas. Color of the dyes is the first contaminant to be recognized since it is visible to the human eye. Even the presence of dyes at concentrations as low as 1 ppm could be highly visible and affected the quality of water bodies (Banat et al., 1996).

Dyes in wastewater can cause serious problems to the human and environment such as toxicity, mutagenic and carcinogenic effects, biodegradation, light penetration and photosynthesis (Caparkaya and Cavas, 2008). It also contributes appreciable concentrations of material with high chemical and biological oxygen demands, suspended solids and content in toxic compounds (Aksu, 2005). Therefore, the most effective, simple and economic treatment of such wastewater containing soluble dyes is required for complete and secure disposal.
Various techniques have been employed for the removal of dyes from wastewater such as adsorption (Santhy and Selvapathy, 2006), coagulation (Mohan, et al., 1999), membrane filtration (Fersi et al., 2005), chemical oxidation (Sarasa, et al., 1998) and etc. Among these methods, adsorption is the most popular one due to its efficiency, simplicity of design and applicability on large scale for treating dyes with more concentrated form.

Currently, the most commonly used adsorption agent in industry is activated carbon which has been proven to be an effective adsorbent but its production and regeneration are expensive processes. However, relatively high operating costs and problems with regeneration of the spent carbon hamper its large scale application. In this respect, these have led many researches to investigate other alternative low–cost and easily available material for the adsorption of dyes.

Biomass can be promising potential alternative to conventional used adsorbent for the removal of dyes since it involves several complex mechanisms such as surface adsorption, ion exchange, complexation and micro precipitational. Nowadays, several studies have been conducted using agricultural by–product as a low–cost adsorbent such as de-oiled soya (Gupta et al., 2006), activated date pits (Banat et al., 2003), wood (Ofomaja and Ho, 2008.), rice husk (Malik, 2003), fly ash (Viraraghavan and Ramakrishna, 1999) and cedar sawdust (Hamdaoui, 2006). However, abundance, locally available and low–cost adsorbent are still needed for industrial scale.

Durio zibethinus is well known as *durian* is the fruit of several tree species belonging to the genus *Durio* and the Malvaceace family (Brown, 1997). Widely, known and revered in Southeast Asia as the ‘king of fruits’, the durian is distinctive for its large size, unique odour and formidable thorn covered husk. According to the FAO online databases, it is estimated that Malaysia produced 245 000 tonnes of *durian* in 2001. However, due to high consumption of durian in the country, massive of amount of husk wastes were disposed which can cause a severe environmental
problem. Therefore herein, a potential usefulness of *durian* husk as an inexpensive solid adsorbent for removal cationic, anionic and non-ionic dyes has been demonstrated in this studied.

1.2 Problem Statement

Few decades earlier, the dyes selection, application and use were not given a major consideration with respect to their environmental impact. Even the chemical composition of half dyes used in the industry was estimated to be unknown. However, disposal of dyes in precious water resources must be avoided and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal.

The growing demand for efficient and low–cost treatment methods and the importance of adsorption has given rise to adsorbents. Several studies have proven that agricultural by–product which are low–cost materials were successfully applied in the removal of dye from aqueous solution (Mohd et al., 2010). Because of low utilization ratio, most of these bio–materials are randomly discarded or set on fire. These disposals must result in resource loss and environmental pollution. The exploitation and utilization of these biomaterials must bring obvious economic and social benefits to mankind. In recent years, attention has been focused on the utilization of native agricultural by–products as sorbent (Marshall, 1993; Marshall and John, 1996; Namasivayam, et al., 1996; Robinson, 2002; Gong, 2005a,b). Most of these by–products are considered to be low value products. Chemical modification has shown great promise in improving the cation exchange capacity of agricultural waste by–products (Laszlo and Dintzis, 1994; Marshall and Johns, 1996; Marshall et al., 1999)
In this study, *durian* husk was used as an alternative low–cost adsorbent since it abundantly produced especially in producing processed product. Durian husk principally consist of cellulose, hemi–cellulose, lignin and other low molecular weight hydrocarbon (Khedari et al., 2003). Cellulose could be a very promising raw material for the preparation of various functional polymers. Many investigators have done much work on the modification of cellulose in order to prepare a novel, effective and alternative material. (Akelah and Moet, 1990; Liu 2000; Shukla and Shakarnade, 1991; Wang et al., 1998). These components contain various functional groups, such as carbonyl and hydroxyl (Al–Ghouti et al., 2010), which make durian husk to be a potential adsorbent material for removing cationic, anionic and non–ionic dyes from aqueous solution. Durian husk is expected to have a great potential to be good adsorbents, which not only can solve environmental pollution but also give advantages from an economic point of view.

1.3 **Objectives of Research**

The objectives of this research are:

i. To study the chemical and physical properties of *DZH* for better understanding of its behavior in sorption of dyes.

ii. To investigate the optimum conditions of the cationic, anionic and non–ionic dyes removal from aqueous solution in order to found the maximum adsorption capacity of those dyes.

iii. To study the equilibrium isotherms, kinetics and thermodynamics of the adsorptions in order to identify the details of the type of the adsorption.
iv. To study the proposed mechanism of adsorption of each dyes onto the untreated and treated \textit{DZH}.

1.4 Scopes of Research

The main scopes of this study are:

i. Study the chemical and physical properties of \textit{DZH} by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FE–SEM).

ii. Investigate the optimum conditions of removal of cationic dye, Malachite green (MG); anionic dyes, Congo red (CR) and Reactive blue 221 (RB 221); and non–ionic dyes, Disperse blue 60 (DB60) and Disperse violet 93 (DV 93) from aqueous solution through adsorption batch studies under various parameters such as, effect of pre–treatment adsorbent (HCl chemical), contact time (60–120 min), pH (2–11), concentration adsorbent (0.25–7.5 g/L), initial concentration (10–200 mg/L) and temperature (30–50 °C).

iii. Study the equilibrium isotherms by the Langmuir and Freundlich isotherms models. The Pseudo–first–order, Pseudo–second–order and intraparticle diffusion were applied to the experimental data in order to clarify the adsorption kinetics of dyes onto adsorbents. The thermodynamic parameters of the adsorptions of each dye including the change of Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated using Van’t Hoff equation.
iv. Study the proposed mechanism of the adsorption of each dye onto untreated DZH (MG) and treated DZH (RB 221 and DB 60) by using FTIR spectroscopy.

1.5 Thesis Outline

This study consists of five chapters, which present the research in sequential order. Chapter 1 introduces the research background, problems statement, objectives, scopes, and significant of this research. Chapter 2 reviews the literatures those related to cationic, anionic and non-ionic dyes and current issues about the adsorption process. Chapter 3 describes the experimental procedures and characterization of the adsorbents whereas Chapter 4 analyzes and discusses the characterization and experimental data. Finally, the conclusion and recommendation for future were presented in Chapter 5.

1.6 Significant of Research

The use of the DZH as an adsorbent for dye removal is of a great attention since it is an agricultural by–product, abundance and locally available. The potential of the DZH to remove cationic, anionic and non-ionic dyes was studied under various parameters such as effects of adsorbent pre–treatment, contact time, pH, adsorbent dosage, initial concentration and temperature in order to obtain the optimum conditions of the adsorption. This finding would be beneficial not only from economy aspects but also from an environmental point of view.
REFERENCES

