PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL BY IMMobilized LIpase IN PVA-ALGINATE-SULFATE BEADS

ABDULKARIM ALI DEBA

A Dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
DEDICATION

Specially dedicated to my parents, Alhaji Ali Alhaji Deba and Hajiya Hafsat Mahdi, my relatives and all my well wishers whom aspired me to be a better person.
ACKNOWLEDGEMENT

Certainly all praise be to Allah, whom I praise and seek his forgiveness. I seek refuge with him from the evil of my soul and from the wickedness of my deeds. Surely, Whomever He has guided shall never go astray, and whomever He allows astray shall never be guided. I bear witness that there is no deity of being worshipped except Allah whom partnership shall never be associated with him. I bear witness Muhammad (S.A.W) is his Messenger and slave. May the peace and blessings of Allah be upon Him, his family and Companions and those that follow through his path till the last day.

My unalloyed appreciation goes to my supervisor Dr. Azimah Mohd Zain for her professional guidance and help throughout the research project. Her patience as well as her hospitality remained history worth to be remembered.

I am also grateful to my fellow course mates and friends, and all students whom we had same supervision. I would like to offer them my sincere thanks for all their contributions. My special sincere appreciation also extends to all postgraduate students be it from my supervisor or otherwise whom provided assistance at various occasions the space available is limited for your names to be mentioned but your faces always glimpse within the mind.

The support given by laboratory technicians of the faculty of Biosciences and Medical Engineering during my experiment shall remained acknowledged.

Lastly, my utmost admiration goes to my parents and all my family members for their support, care and understanding during the period of my stay for this study. Once again thank you for giving me untiring love and encouragement.
ABSTRACT

With the huge varieties of oil produced worldwide, management and disposal are the major challenges facing the production. This is due to contamination of water bodies and land resources as a result of incessant disposal. Thus embarking on waste oil utilization in biodiesel production by immobilized enzymatic transesterification is a triple step forward towards the waste management. Therefore in these studies, *Candida rugosa* (Type VII, 1176 units/mg) was immobilized in PVA-Alginate-Sulphate beads by entrapment and cross linking method. Transesterification process was conducted using the immobilized lipase. 32 treatment combinations were generated by the Design Expert software version 6.0.4 using 2 level fractional factorial designs. The treatment combination; 1:6 oil to methanol, 2.5 v/v, 60 U at 50 °C under 200 rpm was found to be the optimum condition that gave the highest production of 4.516g/L, 1.65 g/L and 1.6 g/L, corresponding to 45 %, 10.65 %, 10.6 %, oleic acid methyl ester, palmitic acid methyl ester and linoleic acid methyl ester respectively. In another vain the treatment combination used for the optimum production using immobilized lipase was applied to the free lipase resulting to 0.234 g/L, 0.130 g/L, 0.049 g/L, corresponding to 2.34%, 1.30%, 0.49 %, oleic acid methyl ester, palmitic acid methyl ester and linoleic acid methyl ester respectively. Approximately, the immobilized lipase performed 15 folds better than the free lipase. Enzyme assay was conducted and compared between free lipase and immobilized lipase over 3 hours of reaction using spectrophotometer, absorbance was read at 410nm. Immobilized lipase in general maintained their activity after an hour of the reaction. In other higher concentrations, both the free and the immobilized showed a steep fall with time. FESEM-EDX was also carried out to study the immobilization matrix morphology which revealed the native structure of the entrapped *Candida rugosa* lipase. Furthermore, reusability test of the immobilized lipase was conducted and found capable of maintaining a production of five consecutive cycles.
ABSTRAK

Penghasilan pelbagai jenis minyak diseluruh dunia mendatangkan cabaran utama bagi mencari penyelesaian terbaik untuk menguruskan sisa sampingan hasil daripada industri tersebut. Ini adalah disebabkan oleh pencemaran air dan alam sekitar akibat pelupusan secara berterusan Oleh itu, kaedah transesterifikasi dengan menggunakan enzim tersekat-gerak merupakan salah satu penyelesaian kepada rawatan sisa sampingan minyak. Dalam eksperimen ini, Candida rugosa (jenis VII, 1176 unit/mg) telah disekatgerak pada manik PVA-Alginat-Sulfat dengan menggunakan kaedah pengurungan dan hubung pangkah. Enzim lipase tersekatgerak telah digunakan dalam proses transesterifikasi. Sebanyak 32 kombinasi transesterifikasi telah dihasilkan dengan menggunakan reka bentuk factorial 2-level (2-level fractional factorial) oleh perisian Design Expert versi 6.0.4. Penghasilan biodiesel yang optima ialah 4.516g/L, 1.65 g/L dan 1.6 g/L merujuk kepada 45 % asid oleik metil ester, 10.65 % asid palmitik metil ester dan 10.6 % ester asid linoleik metil ester dengan keadaan nisbah minyak kepada metanol (1:6) , 2.5 v/v kandungan air, 60 U jumlah enzim,suhu 50 °C dan kelajuan 200 rpm. Manakala, penghasilan optima biodiesel bagi lipase bebas telah menghasilkan 0.234 g/L, 0.130 g/L dan 0.049 g/L, iaitu 2.34% asid oleik metil ester, 1.30% asid palmitik metil ester dan 0.49 % asid linoleik metil ester pada keadaan yang sama. Secara purata, lipase tersekatgerak menunjukkan prestasi penghasilan biodiesel 15 kali ganda berbanding lipase bebas.Ujian enzim dilakukan bagi membandingkan aktiviti enzim antara lipase tersekatgerak dan lipase bebas dalam tindak balas selama tiga jam. Bacaan spektrofotometer ialah 410 nm. Aktiviti enzim lipase tersekatgerak pada 0.1-0.3 M menjadi stabil selepas sejam tindak balas berlaku. Dalam kepekaan yang lebih tinggi, aktiviti enzim bagi lipase bebas dan lipase tersekatgerak menunjukkan penurunan berkadar dengan masa. FESEM-EDX juga digunakan untuk mengkaji morfologi sekatgerak matriks dimana ia menonjolkan struktur natif lipase Candida rugosa yang terperangkap.Selain itu, lipase sekatgerak telah dibuktikan dalam eksperimen ini boleh digunakan bagi penghasilan biodiesel sebanyak lima kitaran secara berterusan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>GLOSSARY OF TERMS</td>
<td>xxi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION | 1 |
1.1 Background of the Study | 1 |
1.2 Statement of the Problem | 2 |
1.3 Objectives of the research | 3 |
1.5 Scope of the Study | 3 |
1.6 Research Significance | 5 |
1.7 Research Methodology | 7 |
2 CHAPTER

2.1 Lipase 6

2.1.1 Candida rugosa lipase 3 dimensional structure 8

2.2 Application of lipase 9

2.2.1 Lipases in detergents 10
2.2.2 Lipases as biosensors for food Industry 10
2.2.3 Lipases for medical/ pharmaceutical application 11
2.2.4 Lipases in fats and oleochemical industries 12
2.2.5 Lipases in environmental management 13
2.2.6 Lipases in dairy, food and other industries 13

2.3 Enzyme immobilization 15

2.4 PVA-alginate as an immobilization matrix 16

2.5 Techniques of lipase immobilization for biodiesel synthesis 17

2.5.1 Adsorption 18
2.5.2 Entrapment 19
2.5.3 Cross linking 20
2.5.4 Encapsulation 21

2.6 Biodiesel 24

2.6.1 Waste cooking oil as a feed stock for biodiesel 25

2.7 Method of Biodiesel Production 28

2.7.1 Pyrolysis 29
2.7.2 Microemulsion 29
2.7.3 Transesterification 29

2.8 Enzymatic transesterification for biodiesel production 32

2.8.1 Extracellular and Intracellular lipase as a bio catalyst for biodiesel production 34

2.8.2 Some factors affecting enzymatic transesterification 37

2.8.2.1 Selection of Alcohol 37
2.8.2.2 Solvents to be used 38
2.8.2.3 Alcohol to substrate molar ratio 39
2.8.2.4 Water content/activity of the system 40
2.8.2.5 Reaction Temperature 41
3 RESEARCH METHODOLOGY

3.1 Materials

3.2 Method

3.2.1 Sample collection and characterization

3.2.2 PVA and -Alginate Solution Preparation

3.2.3 Phosphate Buffer and Lipase Enzyme Solution Preparation

3.2.4 Lipase Immobilization Procedure

3.2.5 Lipase Activity Determination

3.2.6 PVA-Alginate Beads Characterization

3.2.7 Transesterification Process

3.2.8 Reusability Test of Immobilized lipase

3.2.9 Enzyme Leakage Determination

3.2.10 Product Analysis

3.2.10.1 Sample filtration

3.2.10.2 Gas chromatography analysis

4 RESULTS AND DISCUSSION

4.1 Optimun production of biodiesel by 2-level fractional factorial design

4.2 Analysis of Variance (ANOVA) Response 1 (Palmitic)

4.2.1 Diagnostic Plots for Response 1 (Palmitic acid methyl ester)

4.3 Analysis of Variance (ANOVA) Response 2 (Linoleic)

4.3.1 Diagnostic Plots for Response 2 (Linoleic)

4.4 Analysis of Variance (ANOVA) Response 3 (Oleic)

4.4.1 Diagnostic Plots for Response 3 (Oleic acid methyl ester)

4.5 Candida rugosa lipase immobilization

4.5.1 PVA-Alginate-Sulphate Beads Characterization and FESEM-EDX Analysis

4.6 Lipase Assay

4.7 Kinetics of free and immobilized lipase
4.8 Reusability test of immobilized lipase 81
4.9 Enzyme leakage test of immobilized lipase 83

5 CONCLUSION AND RECOMMENDATIONS 85
5.1 Conclusion 85
5.2 Future work 86

REFERENCES 87

APPENDIX A Standard curves and standard 102
APPENDIX B Result of characterization and conversion of g/L to % 105
APPENDIX C Amount of lipase in beads and U to grams conversion 109
APPENDIX D Enzyme leakage result 111
APPENDIX E Reusability of lipase GC analysis 112
APPENDIX F Calculation of Activity and amount of lipase used in Assay 115
APPENDIX G Calculations of enzyme kinetics 119
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different technique of lipase immobilization for biodiesel synthesis</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Waste cooking oil profile</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Fatty acid profile in waste cooking oil</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of enzymatic VS non enzymatic (alkaline) biodiesel production technology</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Biodiesel production from treatment combinations</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>ANOVA (Analysis of variance) for palmitic acid methyl ester</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>ANOVA values for linear model design of palmitic</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>ANOVA (Analysis of variance) for linoleic acid methyl ester</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>ANOVA values for linear model design linoleic</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>ANOVA (Analysis of variance) for oleic acid methyl ester</td>
<td>66</td>
</tr>
<tr>
<td>4.7</td>
<td>ANOVA values for linear model design oleic</td>
<td>67</td>
</tr>
<tr>
<td>4.8</td>
<td>Reusability cycles of immobilized lipase</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope of research in summary</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Three dimensional structure of candida rugosa lipase</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of Polyvinyl alcohol-partialy hydrolysed</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Lipase immobilization method</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structure of biodiesel</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical reaction of transesterification</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Flow chart of biodiesel production by enzymatic process</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>PVA-alginate-sulfate beads production using rotary pump</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Diagnostic plots for palmitic acid methyl ester</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Predicted value for optimum production of palmitic acid ester</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Diagnostic plots for linoleic acid methyl ester</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>Predicted value for optimum production of linoleic acid ester</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>Diagnostic plots of oleic acid methyl ester</td>
<td>69</td>
</tr>
<tr>
<td>4.6</td>
<td>Predicted value for optimum production of oleic</td>
<td>70</td>
</tr>
<tr>
<td>4.7</td>
<td>Crosslinking between alcoholic group of PVA and tetrahydroxy-borate ions of boric acid</td>
<td>71</td>
</tr>
<tr>
<td>4.8</td>
<td>PVA-Alginate-sulfate beads produced by this study</td>
<td>72</td>
</tr>
<tr>
<td>4.9</td>
<td>FE-SEM Image of entrapped candida rugosa lipase in Beads</td>
<td>72</td>
</tr>
<tr>
<td>4.9</td>
<td>FE-SEM Image of entrapped candida rugosa lipase in Beads</td>
<td>72</td>
</tr>
<tr>
<td>4.9</td>
<td>FE-SEM Image of entrapped candida rugosa lipase in Beads</td>
<td>73</td>
</tr>
<tr>
<td>4.10</td>
<td>FE-SEM-EDX Morphology of beads showing pores</td>
<td>73</td>
</tr>
<tr>
<td>4.11</td>
<td>FE-SEM-EDX showing the layers of microstructure</td>
<td>74</td>
</tr>
<tr>
<td>4.12</td>
<td>Walden inversion by sulfate</td>
<td>75</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of the activity of free and immobilized lipase at 0.1 M p-NPP</td>
<td>76</td>
</tr>
<tr>
<td>4.14</td>
<td>Comparison of the activity of free and immobilized lipase at 0.2 M p-NPP</td>
<td>77</td>
</tr>
<tr>
<td>4.15</td>
<td>Comparison of the activity of free and immobilized lipase at 0.3 M p-NPP</td>
<td>77</td>
</tr>
<tr>
<td>4.16</td>
<td>Comparison of the activity of free and immobilized lipase at 0.4 M p-NPP</td>
<td>78</td>
</tr>
<tr>
<td>4.17</td>
<td>Comparison of the activity of free and immobilized lipase at 0.5 M p-NPP</td>
<td>78</td>
</tr>
<tr>
<td>4.18</td>
<td>Lineweaver Burk plot for free and immobilized Lipase</td>
<td>80</td>
</tr>
</tbody>
</table>
4.19 Reusability cycles for lipase

4.20 Decrease in lipase leakage with time of sampling
GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ASTM</td>
<td>American society of testing materials</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive x-ray spectrometer</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty acid methyl ester</td>
</tr>
<tr>
<td>FE-SEM</td>
<td>Field emission scanning electron microscope</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acids</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>MGs</td>
<td>Monoglycerides</td>
</tr>
<tr>
<td>PBR</td>
<td>Packed bed reactor</td>
</tr>
<tr>
<td>p-NP</td>
<td>p-nitrophenol</td>
</tr>
<tr>
<td>p-NPP</td>
<td>p-nitrophenol palmitate</td>
</tr>
<tr>
<td>PUFAs</td>
<td>Poly unsaturated fatty acids</td>
</tr>
<tr>
<td>PVA</td>
<td>Poly vinyl alcohol</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>TGs</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>WCO</td>
<td>Waste cooking oil</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Standard curves and standard</td>
<td>102</td>
</tr>
<tr>
<td>B</td>
<td>Result of characterization and conversion to g/L</td>
<td>105</td>
</tr>
<tr>
<td>C</td>
<td>Amount of lipase in beads & Units to grams conversion</td>
<td>109</td>
</tr>
<tr>
<td>D</td>
<td>Enzyme leakage result</td>
<td>111</td>
</tr>
<tr>
<td>E</td>
<td>Reusability of lipase GC analysis</td>
<td>112</td>
</tr>
<tr>
<td>F</td>
<td>Calculation of lipase Activity and lipase used in assay</td>
<td>115</td>
</tr>
<tr>
<td>G</td>
<td>Lipase Kinetics</td>
<td>119</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.0 Background of the study

Vegetable oils have become a focus of attention as a potential renewable source for the production of an alternative source of fuel for petroleum based diesel. This is owing to continuous world-wide consumption of petroleum reserves in addition to environmental consequences attached to the emission of exhaust gases from diesel engines (Noureddini et al., 2001). Biodiesel is a renewable fuel that can be synthesized from edible, non-edible and waste oils. Vast varieties of starting materials come from edible oil, such as; soybean oil, rapeseed oil, cotton seed oil, sunflower oil, palm oil and restaurant kitchen wastes. In countries, such as India, such oils are not in abundance, choice of other starting materials like jatropha can be appropriate (Gayatri et al., 2010).

The Methyl and ethyl esters of fatty acids, also well-known as biodiesel, are nontoxic, non-polluting and biodegradable fuel, and therefore considered as a good substitute for fossil petroleum diesel. Viscosity, cetane number, energy content, and other fuel characteristics of biodiesel are also similar to those of petroleum-based
diesel fuel (Mittelback and Tritthart, 1988). Furthermore, biodiesel is basically sulfur free and is considered ultra-sulfur fuel quality and the diesel engines fueled with the such fuel emit significantly fewer hydrocarbons, particulate, carbon monoxide and carbon dioxide than those operating on conventional fossil fuel diesel. NOx emissions, however, are slightly higher than those of diesel engines operating on conventional diesel fuel (Schumacher et al., 1996 and Ali et al., 1995).

Transesterification of vegetable oils and animal fat can be catalyzed by chemical and/or biological catalysts, such as acid, base and enzymes such as lipase. However, the biodiesel produced by chemical catalyst has several drawbacks such as difficulty in recovery of glycerol, removal of acid or base catalysts from the product and the treatment of wastewater (Freeman et al., 1984; Mittelbach, 1990; Basri et al., 1997; Fukuda et al., 2001). On the contrary, Enzymatic transesterification of triglycerides using immobilized lipase is a good substitute to chemical process owing to its; continuous operation, improved stability, reuse, chance of better control of reaction, high purity and product yields and hence more positive economic factors can be expected (Ruckenstein and Wang, 1993).

Therefore this study focuses on the production of biodiesel from waste cooking oil (WCO) by immobilized Candida rugosa lipase in PVA-alginate-sulfate beads. The immobilization would enhance the stability and re-usage of the enzyme while making the whole production process an eco friendly one.

1.3 Statement of the problem

Due to the fact that there are a lot of environmental problems associated with the use of fossil fuels, biodiesel can be expected as a replacement for conventional fuel. At present, biodiesel has been produced chemically using vegetable oil in USA
and Europe (Mamoru et al., 2001). However, requirement of removal of catalyst and extreme energy requirement are the key drawbacks of such chemical process (Mamoru et al., 2001).

Because the enzymatic method may overcome the problems for the reaction, numerous researches have been carried out using lipase (Nelson et al., 1996; Selmi et al., 1998; Shimada et al., 1999; Charuchinda et al., 2011). However the production of biodiesel fuel by enzymatic means has not yet been adopted industrially due to the high cost of enzymes (Mamoru et al., 2001), hence the need for additional researches using immobilized enzymes to come up with improved production process that is cost reduced.

1.1 Objectives of the research

- To immobilize lipase from Candida rugosa on PVA-alginate-sulfate beads.
- To study the optimum conditions of transesterification process with the immobilized lipase by using 2-Level fractional factorial design.
- To study the performance of free and immobilized lipase in the enhancement of biodiesel production.

1.2 Scope of the research

In this study, the type of lipase chosen is Candida rugosa (Type VII, 1176 units/mg). The lipase was made more stable by entrapment and cross linking in
PVA-alginate sulfate beads. With this development biodiesel is produced by enzymatic transesterification using waste cooking oil as substrate. The optimum condition of this production is only considered based on the parameters selected for this study, namely, oil to methanol molar ratio, temperature, agitation, water content and enzyme concentration. The activity of the lipase would be determined by the degradation of p-NNP. Figure 1.1 illustrates the summary of the scope.

Figure 1.1 Scope of the research in summary
1.4 Research significance

From the invention of PVA-alginate-sulfate method to date no attempt had been made to transesterify waste cooking oil to produce biofuel. Therefore, this study emerges to establish the effectiveness of immobilized *Candida rugosa* lipase by this technique towards biodiesel production. Explored parameters from other researchers such as oil to methanol molar ratio, temperature, water content, agitation and enzyme concentration besides activity and reusability would also be studied.

The recycling process of waste cooking in order to produce biodiesel is of paramount importance considering the environmental concerned in the management of such oils as a result of pollution and contamination problems associated with its disposal (Arjun *et al.*, 2008), therefore embarking on the use of the waste cooking oil would serve as a good step towards management of such oil and at the same time attaining biodiesel production.
REFERENCES

