CHARACTERIZATION AND BIODEGRADATION OF POLY (VINYL ALCOHOL)/CASSAVA STARCH

NOR SARI ZAL BIN NOR HASSAN

UNIVERSITI TEKNOLOGI MALAYSIA
CHARACTERIZATION AND BIODEGRADATION OF POLY (VINYL ALCOHOL)/CASSAVA STARCH

NOR SARIZAL BIN NOR HASSAN

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Polymer)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

APRIL 2013
Special dedication to my beloved parents, Nor Hassan B. A. Gapar and Sarimahtun Bt. Saliken, siblings, friends and my love…

Thanks for their patience, support, love and memories
ACKNOWLEDGEMENT

Alhamdulillah and thank you to God for giving me the blessing and strength to complete this research.

Special thanks go to my supervisor, Assoc. Prof. Dr. Wan Aizan Bt. Wan Abdul Rahman, for giving me the ideas, encouragement and guidance in completing this research. I have gained a lot of knowledge and experience while finishing this research. Special appreciation to Dr. Rohah Bt. Abdul Majid for her advices and criticism, without her continued support and interest, this thesis would not been presented.

To all lecturers who have directly or indirectly contributed towards my research, i wish to express my appreciation and sincerely thanks. Thousands of thanks go to all technicians, assistants’ staff from Polymer Laboratory and all my friends to assist and willing to share their knowledge to me. It makes my research can be conducted in minimum problem. Unforgettable to the Sultanah Zanariah Library that provide relevant literature and terrific e-database services, thanks you.

I am also grateful to acknowledge my scholarship, PGD UTM (2009) and UTM-RMC Vote 78406 for giving financial support to carry out this research. Last but not least, special appreciation to all my family members for their inspiration, support and patience throughout my period of study.
ABSTRACT

A series of poly (vinyl alcohol)/cassava starch (PVA/CS) blends at 50, 60, 70 and 80 wt.% cassava starch contents were prepared in one-step compounding process. One step compounding means, all blends were compound together without solely plasticized PVA or cassava starch at beginning. All blends were characterized and testing accordingly. In this research, comparison between one-step compounding and two-step compounding (plasticized PVA/CS at the beginning) were tested by tensile strength. It shows that their tensile strengths were comparatively higher than the two-step compounding process of PVA/CS blends. In term of impact test, it indicates that CS acts as non-reinforcing filler. The compatibility of PVA/CS represents the similarity functional group and possess same polar group. Studies on thermal stability and crystallinity shows, increasing the cassava starch loading in PVA matrix, has reduced the enthalpy of melting point as well as degree of crystallinity. The onset degradation had shifted to a higher temperature when a higher percentage of cassava starch was used in PVA matrix. This is due to cyclic hemiacetal had been introduced into PVA blend by cassava starch. It resist to thermal attack. In biodegradability test, several factors have been determined to evaluate the rate of biodegradation. Increase the humidity as well as increasing the cassava starch loading in PVA matrix will improve the susceptibility contact of microorganism onto the surface of PVA/CS blend. *Aspergillus Oryzae* had been selected as a good reagent used to degrade the sample of PVA/CS blend compared to *Bacillus Amyloliquefaciens* and effective microorganism. The biodegradation process of PVA/CS blends in anaerobic condition is much more faster compared to aerobic conditions.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION | 1
1.1 Background of Research | 1
1.2 Problem Statement | 3
1.3 Objectives of Research | 5
1.4 Scope of Research | 5

2 LITERATURE REVIEW | 7
2.1 Plastic Waste from Petroleum-based | 7
2.2 Biodegradable Polymers | 10
2.2.1 Petroleum-based Synthetic of Biodegradable Polymer | 11
2.2.2 Renewable Resources-based of Biodegradable Polymer

2.3 Biodegradability of Polymers

2.4 Method of Biodegradation

2.5 Starch

2.5.1 Characteristic of Starch

2.5.1.1 Reviews on Cassava Starch

2.5.2 Thermoplastic Starch

2.6 Poly (vinyl alcohol)

2.6.1 Poly (vinyl alcohol) Incorporated With Starch

2.7 Biodegradation

2.7.1 Biodegradation of Poly (vinyl alcohol) /starch

2.8 Compound Method and Melt-Extrusion Process of Poly (vinyl alcohol) /Starch Blends

2.9 Injection Moulding of PVA/starch Blends

3 METHODOLOGY

3.1 Materials

3.1.1 Poly (vinyl alcohol)

3.1.2 Cassava Starch

3.1.3 Glycerol

3.1.4 Phosphoric Acid

3.1.5 Calcium Stearate

3.2 Blends Preparation

3.2.1 PVA/CS Blends Formulation

3.2.2 Melt Extrusion of PVA/CS Blends

3.2.3 Injection Molding Process of PVA/CS Blends
3.3 Mechanical Analysis
 3.3.1 Tensile Test
 3.3.2 Izod Impact Test

3.4 Characterization Studies
 3.4.1 Fourier-Transform Infrared
 3.4.2 Differential Scanning Calorimetry
 3.4.3 Thermogravimetry-Derivative Thermogravimetry
 3.4.4 X-ray Diffraction
 3.4.5 Melt Flow Index

3.5 Biodegradability Analysis
 3.5.1 Moisture Sorption Test
 3.5.2 Soil Burial Test
 3.5.3 Enzymatic Hydrolytic Method
 3.5.4 Solid Phase Medium under Aerobic and Anaerobic Condition

4 RESULTS AND DISCUSSION

4.1 Compounding Characterization
 4.1.1 Tensile Properties: One-Step and Two-Step Compounding Process
 4.1.2 Izod Impact Test

4.2 Compound Characterization
 4.2.1 Fourier Transform Infrared
 4.2.2 Differential Scanning Calorimetric Analysis
 4.2.3 Thermogravimetry – Differential Thermogravimetry Analysis
 4.2.4 X-ray Diffraction
 4.2.5 Melt Flow Index (MFI) of PVA/CS Blends
4.3 Biodegradability Analysis 69
 4.3.1 Moisture Sorption Analysis 70
 4.3.2 Assessment of Weight Loss by Soil 74
 and Compost Environment
 4.3.3 Enzymatic Degradation 77
 4.3.4 Exposure to Different Reagent Used: 79
 Fungi, Bacteria and Effective Microorganism
 Under Aerobic and Anaerobic Conditions

5 CONCLUSION AND RECOMMENDATIONS 86
 5.1 Conclusions 86
 5.2 Recommendations 88

REFERENCES 89

Appendices A-D 109 - 115
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of biodegradable polymers from bio-derived monomers</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Concepts and techniques for different biodegradation testing methods</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Cassava production in Asia</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Amylose and amyllopectin content and degree of polymerization of various starches</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Average chemical composition of cassava starch granules</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Infrared absorption bands of partially and fully hydrolysed PVA</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>General properties of poly (vinyl alcohol)</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>General properties of glycerol</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>General properties of calcium stearate</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Composition of PVA/CS blends</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Lists of different types of saturated aqueous salt solution</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>FTIR peaks assignment of PVA, cassava starch and glycerol</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>FTIR peaks assignment of pPVA, pCS and PVA/CS blends</td>
<td>59</td>
</tr>
</tbody>
</table>
4.3 Absorption frequencies of PVA and cassava starch before and after addition of glycerol

4.4 Onset and end-point melting temperature, melting temperature (T_m), enthalpy of melting (ΔH_m) and degree of crystallinity (χ_c) of PVA/cassava starch blends

4.5 XRD Peaks Assignment for cassava starch, PVA, pPVA And PVA/CS blends

4.6 Visual Assessment of *Aspergillus Oryzae, Bacillus Amyloliquefaciens*, and effective microorganism growth for each formulation under aerobic condition

4.7 Visual Assessment of *Aspergillus Oryzae, Bacillus Amyloliquefaciens*, and effective microorganism growth for each formulation under anaerobic condition
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>World plastic production from 1950 to 2008</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Plastic resin in the global market</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of biodegradable polymer</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Different categories of bio-based polymers</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Structure of amyllose</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Structure of amylopectin</td>
<td>19</td>
</tr>
<tr>
<td>2.7a</td>
<td>Schematic representation of structural levels of the starch granule</td>
<td>20</td>
</tr>
<tr>
<td>2.7b</td>
<td>Starch granule structure showing organization in semi-crystalline and crystalline shells, blocklet structure in association with amorphous channels, internal blocklet structure and the crystal structures of starch</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Diagram of A-, B-, and V- types of starch</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Swelling, disruption and dispersion of a starch granule during gelatinization</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Reaction sequence used in the industrial production of PVA</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>High speed mixer CL-10 brand Chyau Long Machinery Co., Ltd</td>
<td>38</td>
</tr>
</tbody>
</table>
3.2 Twin-screw extruder brand from Sino-Alloy Machinery Inc. (Sino PSM 30 Co-Rotating B5B25) 39

3.3 PVA/CS pellets 39

3.4 Injection moulding brand ‘JSW N100 BII’ 40

3.5 A set-up for moisture sorption method 44

3.6 A set of garden pot used in soil-compost burial test 46

4.1 Tensile strength from one-step compounding and two-step compounding (Mohd Shahrul Nizam Bin Salleh et al., 2010) of pPVA and PVA/CS blends 50

4.2 Impact strength of pPVA and PVA/CS blends 52

4.3 FTIR spectra of PVA, cassava starch and glycerol 54

4.4a FTIR spectra of pPVA (100wt.% PVA: 0wt.% CS), pCS (0wt.% PVA:100wt.%CS), CS55 (50wt.%PVA: 50wt.%CS), CS46 (40wt.%PVA: 60wt.%CS), CS37 (30wt.%PVA: 70wt.%CS) and CS28 (20wt.%PVA: 80wt.%CS) 57

4.4b FTIR spectrum of CS55 (50wt.%PVA:50wt.%CS) 58

4.5 DSC thermograms of pPVA, PVA/CS blends (CS55 - 50%PVA:50%CS, CS46 - 40%PVA:60%CS, CS37 - 30%PVA:70%CS, CS28 – 20%PVA:80%CS) and pCS 61

4.6 Experimental enthalpy of melting (ΔH_m) and theoretical enthalpy of melting ($\Delta H_{m\text{a}}$) of PVA/CS blends 63

4.7 Thermogram (a) and Differential-thermogram (b) integration curves of pPVA, PVA/CS blends and pCS 65

4.8 Melt flow index of from references by Nwufo et al. (1984) without plasticizer and experimental research with plasticizer 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Moisture sorption of pPVA and PVA/CS blends based on water activity (aw) a) 0.22 (saturated salt potassium acetate), b) 0.43 (saturated salt potassium carbonate), and c) 0.97 (saturated salt potassium sulphate)</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of moisture sorption of a) (a_w = 0.22), b) (a_w = 0.43), and c) (a_w = 0.97) after three months of pPVA and PVA/CS blends</td>
</tr>
<tr>
<td>4.11</td>
<td>Percentage of weight loss as a function of wt% of PVA loading in starch content, A – Lag phase, B – Biodegradation phase, C – Plateau phase</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of enzymatic hydrolysis of plasticized PVA and PVA/CS blends</td>
</tr>
<tr>
<td>4.13</td>
<td>Visual of leaching surface before and after enzymatic hydrolysis of pPVA and PVA/CS blend at 80% starch contents</td>
</tr>
<tr>
<td>4.14</td>
<td>Sediment after enzymatic process</td>
</tr>
<tr>
<td>4.15</td>
<td>Percentage of weight loss over 21 days in different condition and reagent used</td>
</tr>
<tr>
<td>4.16</td>
<td>Visual observation over 21 days with different condition on Aspergillus Oryzae of pPVA in a) Aerobic condition, b) Anaerobic condition</td>
</tr>
<tr>
<td>4.17</td>
<td>Visual observation over 21 days with different condition on Aspergillus Oryzae of CS55 in a) Aerobic condition, b) Anaerobic condition</td>
</tr>
<tr>
<td>4.18</td>
<td>Visual observation over 21 days with different condition on Aspergillus Oryzae of CS46 in a) Aerobic condition, b) Anaerobic condition</td>
</tr>
<tr>
<td>4.19</td>
<td>Visual observation over 21 days with different condition on Aspergillus Oryzae of CS37 in a) Aerobic condition, b) Anaerobic condition</td>
</tr>
</tbody>
</table>
Visual observation over 21 days with different condition on *Aspergillus Oryzae* of CS28 in a) Aerobic condition, b) Anaerobic condition
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American standard of testing and method</td>
</tr>
<tr>
<td>a_w</td>
<td>Water activity</td>
</tr>
<tr>
<td>CaS</td>
<td>Calcium stearate</td>
</tr>
<tr>
<td>C$_3$H$_8$O$_3$</td>
<td>Glycerine</td>
</tr>
<tr>
<td>CH$_3$COONa</td>
<td>Sodium acetate</td>
</tr>
<tr>
<td>CS</td>
<td>Cassava starch</td>
</tr>
<tr>
<td>pCS</td>
<td>Plasticized cassava starch</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimeter</td>
</tr>
<tr>
<td>DTG</td>
<td>Differential-thermogravimetric</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>J/g</td>
<td>Joule/gram</td>
</tr>
<tr>
<td>H$_3$PO$_4$</td>
<td>Phosphoric acid</td>
</tr>
<tr>
<td>ISO</td>
<td>International standard organization</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MFI</td>
<td>Melt flow index</td>
</tr>
<tr>
<td>µm</td>
<td>Micronmeter</td>
</tr>
<tr>
<td>phr</td>
<td>Part per hundred</td>
</tr>
<tr>
<td>PVA</td>
<td>Poly(vinyl alcohol)</td>
</tr>
<tr>
<td>pPVA</td>
<td>Plasticized poly (vinyl alcohol)</td>
</tr>
<tr>
<td>pCS</td>
<td>Plasticized cassava starch</td>
</tr>
<tr>
<td>PVA/CS</td>
<td>Plasticized poly(vinyl alcohol)/cassava starch</td>
</tr>
<tr>
<td>T$_g$</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>TG</td>
<td>Thermogravimetric</td>
</tr>
<tr>
<td>T$_m$</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight over weight</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>wt %</td>
<td>Weight percentage</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>ΔH_m</td>
<td>Enthalpy of melting</td>
</tr>
<tr>
<td>ΔH_{mi}</td>
<td>Theoretical enthalpy of melting</td>
</tr>
<tr>
<td>ΔH_f</td>
<td>Enthalpy of 100% crystalline PVA</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Over the past 50 years, more than 90% of the plastic household and industrial products are made of the feedstock of petroleum and gas (Mecking, 2004). The versatility of plastics that can be designed as rigid or elastic, breakable or resilient, transparent or brightly coloured, cheaper price and recyclable is the reason their usage become major in worldwide daily activities compared to other materials (Momani, 2009). By 2010, the annual plastic productions have been increased up to 300 million tonnes (Thompson et al., 2009).

Plastics from petroleum-based are not biodegradable and they will exist until 100 years or more (Barnes et al., 2009; Domenek et al., 2004). It gives negative impact towards our ecosystem such as diminish of landfills, toxic chemicals leakage due to contamination of groundwater, toxic gases emission cause severe health problem and threat to the existence of wildlife (Mooney, 2009; Gregory, 2009). However, the amount of the petroleum reduces year by year with uncertainty price correspond to the demand increase year by year has been causing to the cost production of the synthetic polymer. (Gervet, 2007; Hopewell et al., 2009).
With the depletion of oil, backlash for environmental pollution and greenhouse effect have driven researchers to look at the plastics that utilize naturally occurring cheap feedstock and environmental friendly. Current trend of research has seen the development of biodegradable plastics or bioplastics for various packaging applications that have been made in broad academic and industrial interests (Lee et al., 2010; Rahman et al., 2010; Cyras et al., 2006; Novamont, 2007; Chung et al., 2010; Yu et al., 2010).

Starch is a natural biodegradable polymer that derived from plants such as from potatoes, rice, tapioca, and corn. It is renewable resources with wide availability and cheaper price compared to the conventional sources. It can be degrade by microorganism (Shah et al., 1995; Mani and Bhattacharya, 1998). It has an ability to melt into thermoplastic starch. Majdzadeh-Ardakani et al. (2010) reported that thermoplastic starch has deteriorated in physical and mechanical properties. Thermoplastic starch has polar substance that present hydroxyl (―OH) group in the molecules. Some incorporation polar synthetic polymers, which can compatibilist with starch, will solve this problem (Chilleni et al., 2003). Among synthetic degradable polymer such as poly (ε-caprolactone)(PCL), poly (lactic acid)(PLA) and poly(vinyl alcohol)(PVA), poly (vinyl alcohol)(PVA), which has been widely accepted to be fully biodegradable in various environments and confirmed, in current standard test reported by McCarthy (2003) and Swift (2003). Both starch and PVA also possess hydroxyl group (―OH), thus the formation of hydrogen bonds after the blend tended to promote localized stability subsequently improved miscibility of starch and PVA. Addition of PVA to thermoplastic starch or starch to PVA will reduce the cost of PVA itself, eco-friendlier and enhance the mechanical properties (Mao et al., 2000; Tang et al., 2011).

Different compounding process will give the different result due to geometrical structure and conformational of polymer macromolecules. Toh et al. (2011) shows the resulted based on poly (vinyl alcohol) (PVA) and sago pith waste
(SPW) in three different methods: dry blend method, pre-extrusion of PVA and pre-extrusion of both PVA and SPW. In all methods, dry blend method has been chosen because of finding obtained by tensile properties and water absorption. In tensile properties, dry blend gives value at 4.85 MPa, meanwhile pre-extrusion of PVA and pre-extrusion both PVA and SPW gives value at 4.47 MPa and 5.33 MPa. Meanwhile, in water absorption test of about 420 minutes, it shows that dry blend method gives higher value then pre-extrusion of PVA and pre-extrusion both PVA and starch which is, 58.33%, 57.75% and 56.03%. It claims that due to similar result, the dry blends have been chosen because of minimal step taken to give the minimal time and manufacturing cost.

1.2 Problem Statement

At present, many research conducted on biodegradable polymer by using starches as fillers or matrices. However, an in depth study is still needed especially in terms of process ability and biodegradability of poly (vinyl alcohol) (PVA)/ cassava starch (CS) blend to fulfill the industrial needs. Two-step compounding process was previously done by Mohd Shahrul Nizam Bin Salleh (2010) in developing PVA/CS blend. However, the previous process is an uneconomical process used for industrial. A new idea to develop with one-step compounding will reduce the production cost of the blend since the energy will be reduced and the time of processing will be shorter compared to two-step compounding process.

This research has been designed to study the effect of polyvinyl alcohol (PVA) filled cassava starch (CS) that prepared by one-step compounding process and its biodegradability toward several environment and conditions. PVA has low biodegradability compared to starch (Ishikagi et al., 1999). Incorporation of starch with synthetic polymer such as PVA will improve biodegradability. This research has utilized cassava starch (CS) due to its abundant availability in Malaysia.
An effective microorganism will be used as one of the reagent to degrade the sample since effective microorganism is much lower in cost compared to specific fungi and bacteria used toward biodegradability studies. Report by Chiellini et al. (2003) shows the fungi and bacteria such as pseudomonas species, alcaligenes and bacillus had been used to degrade the poly (vinyl) alcohol. Recently, there is no research use of an effective microorganism to degrade the sample. Therefore, a few questions need to be answered as follows:

i. Could PVA/CS blends be prepared via one-step compounding and processable into conventional injection moulding and what are the effects of mechanical properties between the methods used?

ii. What are the effects of PVA incorporation with CS content toward functional group, thermal, flowability, crystallinity and biodegradability properties?

iii. How far can the soil and compost affected the biodegradability of PVA/CS blends and what is the effect by using fungi, bacteria and effective microorganism?

iv. Which conditions is preferable for PVA/CS blends to be biodegraded, aerobic or anaerobic conditions?

For biodegradability method, it would be performed in several months to ensure all samples reach their equilibrium state with the environment to encourage the growth of microorganism.
1.3 Objective of Research

The aim of this research is to develop a biodegradable PVA/CS blends by using one-step compounding using the conventional injection molding and their biodegradability in various environments. Therefore, this research project embarked on the following objectives:

i. To investigate the different effect of methods used; one-step and two-step compounding process toward tensile strength and determine impact property of PVA/CS blends.

ii. To determine the functional group, thermal, flowability, and crystallinity of PVA incorporation with CS content.

iii. To determine the influence of moisture sorption, soil, compost, and enzyme toward PVA/CS blends

iv. To analyze the influence CS loading on biodegradability in aerobic and anaerobic conditions enriched with fungi, bacteria and effective microorganism.

1.4 Scope of Research

The scope of research involved the preparation of PVA/CS blends via one-step compounding process. The starch loadings were varied i.e. 50wt%, 60wt %, 70wt%, 80wt% and 100wt% respectively. All blends were tested and characterized accordingly. Outline of this research were subdivided into four sections:
i. Compounding of PVA/CS blends were prepared in powder-powder system where PVA and cassava starch powder was added simultaneously with glycerol and additives in a high-speed mixer followed by blending with a twin-screw extruder. A series blends of PVA and cassava starch were varying prepared with amount of cassava starch (0 wt%, 50 wt.%, 60wt.%, 70wt.%, 80wt.%, 100 wt%). The amount of glycerol and additives were fixed.

ii. For the compound characterization, the interaction in the blends of PVA/CS were explained on Fourier Transform Infrared (FTIR). For thermal analysis, Differential Scanning Calorimetry (DSC) and Thermogravimetry-Derivative Thermogravimetry (TG-DTG) was used to determine the enthalpy changes with temperature, degree of crystallinity in increasing starch loading and thermal stability of the blends. The flow ability of blends were analysed by Melt Flow Index (MFI) for its viscosity before injected. In determining the crystallinity of the blends, X-ray Diffraction (XRD) analysis was used.

iii. For testing the injected product, mechanical properties such as tensile strength and impact properties was studied. The comparison was made between two method used in term of tensile strength.

iv. In term of biodegradation, studies on moisture sorption, enzymatic hydrolysis, soil burial, and solid phase medium via aerobic and anaerobic condition enriched with fungi, bacteria and effective microorganism were conducted.
REFERENCES

